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Abstract
Equilibrium climate sensitivity (ECS) refers to the total global warming caused by an instantaneous doubling of atmospheric 
CO2 from the pre-industrial level in a climate system. ECS is commonly used to measure how sensitive a climate system is to 
CO2 forcing; but it is difficult to estimate for the real world and for fully coupled climate models because of the long response 
time in such a system. Earlier studies used a slab ocean coupled to an atmospheric general circulation model to estimate 
ECS, but such a setup is not the same as the fully coupled system. More recent studies used a linear fit between changes in 
global-mean surface air temperature (ΔT) and top-of-atmosphere net radiation (ΔN) to estimate ECS from relatively short 
simulations. Here we analyze 1000 years of simulation with abrupt quadrupling (4 × CO2) and another 500-year simulation 
with doubling (2 × CO2) of pre-industrial CO2 using the CESM1 model, and three other multi-millennium (~5000 year) abrupt 
4 × CO2 simulations to show that the linear-fit method considerably underestimates ECS due to the flattening of the −dN/
dT slope, as noticed previously. We develop and evaluate three other methods, and propose a new method that makes use of 
the realized warming near the end of the simulations and applies the −dN/dT slope calculated from a best fit of the ΔT and 
ΔN data series to a simple two-layer model to estimate the unrealized warming. Using synthetic data and the long model 
simulations, we show that the new method consistently outperforms the linear-fit method with small biases in the estimated 
ECS using 4 × CO2 simulations with at least 180 years of simulation. The new method was applied to 4 × CO2 experiments 
from 20 CMIP5 and 19 CMIP6 models, and the resulting ECS estimates are about 10% higher on average and up to 25% 
higher for models with medium–high ECS (> 3 K) than those reported in the IPCC AR5. Our new estimates suggest an ECS 
range of about 1.78–5.45 K with a mean of 3.61 K among the CMIP5 models and about 1.85–6.25 K with a mean of 3.60 K 
for the CMIP6 models. Furthermore, stable ECS estimates require at least 240 (180) years of simulation for using 2 × CO2 
(4 × CO2) experiments, and using shorter simulations may underestimate the ECS substantially. Our results also suggest that 
it is the forced −dN/dT slope after year 40, not the internally-generated −dN/dT slope, that is crucial for an accurate estimate 
of the ECS, and this forced slope may be fairly stable.
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1  Introduction

Equilibrium climate sensitivity (ECS) refers to the increase 
in global-mean surface (air) temperature in response to a 
doubling of atmospheric CO2 (often from the pre-industrial 
level) after the system reaches a new equilibrium (Hansen 
et al. 1984; Randall et al. 2007; Flato et al. 2013; Stevens 
et al. 2016; Knutti et al. 2017). ECS has been a fundamental 
metric used to quantify how sensitive a climate system is to a 
given forcing caused by changes in atmospheric greenhouse 
gases (GHGs), especially in model comparisons (Charney 
et al. 1979; Cubasch et al. 2001; Randall et al. 2007; Flato 
et al. 2013), although different forcing agents may cause 
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different surface warming per unit forcing, leading to dif-
ferent efficacy (Hansen et al. 2005). Furthermore, different 
characteristics of the same type of forcing may cause varying 
response in surface warming (Hansen et al. 1997). In addi-
tion, near-future climate projections are usually more related 
to the transient climate response rather than ECS (Grose 
et al. 2018). Thus, ECS is a simplified metric; neverthe-
less, it still provides a useful measure of the sensitivity of a 
climate system to CO2 forcing, which is the primary forcing 
agent in the current climate change.

However, due to the long response time of Earth’s cli-
mate system to any forcing perturbation, it is difficult to 
estimate ECS accurately. Until about 10 years ago, ECS of a 
fully coupled climate model was commonly estimated using 
relatively short simulations of its atmospheric component 
coupled with a slab ocean (e.g., Kiehl et al. 2006), which 
lacks ocean dynamics but allows the system to reach a new 
equilibrium quickly. Clearly, the slab-ocean setup is very dif-
ferent from the fully coupled version of the model; thus one 
could argue that ECS estimated from the slab-ocean experi-
ments may not be the same as that in fully coupled model 
runs, although some long simulations by coarse-resolution 
models showed that the slab-ocean approach may work well 
with only a small bias (Danabasoglu and Gent 2009; Li et al. 
2013; Jonko et al. 2013). Partly because of this, the climate 
community quickly adopted a simple method proposed by 
Gregory et al. (2004), who observed a fairly linear relation-
ship between the changes (relative to a control run) in the 
global-mean and annual-mean surface air temperature (ΔT) 
and top-of-atmosphere (TOA) net radiation (ΔN) (i.e., ΔN ≈ 
F − λ ΔT) in a 4 × CO2 simulation and used the λ = −dN/dT 
slope, referred to as the feedback parameter (Andrews et al. 
2012), to extrapolate the ΔT when ΔN approaches zero (i.e., 
when the system reaches a new equilibrium) as twice ECS. 
This linear-fit method was used to estimate ECS of CMIP5 
(Andrews et al. 2012; Forster et al. 2013; Flato et al. 2013) 
and CMIP6 (Zelinka et al. 2020) models and has become 
the standard method for estimating ECS in fully coupled cli-
mate models, although there have been efforts to improve the 
Gregory et al.’s method. For example, Geoffroy et al. (2013a, 
b) estimated ECS using their two-layer energy balance solu-
tions fitted to model data from CMIP5 4 × CO2 experiments; 
Andrews et al. (2015) and Armour (2017) estimated ECS 
using linear regressions between ΔT and ΔN data over years 
21–150, and Proistosescu and Huybers (2017) estimated 
ECS using a more sophisticated 3-mode model fit. Recently, 
Paynter et al. (2018) claim that ECS can be estimated from 
extended 1%/year CO2 ramping simulations. These all pro-
duce higher ECS values than those reported in Flato et al. 
(2013) for the reasons discussed below, and a recent analysis 
of multi-millennium long simulations suggests an underes-
timate bias of 10–30% for the Gregory et al. (2004)-based 
ECS estimates (Rugenstein et al. 2019a).

It is well known, however, that Earth’s surface temper-
ature responds very rapidly to a doubling or quadrupling 
of CO2 during the first few decades as the deep ocean has 
yet to take up energy; thereafter, the response slows down 
gradually as the heat exchange with the deep ocean becomes 
important (Held et al. 2010; Geoffroy et al. 2013a, b; Greg-
ory et al. 2015; Garuba et al. 2018). Thus, the relationship 
between surface temperature and TOA net radiation dif-
fers during these periods of fast and slow adjustment, such 
that the λ = (−dN/dT) slope decreases over time (Senior 
and Mitchell 2000; Armour et al. 2013; Rose and Rayborn 
2016), or is nonlinear and changes with the state of the cli-
mate system (Feldl and Roe 2013; Jonko et al. 2013; Mer-
aner et al. 2013; Gregory et al. 2015; Knutti and Rugenstein 
2015; He et al. 2017; Ceppi and Gregory 2019), in response 
to an instantaneous CO2 change. In particular, changes in 
the feedback parameter λ over time have been interpreted in 
terms of regional climate feedbacks (Armour et al. 2013), 
spatial patterns of ocean heat uptake (Rose et al. 2014; 
Rose and Rayborn 2016; Rugenstein et al. 2016), a non-
unit efficacy of ocean heat uptake (Held et al. 2010; Winton 
et al. 2010; Geoffroy et al. 2013b; Yoshimori et al. 2016), 
or changes with the mean state (He et al. 2017; Ceppi and 
Gregory 2019), although these are not mutually exclusive 
interpretations (e.g. Haugstad et al. 2017). A recent analy-
sis of multi-millennium simulations by coupled climate 
models (Rugenstein et al. 2019a) suggests that the feedback 
parameter may change over time, especially during the first 
150 years. All these studies suggest that the (−dN/dT) slope 
should change (more specifically decrease) with time, rather 
than being constant, at least during the first 100 years in a 
2 × CO2 or 4 × CO2 experiment. The increasing climate sen-
sitivity (= 1/λ) over time (Senior and Mitchell 2000; Armour 
et al. 2013; Rose and Rayborn 2016) would imply that the 
Gregory et al. (2004)’s method should underestimate ECS 
in a fully coupled model, which is confirmed recently by 
Paynter et al. (2018) using multi-millennium simulations of 
two fully coupled models. This raises the following ques-
tions: How big is this underestimate for other models? Is the 
Gregory et al. (2004)’s method of using the (−dN/dT) slope 
estimated over the whole simulation period appropriate for 
estimating ECS? Can we improve this extrapolation method 
for estimating ECS from relatively short simulations to fill 
this practical need as multi-millennium long simulations are 
still expensive and impractical for most modeling groups? 
While the underestimation bias of the Gregory et al. (2004)’s 
method has been noticed previously (e.g., Andrews et al. 
2015; Armor 2017; Proistosescu and Huybers 2017; Paynter 
et al. 2018; Rugenstein et al. 2019a) and Geoffroy et al. 
(2013b) proposed a new method to estimate ECS based on 
their fitted two-layer model, the focus of these previous stud-
ies was not on developing and evaluating different methods 
for estimating ECS from a relatively short simulation, and 
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these questions have not been systematically investigated. 
Given that the Gregory et al. (2004) method is still used 
to estimate ECS in the latest CMIP6 models (Zelinka et al. 
2020), there is an urgent need to address the above questions.

Here we first discuss some of the key issues associated 
with the linear-fit method for estimating ECS, then analyze a 
1000-year 4 × CO2 simulation using the CESM1 from NCAR 
(Hurrell et al. 2013), a comprehensive fully coupled climate 
model, to explore and evaluate several other methods for 
estimating ECS using varying lengths of simulation. The 
ΔT(t) and ΔN(t) time series from this simulation are fit-
ted with the analytic solutions from the two-layer energy 
balance model of Geoffroy et al. (2013a, b), and realistic 
random noise is then added to the fitted ΔT(t) and ΔN(t) 
time series to generate synthetic samples of the noisy ΔT(t) 
and ΔN(t) time series. Four different methods (including 
that of Gregory et al. 2004) are then used to estimate the pre-
defined ECS in these synthetic data series. This allows us 
to quantitatively evaluate the performance of these different 
methods and quantify the bias of the Gregory et al. (2004)’s 
method under this idealized framework. The stability of the 
estimated ECS using CESM1-simulated data over varying 
lengths of simulation is also examined as a measure of the 
performance. The performance of the four methods is further 
evaluated using multi-millennium (~ 5000 year) long simu-
lations with abrupt 4 × CO2 forcing from three other fully 
coupled models, in which case the ECS can be estimated 
approximately as the warming near the end of the simula-
tion. The results suggest that ECS can be estimated reliably 
from relatively short (e.g., 180 year) simulations using our 
improved methods.

Based on these analyses, we recommend a new method 
and apply it to the 4 × CO2 simulations from 20 CMIP5 and 
19 CMIP6 models to produce new ECS estimates for these 
models. Our results show that the previously reported ECS 
values (Andrews et al. 2012; Forster et al. 2013; Flato et al. 
2013) are substantially underestimated, as noticed previ-
ously (Geoffroy et al. 2013b; Andrews et al. 2015; Armour 
2017; Proistosescu and Huybers 2017; Paynter et al. 2018; 
Rugenstein et al. 2019a, b). This implies that Earth’s ECS 
may be higher than our estimates, which have remained in 
the range of 1.5–4.5 °C since 1979 despite the tremendous 
progresses in climate modeling and paleoclimate research 
made in the last 4 decades (Charney et al. 1979; Randall 
et al. 2007, PALEOSENS 2012; Flato et al. 2013; Stevens 
et al. 2016; Knutti et al. 2017; Marvel et al. 2018a). How-
ever, the latest CMIP6 models show a slightly higher ECS 
range of 1.8–5.6 K based on the same Gregory et al. (2004) 
method (Zelinka et al. 2020), while our new estimates sug-
gest a range of 1.85–6.25 K.

We emphasize that our results of the performance of the 
various methods, which are confirmed by our analyses of the 
multi-millennium simulations, are derived from the synthetic 

data that resemble the noise level (including some temporal 
variations in dT, dN, and dN/dT) and the long-term evolu-
tion of the dT and dN seen in the CESM1 4 × CO2 simulation. 
Thus, they are likely to be only indicative for the performance 
when applied to climate model simulations, and the biases 
may change with data from individual models. Nevertheless, 
the relative performance found here is likely applicable to real 
model data because the synthetic data used here capture the 
overall long-term evolution of the data series seen in the pub-
lished multi-millennium simulations (Danabasoglu and Gent 
2009; Li et al. 2013; Jonko et al. 2013; Paynter et al. 2018), 
which show that the dT gradually approaches an upper limit 
with only small fluctuations on decadal to centennial time 
scales after the first few hundred years. These short-term fluc-
tuations, which are represented by the noise in our synthetic 
data, may result from internal variations (e.g., due to warm-
ing- and thus time-dependent feedbacks) that may change the 
short-term climate sensitivity (or the dN/dT slope), but these 
short-term variations do not appear to affect the long-term 
evolution of dT and thus the final ECS as suggested by the 
published multi-millennium time series (Danabasoglu and 
Gent 2009; Li et al. 2013; Jonko et al. 2013; Paynter et al. 
2018). Our analyses of available multi-millennium simulations 
also show a stable long-term dN/dT slope that allows the use 
of a constant dN/dT slope for estimating ECS using a relatively 
short simulation. From this perspective, we believe our test 
results on the relative performance of the various methods are 
likely applicable to real model simulations.

Clearly, for models that continue to exhibit wild fluctuations 
over extended periods of time (e.g., > 100 years) in the dT and 
dN series even after the first few hundred years, no simple 
method can reliably estimate their ECS from a short simula-
tion over a few hundred years, and the only way to estimate 
their ECS is to make very long simulations. However, for most 
climate models, as shown below with the CMIP5 and CMIP6 
models, our improved method appears to work reasonably well 
for estimating ECS from a relatively short simulation. Further-
more, our analyses of available multi-millennium simulations 
revealed that the (−dN/dT) slope does not show any long-term 
trends, although it varies considerably on decadal to centennial 
time scales due to internal variability. This long-term stability 
provides a physical basis for using a constant slope to esti-
mate ECS based on a short simulation. Thus, our study fills 
a practical need for such a method, as most modeling groups 
cannot afford to make multi-millennium simulations for each 
new version of their models.
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2 � Model experiments and analysis method

2.1 � Model experiments

We ran the Community Earth System Model version 
1.2.1 (CESM1, with CAM4 as the atmospheric model) 
(Hurrell et al. 2013) for 1000 years after an instantane-
ous quadrupling of the pre-industrial CO2 (at 284.7 ppmv) 
(4 × CO2) with a 2.5° lon × ∼1.875 lat atmospheric grid 
and about 1.12° lon × 0.47° lat for the oceans. The CESM1 
is a widely used fully coupled climate model, with an 
ECS of about 3.2 °C when coupled to a slab ocean model 
(SOM) (Gettelman et al. 2012). This 1000-year simulation 
from the 4 × CO2 experiment was used to test and evalu-
ate various methods for estimating ECS. The same model 
(with the same resolution) was also run for 500 years 
after an instantaneous doubling of the pre-industrial CO2 
(2 × CO2). This 2 × CO2 experiment was analyzed to verify 
whether the ECS estimate is similar to that derived from 
the 4 × CO2 experiment after accounting for the initial 
forcing difference. A pre-industrial control (piControl) 
run with the same model configuration was also done 
to provide the baseline for calculating the change in the 
global-mean and annual-mean surface air temperature 
(ΔT) and TOA net radiation (ΔN, positive downward) for 
the 4 × CO2 and 2 × CO2 runs. The CESM1 control run 
did not show noticeable long-term drifts in the ΔT and 
ΔN time series.

To evaluate the performance of the four methods for 
estimating ECS, we also obtained and examined ten multi-
millennium simulations from the long run project (https​://
data.iac.ethz.ch/longr​unmip​/; Rugenstein et al. 2019b), and 
from Dr. Cao Li of MPI and Dr. David Paynter of GFDL. 
Many of these simulations only had ≤ 3000 years of simula-
tion and their TOA forcing is still positive near the end of 
the run. As a result, here we only included three long abrupt 
4 × CO2 simulations from CESM 1.0.4 (for 5900 years, on a 
2.5° lon ×  ~ 1.875° lat atmospheric grid with CAM4), GISS-
E2-R (for 5000 years, on a 2.5° lon × 2.0° lat grid), and MPI-
ESM-1.1 (for 4458 years, on a 1.875° lon ×  ~ 1.875° grid) 
in our analyses. These three long simulations show steady 
global-mean temperature toward the end of the simulation 
with TOA forcing less than 0.1 W/m2, and thus the warm-
ing near the end can be used as a fairly accurate estimate of 
the true ECS, against which the ECS estimates from differ-
ent methods and using different length of simulation can be 
evaluated.

We also analyzed the 4 × CO2 exper iment 
(only ~ 150 years available after the quadrupling of pre-
industrial CO2), 1% CO2 increase per year experiment 
(1pctCO2) and a pre-industrial control run provided by 20 
fully coupled climate models participated in the Coupled 

Model Inter-comparison Project phase 5 (CMIP5) (Table 1; 
Taylor et al. 2012) and 19 models from the phase 6 of the 
project (CMIP6) (Table 2, Eyring et al. 2016). The ECS 
estimates using Gregory et al. (2004)’s method and our new 
method for these models were compared, together with the 
estimates of their transient climate response (TCR), defined 
as the ΔT (relative to the climatology of the pre-industrial 
control run) around the time of CO2 doubling (i.e., from 
years 61 to 80) in the 1pctCO2 run. 

2.2 � Methods for estimating ECS from short‑term 
simulations

After many tests, we applied the following four methods to 
estimate ECS using ΔT and ΔN data from a 4 × CO2 (and 
2 × CO2) experiment. Method 1 is the linear-fit method of 
Gregory et al. (2004), who utilized ΔN = F − λ ΔT and 
used all annual data points from a 4 × CO2 experiment to 
estimate the λ = (−dN/dT) slope using least-squares fitting 
and calculated ECS as θ × F/λ, where F is the global-mean 
TOA effective forcing for a quadrupling of pre-industrial 
CO2, which is estimated as the intercept at ΔT = 0 from the 
fitted equation as in Gregory et al. (2004) and Andrew et al. 
(2012), and θ is the 2 × CO2 to 4 × CO2 forcing ratio for con-
verting the equilibrium ΔT change for 4 × CO2 to that for 
2 × CO2. In this study, we use θ = 3.8749/8.1246 = 0.4769 
(based on the radiative forcing for 2 × CO2 and 4 × CO2 from 
Byrne and Goldblatt 2014), instead of 0.5 as in Gregory 
et  al. (2004). Note θ = 1 if data from a 2 × CO2 experi-
ment are used. Method 2 is similar to method 1, except 
that we exclude the first 40 years of data (for reasons dis-
cussed below) in the linear fitting: ΔN = a—b ΔT, so that 
ECS = θ × a/b. Note that parameter a is no longer equal to 
F. In method 3, we use the mean ΔT averaged over the 
last 50 years of the simulation (ΔTmean) as the realized 
warming and (ΔNmean/b) as the unrealized warming, so that 
ECS = θ × (ΔTmean + ΔNmean/b), where ΔNmean is the ΔN 
averaged over the last 50 years of the simulation (referred 
to as the remaining forcing), and b is the same slope as in 
method 2. Method 4 is similar to method 3, except that the 
slope b is not estimated directly from the model data using 
least squares fitting; instead, we first fit the ΔT(t) and ΔN(t) 
time series to analytic functions based on a simple two-layer 
climate model (described below), and then use these fitted 
equations to estimate the b = (−dN/dT) slope for estimat-
ing ECS as θ × (ΔTmean + ΔNmean/b). In methods 3–4, we 
separate ECS into the large realized component and a small 
unrealized component, and the estimated (−dN/dT) slope 
only affects the estimation of the unrealized part; in contrast, 
the estimated ECS is entirely determined by the estimated 
(−dN/dT) slope in methods 1–2.

For methods 1–3, the procedure to estimate ECS is 
fairly straightforward; however, for method 4 it requires 

https://data.iac.ethz.ch/longrunmip/
https://data.iac.ethz.ch/longrunmip/
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some iterations. First, we derive a first ECS guess using 
method 3, then we use this ECS/θ as the α parameter in 
the fitting function for ΔT(t) (i.e., Eq. 1 in Sect. 2.3) and 
start the fitting (with α being specified). The fitted func-
tions will allow us to derive a new α = ECS/θ using method 
4 (which is usually larger than the previous estimate). If 
this new α estimate differs from the previous estimate by 
more than a threshold of 0.0001 K, then we replace the α 
parameter in the ΔT(t) fitting function with this new esti-
mate and repeat the fitting (again with α being specified) 
and the ECS estimate (and α) again, until the new estimate 
stabilizes (usually within 50 iterations).

It becomes apparent that how one estimates the b = (−dN/
dT) slope is critical for deriving ECS. To explore this issue 
more, we re-visit some basics of the least squares linear fit-
ting in Appendix. It is clear that for noisy data series 
Xi = xi + εxi and Yi = yi + εyi, where εxi and εyi are random 
noise added to the signal xi and yi, which are linearly related: 
yi = a + b xi, the estimated slope between Xi and Yi with Xi 
as the predictor would be b∕(1 + �2

�x
∕�2

x
) , where �2

�x
 and �2

x
 

are the variance of the noise (εxi) and signal (xi) of the pre-
dictor. Note here εx and εy are assumed to be uncorrelated, 
which may not be the case for certain climate data (Prois-
tosescu et al. 2018). Thus, the magnitude of the estimated 
slope from noisy data will always be smaller than that of the 
true slope between the two variables! And this underestima-
tion increases with the noise-to-signal ratio (σεx/σx). For the 
data without noise (i.e., xi and yi), the dy/dx and dx/dy 
slopes are related: dy∕dx = b = 1∕(1∕b) = 1∕(dx∕dy) . 

However, when they contain noise, such a relationship no 
l o n g  e x i s t s :  dY∕dX = b∕(1 + �2

�x
∕�2

�x
)  ,  w h i l e 

dY∕dX = b∕(1 + �2
�y
∕�2

�y
) . Because the noise-to-signal ratio 

is generally not the same for X and Y, the estimated dY/dX 
slope will not be equal to the inverse of the estimated dX/dY 
slope!

These results have important implications for our analy-
sis of the ΔT(t) and ΔN(t) time series from the CESM1 
or CMIP models, as these data series (Fig. 1) contain con-
siderable noise generated from internal variability (Dai and 
Bloecker 2019) superimposed on the CO2 forcing-induced 
long-term change (the signal). The noise-to-signal ratio is 
particularly large for the ΔN(t) data series, thus the under-
estimation will be more pronounced for the (−dT/dN) slope 
(i.e., when ΔN(t) is used as the predictor) than for the (−dN/
dT) slope. Because of this, one should avoid using the esti-
mated (−dT/dN) slope to derive ECS. Similarly, since the 
noise level is similar while the forced signal is almost dou-
bled in 4 × CO2 experiments compared with 2 × CO2 experi-
ments, the ECS estimate based on 4 × CO2 experiments 
should contain less uncertainty than that based on 2 × CO2 
experiments. However, it is unclear whether the simple re-
scaling using θ first induced by Gregory et al. (2004) and 
used previously (e.g., Andrews et al. 2012) would lead to 
the same ECS estimates from the two types of experiments. 
We will apply our methods to both the CESM1 4 × CO2 and 
2 × CO2 experiments to examine this issue in Sect. 3.3.

Fig. 1   Time series of anomalies (relative to the control climate) of 
global-mean and annual-mean surface air temperature (T(t), blue 
dots) and TOA net radiation flux (N(t), gray dots, positive down-
ward) from the CESM1 4 × CO2 experiment for 1000  years. The 
solid (dashed) black line is the best fit to the 1000 (first 500) years 

of data points using the two-layer model solutions of Geoffroy et al. 
(2013b), with the fitting results for the 1000 year case shown on the 
figure. The blue (orange) line is the dT/dt (−dN/dt) slope based on 
the fitted functions (solid black lines) in unit of K/100 year (W/m2 per 
100 years) on the left y-axis
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Because the estimated ECS is proportional to 
(1 + �2

�x
∕�2

x
)∕b in our methods 1–2, the underestimation of the 

(−dN/dT) slope should lead to an overestimation of the ECS in 
these methods. However, as shown below, this bias is smaller 
than the overestimation bias of the (−dN/dT) slope due to the 
use of the data points from the early part of the simulation. 
As a result, ECS is actually underestimated by these methods.

2.3 � Fitting the model data

To describe the long-term behavior of the ΔT(t) and ΔN(t) 
data series from a model experiment and also to help devise 
a framework for testing and evaluating the performance 
of the four methods for estimating ECS, we need to fit the 
ΔT(t) and ΔN(t) time series from the CESM1 or the CMIP 
models with certain analytic equations. We explored a few 
different forms of the fitting functions based on visual exam-
inations of the graphic shapes of the ΔT(t) and ΔN(t) time 
series. They include the solutions from the two-layer energy 
balance model with a fast (τf) and a slow (τs) response time 
(Geoffroy et al. 2013a, b):

where Fo is the initial TOA forcing and is set to 8.1246 W/m2 
for 4 × CO2 and 3.8749 W/m2 for 2 × CO2 according to Byrne 
and Goldblatt (2014). Note that Fo, which differs from the 
effective forcing F in Gregory et al. (2004)’s method, cannot 
be easily estimated from the model output from the experi-
ments because the TOA forcing changes rapidly at the start 
of the simulations. Hansen et al. (2005) proposed a 2 × CO2 
experiment with fixed SSTs and sea ice from a control run 
to estimate the TOA forcing as a measure of the direct radia-
tive forcing (without feedbacks) from a doubling of CO2. 
We performed two 40-year simulations using the CESM1 
with fixed SSTs and sea ice from the piControl run, one with 
an instantaneous doubling and one with an instantaneous 
quadrupling of atmospheric CO2. Results from these runs 
(not shown) revealed steady evolutions for the global-mean 
ΔT and ΔN, with a slight increase in ΔT by 0.19 K and 
0.55 K for the 2 × CO2 and 4 × CO2 cases, respectively. The 
TOA forcing estimated from these runs is 4.1384 W m−2 and 

(1)ΔT(t) = �

[
�

(
1 − e

−
t

�f

)
+ (1 − �)

(
1 − e

−
t

�s

)]
,

(2)ΔN(t) = Fo

[
Be

−
t

�f + (1 − B)e
−

t

�s

]
,

8.0257 W m−2 for 2 × CO2 and 4 × CO2, respectively, which 
are reasonably close to the generic estimates from Byrne and 
Goldblatt (2014). Given the uncertainties associated with the 
Hansen experiment approach (e.g., increased water vapor, 
snow-ice feedback over land and other processes may still 
contribute to the TOA forcing in such experiments), practi-
cal difficulties to make such experiments for other CMIP 
models, and the insensitivity of the fitted ΔN(t) to Fo for 
large t (e.g., for t > 100 years), we chose to use the Fo esti-
mates from Byrne and Goldblatt (2014) for CESM1 and all 
other CMIP models. Our tests showed that using slightly dif-
ferent Fo (e.g., Fo = 8.1246 or 8.0257 W m−2) did not change 
the ECS estimate or the fitted ΔN(t) for large t values. This 
is because Eqs. (1, 2) are not used in methods 1–3, and used 
in method 4 only for estimating the small component of the 
unrealized warming.

The other parameters α, β, τf, τs, and B in Eqs. (1, 2) need 
to be estimated during the fitting to the model data. Note that 
the use of a different B in Eq. (2) allows for a non-unit efficacy 
of deep ocean heat uptake in the two-layer model (Geoffroy 
et al. 2013b); otherwise, the B would be the same as the β 
in Eq. (1) and the fitting to the ΔN data would be poor for 
the first ~ 40 years. This suggests that a non-unit efficacy of 
deep ocean heat uptake is necessary for the two-layer model 
to work well. The parameter α in Eq. (1) is the equilibrium 
temperature change (thus ECS = θ × α). Our tests showed that it 
is better to estimate this parameter first (e.g., using the methods 
of Sect. 2.2) before the optimization-based fitting described 
below; otherwise, this parameter (and thus ECS) will vary 
considerably with different lengths of simulation, which is an 
undesirable property for any method.

The two-layer model has been shown by Geoffroy et al. 
(2013b) to fit well the global-mean ΔT(t) and ΔN(t) time 
series from CMIP5 models. This is also confirmed by our 
own analyses discussed in Sect. 3.4. However, a new study by 
Rohrschneider et al. (2019) suggests that the two-layer model 
may not be able to accurately describe the behavior of complex 
climate models, as it only contains two response time scales. 
Thus, some uncertainties may exist in using a fitted two-layer 
model to represent the long-term evolution of the ΔT(t) and 
ΔN(t) time series in fully coupled models, although our addi-
tion to the two-layer model of the short-term variations derived 
from the CESM1 data series should improve the representation 
in our benchmark tests discussed below.

From Eqs. (1, 2), we can derive the λ = (−dN(t)/dT(t)) slope 
as

(3)𝜆 = −
dN(t)

dT(t)
=

Fo

(
B

𝜏f
e
−t∕𝜏f +

1−B

𝜏s
e
−t∕𝜏s

)

𝛼

(
𝛽

𝜏f
e
−t∕𝜏f +

1−𝛽

𝜏s
e
−t∕𝜏s

) ≈
Fo(1 − B)

𝛼(1 − 𝛽)
for t ≫ 𝜏f and 𝜏s ≫ 𝜏f .
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This implies that the feedback parameter (λ) becomes con-
stant for t ≫ 𝜏f  (e.g., for t > 40–50 years, see Fig. 3a) for the 
two-layer model, which excludes short-term variations gener-
ated by internal variability.

The following cost function is used to determine the param-
eters in the fitting functions:

where y(t) = ΔT(t) or ΔN(t) computed from the fitting func-
tion at time t, and �obs,t is the data time series (with N data 
points) from the CESM1 or CMIP model experiments. Thus, 
the optimized parameters can be computed iteratively by 
performing evaluations of the cost function and its gradi-
ent using a suitable descent algorithm (Liu and Nocedal 
1989). This allows us to derive the optimal combination of 
the parameters in any given form of a fitting function that 
minimizes the cost function (i.e., in a least-square sense).

2.4 � A framework for evaluating ECS estimates

An ideal method for estimating ECS using the ΔT(t) and 
ΔN(t) data from a limited length of simulation should pro-
duce stable estimates as the length of simulation (L) varies 
above a minimum number of years. Thus, we will apply 
the four methods to the ΔT(t) and ΔN(t) data over vary-
ing lengths of simulation (i.e., from year 1 to year L only), 
with L = 100, 110, …, 1000 years. The stability of the ECS 
estimates over varying L will provide one measure of the 
performance for the methods.

The best way to quantitatively evaluate the performance 
of the methods for estimating ECS using short simulations 
is to compare their estimates with the realized warming near 
the end of a multi-millennium simulation, as the latter is 
likely very close to the true ECS. We were able to obtain 
three long (~ 5000 year) abrupt 4 × CO2 simulations from 
three different coupled models in this testing. This provides 
additional verification of the test results using synthetic data 
described below.

Another quantitative evaluation is to examine how well a 
method can recover a pre-defined ECS (e.g., as represented by 
Eq. 1) in noisy data series that resemble model data. Please 
note that this specified ECS may slightly differ from the true 
ECS of the model that was used to produce the model data 
used in the fitting. To do so, we notice that the two-layer model 
solutions (Eqs. 1, 2) provide a reasonable fit to the noisy ΔT(t) 
and ΔN(t) data from the CESM1 (Fig. 1) and other CMIP5 
4 × CO2 experiments (see Sect. 3.5). The residuals from this 
fitting to all years of data looked like noise (not shown), with 
some lag-1 autocorrelations (r1 = 0.63 and 0.17 for ΔT and 
ΔN, respectively, over years 1–500). Thus, we generated 
10,000 synthetic time series for ΔT and ΔN (for each given 

(4)� =
1

2

N∑

t=1

(
�(t) − �obs,t

)2
,

L = 100, 110, …, 1000 years) by adding random noise to the 
smooth time series calculated using the fitted functions (fit-
ted to all years of simulation, i.e., for L = 1000 years), which 
define ECS (as θ × a) and the initial forcing (Fo) in the noisy 
synthetic data. We emphasize that this pre-defined ECS is not 
intended to represent the true ECS of the CESM1 (which is 
unknown); rather, it serves as the target ECS for a method to 
recover from a noisy data series that closely resembles the 
data series from a fully coupled climate model. The random 
noise was generated by randomly sampling the pairs of the ΔT 
and ΔN residual time series (so that their correlation of about 
−0.53 was preserved) either for one year each time or for a 
10-year block each time. The 10-year block sampling largely 
preserves the lag-1 autocorrelation in the residual time series 
and the results presented below use this sampling; however, 
the results are very similar for the yearly sampling case. For 
a short length of simulations (L = 100–200 years), the inter-
ensemble spread in the estimated ECS is considerable (around 
0.1–0.2 K). The ensemble-mean results from the 10,000 sam-
ples provide a more stable estimate of the performance of the 
methods than the results based on a single realization from the 
CESM1 or the other three models. Thus, the ensemble-mean 
results based the synthetic data are useful for assessing the 
mean performance of the methods, provided that the synthetic 
data resemble real model data.

For method 4, the fitting procedure of Sect. 2.3 with the same 
fitting function forms as those used to generate the synthetic 
data was applied to each of the noisy synthetic time series (with 
the iterations described in Sect. 2.2) to estimate the (−dN/dT) 
slope needed for calculating ECS in this method. For example, 
when we use Eqs. (1, 2) to fit the data over all available years of 
simulation (i.e., 1000 years) and then use these fitted functions 
to generate 10,000 pairs of synthetic ΔT and ΔN time series for 
each length of simulation (L = 100, 110, …, 1000 years), we 
would use Eqs. (1, 2) to fit each of these synthetic time series 
at the given L iteratively until parameter α in (1) stabilizes. The 
newly fitted ΔT(t) and ΔN(t) functions (rather than the func-
tions used in generating the synthetic data series) were then used 
to estimate the (−dN/dT) slope using Eq. (3) that was used in 
method 4 to estimate ECS for the given L.

We emphasize that the ECS biases for the methods may 
vary with data from individual model simulations, and they 
will likely differ from the biases estimated here using the syn-
thetic data. However, we think the relative performance shown 
in our tests is likely applicable to actual model data because 
our synthetic data closely resemble the noise level and the 
long-term evolution of the ΔT and ΔN in a real model simu-
lation by the CESM1. Although the fitted functions imply a 
constant slope of λ = (−dN/dT) after ~ 100 years (cf. Eq. 3), 
the noise added to the analytic solution could still generate 
some short-term variations in λ in our synthetic data. Thus, 
our synthetic data, which include the solution from the two-
layer model and a realistic noise derived from CESM1, are 
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not necessarily inconsistent with the notion that the dN/dT 
slope may vary over time due to time- or warming-dependent 
feedbacks.

3 � Results

3.1 � The varying relationship between ΔT and ΔN

Since one needs to use the slope between ΔT and ΔN to 
extrapolate the ΔT when ΔN = 0 for estimating ECS, it 
is helpful to examine the various estimates of the (−dN/
dT) and (−dT/dN) slopes using the CESM1 simulations, 
although their influence is smaller in methods 3–4 than in 
methods 1–2 as the (−dN/dT) slope is used only to esti-
mate the small unrealized warming in methods 3–4. Figure 2 
shows that the (−dN/dT) slope is steepest during the first 
several decades when the fast response (i.e., the first term 
in Eq. 1) dominates; the slope then flattens as the simula-
tion continues. Previous studies have shown that changing 
oceanic heat uptake patterns, atmospheric stability, cloud 
feedback, and other processes can lead to this increased cli-
mate sensitivity over time (e.g., Jonko et al. 2013; Rose and 
Rayborn 2016; Stevens et al. 2016; Armour 2017). Clearly, 
including the data points from the early decades (green line 
in Fig. 1) would steepen the (−dN/dT) slope, thus leading to 
a smaller intercept on the x-axis and therefore a lower ECS 
estimate. Furthermore, we noticed that adding additional 
years of data (e.g., adding years 501–1000) did not greatly 
change the slope of the green line in Fig. 2. This suggests 
that this slope is determined mainly by the data points from 

the first few hundred years, especially the first few decades. 
Such a change in the (−dN/dT) slope over time has been 
noticed previously (e.g., Andrews et al. 2015; Gregory et al. 
2015; Rose and Rayborn 2016; Rugenstein et al. 2019b), 
while Armour (2017) excluded the first 20 years in his 
regression.

To explore the temporal evolution of the (−dN/dT) and 
the (−dT/dN) slopes in more detail, in Fig. 3 we show the 
time series of the (−dN/dT) and (−dT/dN) slopes estimated 
using local 50 years of data (blue line) from the CESM1 
4 × CO2 experiment, using the data from year 1 to the plot-
ted year (green line), and using the data from year 41 to the 
plotted year (red line). They are compared with the slopes 
calculated using the two-layer model solutions fitted to the 
CESM1 output (black line), which may be considered as 
the slopes between the CO2-induced long-term ΔT and ΔN 
changes (referred to as the signals here). It is clear that the 
local estimates of the slopes are highly variable and dif-
fer greatly from the slopes between the long-term ΔT and 
ΔN signals, presumably due to the changing effects of the 
internal climate variability (referred to as the noise, Dai and 
Bloecker 2019), such as the decadal variations in Arctic 
sea–ice cover (Fig. 4) and the associated amplification of 
Arctic warming (Dai et al. 2019).

Figure 4 shows that Arctic sea ice, whose melting ampli-
fies surface warming (Screen and Simmonds 2010; Dai 
et al. 2019), exhibits large fluctuations on 5- to 200-year 
time scales. These internally-generated sea–ice fluctuations 
cause similar variations not only in Arctic surface air tem-
perature, but also in global-mean surface air temperature; 
while the TOA net radiation (N) does not vary closely with 
the sea ice fluctuations. Thus, the sea–ice induced T varia-
tions will likely affect the feedback parameter (λ) on those 
time scales. This differs from the impacts from the cloud, 
lapse rate and water vapor feedbacks that may change over 
time in response to external forcing or among different cli-
mate models (Andrews et al. 2015). However, the sea–ice’s 
effect appears to be small on the long-term relationship 
between global-mean ΔT and ΔN, as the λ = (−dN/dT) slope 
in the 2-layer model solutions becomes nearly constant after 
year ~ 40–50 (Fig. 3), and the λ in multi-millennium simula-
tions shows little trend (see Fig. 10 below). In other words, 
internal variability may induce short-term (1–102 year) vari-
ations in the feedback parameter λ = (−dN/dT) when it is 
estimated using local ΔT and ΔN data. However, these large 
short-term variations may not be important for the eventual 
warming reached by the system. This is because the overall 
long-term evolution is reasonably characterized by the fitted 
two-layer model solutions (Fig. 1), and they imply a near 
constant λ after about year 40–50 (Fig. 3). The (−dN/dT) 
slope estimated using all data points after year 40, which 
effectively filters out the temporal variations, also shows lit-
tle change for simulations of 150 years or longer (red line 

Fig. 2   Scatter plot of the anomalies (relative to the control-run cli-
mate) of the global-mean and annual-mean surface air temperature 
(TREFHT, x axis) and top-of-atmosphere (TOA) net radiation flux 
(y axis, positive downward) from year 1 to year 40 (blue dots, red 
line = linear fit) and year 41 to year 1000 (red dots, black line = linear 
fit) from the CESM1 4 × CO2 simulation. The green line is the linear 
fit to the data from year 1 to year 1000. The regression equation (in 
the same color as the line) is also shown
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in Fig. 3a). Thus, the estimated local −dN/dT slopes are 
not suitable for estimating ECS; instead, the −dN/dT slope 
estimated using all data points after year 40 is a better choice 
for estimating ECS as it mainly reflects the forced long-term 
relationship between dT and dN. This conclusion is con-
firmed by our analyses of the multi-millennium simulations 
(Sect. 3.3).

These results seem to suggest that the unrealized warm-
ing and thus ECS estimate depend primarily on the long-
term (102–103 year) relationship between ΔT and ΔN that 

is likely to be determined largely by processes involving the 
deep oceans, whereas the short-term (1–102 year) changes in 
various feedback processes (e.g., ice-albedo feedback) may 
not be important for estimating the long-term (−dN/dT) 
slope and thus ECS. If this is true, then the various factors 
that have been found to influence the feedback parameter 
as discussed in the Introduction may not be important for 
estimating the equilibrium warming. One exception is the 
strengthening of the water–vapor feedback with increasing 
surface temperature (Meraner et al. 2013), which should 

Fig. 3   Comparisons of the least-squares estimates of the a (− dN/
dT) and b (− dT/dN) slopes using annual and global-mean TOA net 
flux (N, W/m2, positive downward) and surface air temperature (T, K) 
data from year 1 to the plotted year of the CESM1 4 × CO2 simula-
tion (labeled as “incld yr1-40”) and using data from year 41 to the 
plotted year of simulation (labeled as “exld yr1-40”). Also shown 
is the (− dN/dT) or (− dT/dN) slope (blue line) estimated using the 

local 50 years of data (centered at the plotted year). The black solid 
(dashed) line is the (− dN/dT) or (− dT/dN) slope calculated using 
the fitted 2-layer model functions based on the 1000 (first 500) years 
of data shown in Fig.  1. The difference between the green and red 
lines reflects the effect of the first 40 years. The black lines stabilize 
approximately after about year 60
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work on long time scales; however, the unrealized warm-
ing after the first 200 years is relatively small (Fig. 1), thus 
the effect of this strengthening on estimating ECS in our 
methods 3–4 should be small after for L > 200 years. Our 
analyses of the multi-millennium simulations (Sect. 3.3) also 
seem to support these arguments.

Figure 3 also shows that including the first 40 years of the 
model data in estimating the (−dN/dT) or (−dT/dN) slope 
would considerably increase the estimated slope compared 
with the case excluding the first 40 years, even for long 
lengths (> 200 years) of simulation. Furthermore, all the 
(−dT/dN) estimates are poor approximation of the (−dT/
dN) slope between the ΔT and ΔN signals (black lines in 
Fig. 3b), thus making them a poor choice for estimating the 
ΔT when ΔN = 0. On the other hand, the (−dN/dT) slope 
(red line in Fig. 3a) estimated using the data from year 41 to 
the end of simulation (i.e., the year on the x-axis in Fig. 3) 
is fairly close to the slope between the signals (black lines in 
Fig. 3a) when L exceeds about 180 years, making this a com-
paratively better choice for estimating ECS. Figure 3 also 
shows that the −dN/dT (−dT/dN) slope from the fitted two-
layer model solutions (i.e., between the signals) decreases 
(increases) rapidly during the first few decades but stabilizes 
approximately after 40–50 years. Thus, one should exclude 
the first 40 years or so in estimating the (−dN/dT) slope for 
extrapolating the ΔT as the ΔN approaches zero.

In Fig. 5, we further evaluate the various estimates of the 
(−dN/dT) and (−dT/dN) slopes using 10,000 samples of the 
synthetic data described in Sect. 2.4, in contrast to Fig. 3, 
in which only one sample of data from the CESM1 4 × CO2 
simulation was used. Figure 5a confirms that the Gregory 
et al. (2004)’s method (green line) considerably overestimates 
the pre-defined (−dN/dT) slope (and thus underestimates the 

ECS) embedded in the noisy synthetic data by ~ 100% for 
L = 100 years to about ~ 20% for L = 1000 years. Exclud-
ing the first 40 years (red line in Fig. 5a) reduces this bias 
substantially, especially for L > 150 years; however, it still 
overestimates the target (−dN/dT) slope substantially (by 
about 30–100%) for L < 200 years and slightly (< 10%) for 
L > 300 years. On the other hand, fitting the data with the 
two-layer model (Eqs. 1, 2) first and then estimating the 
slopes using the fitted functions (as in method 4) repro-
duce the pre-defined slope in the noisy synthetic data for 
L > 600 years, although the spread of the estimates is large 
for L < 500 years (Fig. 5a). Similarly, method 4 reproduces 
the (−dT/dN) slope well while the other two methods sub-
stantially underestimate this slope (Fig. 5b). Furthermore, 
accounting for the underestimation due to the existence of 
the noise in the data (see Sect. 2.2; i.e., comparing to the blue 
line in Fig. 5) would increase the mean bias for the (−dN/
dT) slope in Fig. 5a, but change the bias to be positive for 
the (−dT/dN) slope in Fig. 5b for methods 1–3. Since the 
ECS estimate is proportional to 1/(−dN/dT) or (−dT/dN), an 
overestimation of (−dN/dT) would lead to an underestima-
tion of ECS. Thus, method 4 is recommended for estimating 
the (−dN/dT) and (−dT/dN) slopes in the ΔT and ΔN data 
from climate model simulations.

We noticed that the fitting to the first 500  years of 
data (dashed black lines in Fig. 1) was better (i.e., with 
smaller RSME) than the fitting to the 1000 years of data 
(solid black lines in Fig. 1), partly due to the noticeable 
drop in the ΔT series several years after year 500 and 
after year 800 (blue dots in Fig. 1; also evident in Fig. 4), 
which likely resulted from internal variability. As a result, 
the residual series from the 500-year fitting looks more 
random than from the 1000-year fitting, and the slopes 

Fig. 4   Time series of the 
5–200 year variations in Arctic 
(north of 67° N, red) and global 
(blue) annual surface air tem-
perature, Arctic annual sea–ice 
cover (black line), and global 
TOA net energy flux (green, W/
m2) from the CESM1 4 × CO2 
experiment, with the 5-year and 
201-year moving averages being 
removed from the original data 
series. The global temperature 
and TOA energy flux anomalies 
were multiplied by a factor of 
five and shifted downward by 
2 and 4 units, respectively, in 
order to use the left y-axis and 
be separated from the red line. 
The correlations between a pair 
of the lines are shown
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estimated by method 4 in Fig. 5 would have converged 
sooner to the target values if only the first 500-years of data 
were used. This also applies to the ECS estimates shown 
in Fig. 6; that is, the ECS from method 4 (dashed black 
line in Fig. 6) would have converged to the target ECS 
(solid black line in Fig. 6) sooner (around L = 180 years 
instead of 600–700 years) if the first 500 years of data 

were used. Nevertheless, both cases (using either the first 
500 or 1000 years of data) suggest that method 4 recovers 
the target slopes (and ECS) much better than the other 
methods.

3.2 � Evaluation of the ECS estimates using synthetic 
data and CESM1 simulation

Figure 6 shows how well the four methods recover the pre-
defined ECS (represented by the solid black line) embedded 
into the 10,000 samples of the noisy synthetic data for each 
L of 100, 110, …, 1000 years. Consistent with the biases 
in the slope estimates shown in Fig. 5, method 4 (dashed 
black line in Fig. 6) clearly outperforms the other methods, 
including methods 2–3, especially for L < 400 years, with 
minimum (< 0.03 K) biases for L > 600 years (180 years if 
only the first 500 years of data used). In contrast, Gregory 
et al. (2004)’s method (red lines in Fig. 6) substantially 
underestimates ECS by about 0.6 K for L = 100 years to 
0.08 K for L = 1000 years, even for the case without noise 
in the data! This is simply due to the large positive bias in 
its estimate of the (−dN/dT) slope due to the use of the data 
for the first 4 decades. Excluding these 40 years in method 2 
improves the ECS estimate substantially (blue line in Fig. 6), 
and making use of the realized warming in method 3 further 
improves the ECS estimate slightly (magenta line Fig. 6). 
However, these two methods still underestimate the target 
ECS, especially for L < 400 years.

For the single sample of data from the CESM1 4 × CO2 
experiment, the estimated ECS is relatively stable around 
3.12 ± 0.06 K for L > 450 years for methods 3–4, while it 
increases with L from about 2.6 K at L = 100 years to 3.05 K 
for L = 1000 years for method 1 (red line in Fig. 7). Method 
2 (blue line in Fig. 7) produces much improved smooth esti-
mates of ECS compared with method 1, but its ECS estimate 
still slightly increases with L even after year 450 and is gen-
erally below that from methods 3–4 for L = 300–800 years 
(except for a few decades around year 560 and during year 
840–920). The small variations in the ECS from methods 
3–4 results from result from variations in the 50-year aver-
age for the realized warming (Tmean) and remaining forcing 
(Nmean). From Fig. 1, we know that the realized warming by 
the end of the 1000-year simulation is around 6 K. Using a 
conversion ratio of 0.485 (see below), this means that the 
true ECS for the CESM1 should not be less than 2.91 K. 
Thus, method 1 underestimates this ECS considerably, espe-
cially for short L (e.g., < 300 years), as its own ECS esti-
mates increase substantially with L. From this perspective, 
methods 2–4 are better than method 1 as they produce more 
stable ECS estimates for L >  ~ 300 cases. While methods 
2–4 show similar performance for the single sample from 
the CESM1, the large ensemble-mean results based on the 

Fig. 5   a The −dN/dT slopes calculated using the two-layer model 
solutions (black line) for the plotted year on the x-axis, and estimated 
using synthetic data from year 1 to the plotted year (green line) and 
from year 41 to the plotted year (red line). The synthetic data were 
derived by combining the two-layer model solutions (fitted to the 
CESM1 model data over years 1–1000) with random noise sampled 
from the residual time series from the fitting. The magenta line (very 
close to the black line after year 600) is the –dN/dT slope estimated 
using the same synthetic data but with Method 4 (i.e., using the two-
layer model solutions fitted to the synthetic data up to the plotted 
year, see text for details). The black line is the target (i.e., pre-
defined) slope embedded in the noisy synthetic data for each of the 
methods to recover. Shading around the green, red and magenta lines 
indicates the ± 1 SD range estimated from 10,000 samples of the syn-
thetic data. The blue line is the black line multiplied by the correction 
factor of 1∕

(
1 + S�

/
S
s

)
 , where Sε and Ss are the variance of the noise 

and signal (i.e., changes following the two-layer model solution for 
T). T and N are the global-mean and annual-mean surface air temper-
ature and TOA net radiation, respectively. b Same as a but for the −
dT/dN slope
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synthetic data (Fig. 6) suggest that method 4 outperforms 
methods 2–3, especially for L < 500 years.

Our best ECS estimate of 3.12 ± 0.06  K for 
L = 500–1000 years based on method 4 is slightly lower than 

the ECS of 3.2 K estimated from a SOM experiment done 
by Gettelman et al. (2012). However, if we use a 4 × CO2 
to 2 × CO2 conversion ratio of 0.485 (as discussed below), 
instead of 0.4769 (the ratio of the initial TOA forcing from 

Fig. 6   Ensemble mean of the equilibrium climate sensitivity (ECS) 
(as a function of the ending year of the synthetic data period) esti-
mated using the Gregory et al. (2004)’s linear fitting method (Method 
1, red lines), new Method 2 (blue line), Method 3 (magenta line), and 
Method 4 (black lines) (see Sect.  2.2 for details) and the synthetic 
data generated by the fitted two-layer model solutions from Fig.  1 
(i.e., data without noise, solid lines) and the data generated by adding 
random noise to the two-layer model solutions (i.e., data with noise, 

dashed lines). The black solid line overlaps the pre-defined target 
ECS contained in the synthetic data. Methods 2 and 3 also recover 
the target ECS for the no-noise case. The SD of the ECS estimates 
from the 10,000 synthetic samples is around 0.026 K (for year 100) to 
0.014 K (for year 500) for the red dashed line, 0.125–0.025 K for blue 
dashed line, 0.124–0.033 K for the magenta dashed line, and 0.233–
0.049 K for the dashed black line

Fig. 7   ECS estimated using 
Method 1(red), 2 (blue), 3 
(magenta) and 4 (black) and 
the model data up to the plotted 
year from the CESM1 4 × CO2 
experiment



4529Improved methods for estimating equilibrium climate sensitivity from transient warming…

1 3

2 × CO2 and 4 × CO2 based on Byrne and Goldblatt 2014) 
used in Fig. 7, then it would yield an ECS of 3.17 K, very 
close to the SOM estimate. Figure 6 indicates that our 
method underestimates ECS by about 0.02 K (for L > 600) 
based on our tests with the synthetic data. Given all these 
uncertainties, our estimated ECS should be considered very 
similar to that based on the SOM experiment from Gettel-
man et al. (2012). This seems to suggest that the traditional 
SOM approach provides a reliable ECS estimate for the fully 
coupled model, at least for the CESM1. This also implies 
that changes in the ocean circulation over the 1000-year 
period do not seem to play an important role in determining 
the model’s climate sensitivity. Unfortunately, we do not 
have the SOM-based estimate for the other CMIP5 models 
discussed below to verify this conclusion. Previous studies 
using multi-millennium simulations by fully coupled models 
with coarse resolutions have shown that slab ocean runs may 
either slightly overestimate (Li et al. 2013) or underestimate 
(Danabasoglu and Gent 2009) the ECS of the fully coupled 
model, but this bias seems to be small, which is consistent 
with our finding.

3.3 � Evaluation of the ECS estimates using 
multi‑millennium simulations

The above evaluation using synthetic data suggests that 
method 4 outperforms the other methods with an underesti-
mate bias of < 0.2 K for L ≥ 150 years (Fig. 6). The analysis 
of the CESM1 simulation (Fig. 7) also suggests that method 
4 yielded much smaller underestimates of the true ECS. 
However, one may question the validity of the synthetic data 
in representing climate model data. For the CESM1 simula-
tion, it is not long enough for us to calculate its final warm-
ing although we concluded that its ECS should be not less 
than 2.91 K based on the already realized warming. Here we 
further evaluate the four methods using multi-millennium 
simulations from three other coupled models, in which case 
the realized warming by the end of such long simulations 
is likely to be very close to the final equilibrium warming. 
Thus, we have a better benchmark to evaluate the perfor-
mance of the methods using actual model data.

Figure 8 shows the time series of the global-mean tem-
perature (ΔT) and TOA net energy flux (ΔN) from these 
long simulations. Both ΔT and ΔN show rapid changes dur-
ing the first few hundred years and then gradually approach 
a steady state until about year 1500–2000; thereafter, their 
changes are small, although considerable short-term fluc-
tuations and small long-term changes still continue. By the 
end of the simulations, mean ΔN is very close to zero and 
mean ΔT is very steady. Thus, we use the mean ΔT of the 
last 300 years as our best estimate of the true ECS (denoted 
as ECSbest). However, please note that for CESM1.0.4, ΔN 
is still above zero near the end of its simulation (≈ 0.08 W/

m2, Fig. 8a) and therefore its ESCbest still underestimates its 
true ECS slightly.

Figure 8 also shows that the equilibrium warming (i.e., 
ECS) represented by the fitted two-layer model is very 
close to ECSbest, and this also true for the fitting to the 
first 1000 years of data only (short-dashed line in Fig. 8), 
even though the two fittings may differ noticeably during 
the early part of the simulation (e.g., for L < 1500 years). 
This suggests that the two-layer model fitted to our CESM1 
1000 year simulation (Fig. 1) may closely reflect the true 
ECS of the model, and therefore the pre-defined ECS (from 
the fitted two-layer model) in our synthetic data should be 
very close the actual ECS of the CESM1. This further sug-
gests that our synthetic data and the tests based on them 
are highly relevant to applications to actual model data. On 
the other hand, the two-layer model fitted only to the first 
150 years of data slightly underestimates ECSbest for all 
the three cases (see the long-dashed line in Fig. 8), leading 
a small underestimate bias in the ECS from method 4 for 
L = 150 in Fig. 9. These results are consistent with the test 
results using the synthetic data as shown in Fig. 6.

The ECS estimates for the three models by the four meth-
ods are shown in Fig. 9 as a function of varying simula-
tion length (L) used in the analysis. It is clear that meth-
ods 2–4 capture ECSbest well with small biases (< 0.1 K) 
even for short L of 150–500 years). In contrast, the Gregory 
method (method 1) underestimates the ECS by 0.2–0.4 °C 
for L = 150–500, although the bias decreases to around 
0.1–0.2 °C for L = 1000. Due to the use of the warming 
and ΔN of the last 50 years of the (analyzed) simulation, 
the ECS from methods 3–4 shows some small fluctuations. 
Despite this, methods 3–4 show slightly smaller underesti-
mates than method 2, especially for relatively small L (e.g., 
for L < 2000). Thus, we conclude that a model’s ECS can 
be estimated fairly reliably by our methods 2–4 (especially 
method 4) with an error (mainly underestimate) of within 
about 0.1 K even using simulations of only 150–500 years, 
while the Gregory method may underestimate the true ECS 
by 0.2–0.4 °C using such simulations.

The fact that our methods 2–4 can capture ECSbest 
well implies that the feedback parameter λ (= − N/dT) 
does not change greatly in a long simulation. To verify 
that, in Fig. 10 we show the time series of the λ estimated 
using the data over a moving window of 101, 201, 301 
and 501 years centered around the plotted year. It shows 
that λ becomes increasingly less variable when more data 
are used to estimate it, and it is relatively stable after the 
first 500 years without obvious trends, although there 
appears to be some oscillations around a period of about 
1200 years in the λ from the CESM1.0.4 run (Fig. 10a), 
which seems to suggest some millennial-scale climate 
oscillation (e.g. in ocean overturning circulation) that 
projects onto the radiative feedback parameter (−dN/dT). 
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These local (−dN/dT) slopes largely reflect the relation-
ship between internally-generated dN and dT fluctuations, 
rather than between the externally-forced dN and dT 
changes, especially after the first 500–1000 years. This is 
because the relationship is dominated by the internal vari-
ations after year 1000, as the externally-forced dN and dT 
changes are small compared with the internally-generated 
year-to-year fluctuations, which degrade the fitting con-
siderably (Fig. 11).

On the other hand, during the early part of the simulation 
(L < 1000 years), the externally-forced dN and dT changes 
are large compared with the internally-generated year-to-
year fluctuations (Fig. 11), which makes the (−dN/dT) slope 

over the early period more representative of the forced rela-
tionship between dN and dT than that of the later periods. 
However, the (−dN/dT) slope during the first ~ 40 years 
is considerably steeper than that during year 41–1000 
(Fig. 11), and our ECS results from methods 1 and 2 (Fig. 9) 
suggest that the (−dN/dT) slope from year 41–1000 is a bet-
ter choice than that of year 1–40 for estimating ECS through 
extrapolation.

The (−dN/dT) slope estimated using the data from year 
41 to the plotted year, which is used to estimate ECS in 
our methods 2–3, shows little variation for L ≥ 150 years, 
although it decreases slightly over time, mainly over the 
first millennium (Fig. 10). This contributes to the small 

Fig. 8   Time series of annual 
global-mean surface air 
temperature (red dots, K) and 
top-of-atmosphere net energy 
flux (blue dots, W/m2, positive 
downward) anomalies (relative 
to control run climatology) from 
the abrupt 4 × CO2 experiment 
using a CESM1.0.4, b GISS-
E2-R, and c MPI-ESM1.1. The 
top thin black line represents 
the mean warming of the last 
300 years of the simulation 
while the bottom thin black line 
is the zero line. The two-layer 
model fit to the temperature 
and flux data is represented by 
the green and magenta lines, 
respectively, with the solid line 
for the fitting to all model data, 
short dashed line for the fitting 
to the first 1000 years, and long 
dashed line for the fitting to the 
first 150 years of data only
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underestimate biases during the early part of the simula-
tions shown in Fig. 9, especially for methods 2–3. This esti-
mated slope represents the dN and dT relationship mainly 
during the early part of the simulation (i.e., from year 41 up 
to year 1000), as the later years contribute relatively little 
to the forced changes in the scatter plot (Fig. 11). The esti-
mated slope (dashed green line in Fig. 10) using data from 
year 1001 to the plotted year is much closer to the locally 
estimated slope than that using data after year 41, although 
noticeably differences still exist. This further suggests that 
the externally-forced (−dN/dT) slope, which is reflected 
mainly in the data of the first 1000 years, may differ from 
the internally-generated (−dN/dT) slope, which is reflected 

mainly in the data after year 1000. Clearly, one should not 
use the internally-generated (−dN/dT) slope for estimating 
ECS.

The above analyses suggest that (1) the (−dN/dT) slope 
(i.e., the feedback parameter λ) during year 41–1000 mainly 
reflect the forced relationship, which does not change a lot 
over time and can be used to estimate ECS through extrapo-
lation; (2) locally estimated (−dN/dT) slope may fluctuate 
greatly on short (10–102 year) time scales and it represents 
mainly internally-generated relationship, especially after 
year 1000, that may differ from the forced slope and thus 
should not be used to estimate ECS. The temporal stability 
of the forced (−dN/dT) slope makes it possible for using 

Fig. 9   ECS estimated using 
Method 1(red), 2 (blue), 3 
(magenta) and 4 (black) and 
the model data up to the 
plotted year from the abrupt 
4 × CO2 experiment using a 
CESM1.0.4, b GISS-E2-R, 
and c MPI-ESM1.1 shown 
in Fig. 8. The thin black line 
represents the mean warming of 
the last 300 years of the multi-
millennium simulation. For the 
CESM1.0.4, the warming of the 
last 300 years slightly underes-
timates the ECS as the TOA net 
flux is still positive (≈ 0.08 W/
m2) near the end of the simula-
tion (cf. Fig. 8a). Note that a 
factor of 0.4769, the TOA forc-
ing ratio between 2 × CO2 and 
4 × CO2 based on Byrne and 
Goldblatt (2014), was used to 
convert the temperature change 
from the 4 × CO2 experiment to 
that for the 2 × CO2 case
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our methods 2–4 to estimate ECS with a small error within 
about 0.1 K using relatively short simulations of a few hun-
dred years.

Previous studies (e.g., Andrews et al. 2015; Gregory 
et al. 2015; Rose and Rayborn 2016; Rugenstein et al. 
2019b) suggest that the feedback parameter λ may 
change over time, often based on simulations less than 
2000 years. These early findings are not inconsistent with 

our results (Fig. 10). However, we show that there exist 
two different types of the (−dN/dT) slopes, one due to 
forced changes that dominate during the early part (up to 
year 1000) of the simulation and one due to internal vari-
ations that dominate after year ~ 1000. The forced slope 
from year 41 up to 1000 does not change greatly, which 
allows one to estimate ECS using relatively short simula-
tions (200–1000 years).

Fig. 10   Time series of the local 
(−dN/dT) slope estimated using 
the local 101 (red line), 201 
(blue line), 301 (magenta line), 
and 501 (black line) years of 
data centered around the plotted 
year from the abrupt 4 × CO2 
experiment using a CESM1.0.4, 
b GISS-E2-R, and c MPI-
ESM1.1. The green solid line is 
the (−dN/dT) slope estimated 
using the data from year 41 to 
the plotted year on the x axis, 
which is the slope used in Meth-
ods 2–3. The green dashed line 
is the (−dN/dT) slope estimated 
using data from year 1001 to the 
plotted year
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3.4 � Comparison of the ECS estimates from 2 × CO2 
and 4 × CO2 experiments

Figure 12 compares the ECS values estimated using the ΔT 
and ΔN data for L = 100–500 years from CESM1 2 × CO2 
and 4 × CO2 experiments using methods 1–4. Using the 
2 × CO2 experiment, all the methods underestimate the 
equilibrium T response significantly when L < 240 years, 
whereas it requires 180 or more years for the 4 × CO2 
experiment and methods 2–4 to produce relatively stable 
ECS estimates. If the simulation length is shorter than 
about 240 years, all the methods would produce consid-
erably higher ECS values using the 4 × CO2 experiment 
than those using the 2 × CO2 experiment. This difference 
becomes smaller for L ≥ 250 years (especially for methods 
1–2), but its sign reverses; that is, the ECS estimates from 
the 2 × CO2 experiment exceeds those based on the 4 × CO2 
experiment. Here, we used a conversion ratio of 0.4769 (the 
ratio of the initial TOA forcing from 2 × CO2 and 4 × CO2 
based on Byrne and Goldblatt 2014) to convert the equilib-
rium ΔT into ECS for the 4 × CO2 case. Using a conversion 
ratio of 0.5 (as in Gregory et al. 2004) would make the dif-
ference even larger for L < 240 years, while the ECS from 
the 4 × CO2 would be considerably larger than that from the 
2 × CO2 for L > 240 years (not shown). Our tests showed that 
using a conversion ratio of 0.485 yielded closer matches for 
L > 240 years for the ECS estimates from the two types of 
experiments.

Given the lower signal to noise ratio in the 2 × CO2 exper-
iment than in the 4 × CO2 experiment, we would expect that 
a longer simulation is needed for estimating ECS, and our 
results from the CESM1 experiments indicate that the extra 
length of simulation is about 60 years (240 vs. 180 years). 
Thus, using the 4 × CO2 experiment could potentially save 
up to about 1/4 of the simulation time needed for a 2 × CO2 
experiment. However, in this case choosing a proper con-
version ratio may induce additional uncertainties for the 
estimated ECS.

3.5 � Results from CMIP5 and CMIP6 models

We were able to download the necessary model data from 
only 20 CMIP5 models listed in Table 1 and 19 CMIP6 mod-
els listed in Table 2, and repeated the above analyses for each 
of these models. Figures 13 and 14 shows three examples 
from the CMIP5 and CMIP6 models, respectively, of the 
fitting using the two-layer model solutions (Eqs. 1, 2) to the 
model output of ΔT(t) and ΔN(t) data. Similar to Fig. 1 for 
the CESM1 and Fig. 8 for the three millennium simulations, 
the two-layer model solutions with a non-unit efficacy of 
deep ocean heat uptake from Geoffroy et al. (2013b) provide 

Fig. 11   Scatter plot of the anomalies (relative to the control-run 
climatology) of the global-mean and annual-mean surface air tem-
perature (TREFHT, x axis) and top-of-atmosphere (TOA) net radia-
tion flux (y axis, positive downward) from year 1 to 40 (blue dots, 
red line = linear fit), year 41 to 1000 (red dots, some are behind the 
orange dots, black line = linear fit), and year 1001 to the end of the 
simulation (orange dots, green line = linear fit) from the abrupt 
4 × CO2 simulation using a CESM1.0.4, b GISS-E2-R, and c MPI-
ESM1.1. The regression equation with the squared correlation (in the 
same color as the fit line) is also shown
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a good fit to the model data for all the CMIP5 and CMIP6 
models analyzed here, while the one time-scale solution (red 
line in Fig. 13) from Gregory et al. (2015) does not fit the 
ΔT(t) data well. The fast response time (τf) from the fit-
ting (see Eq. 1) ranges from 1.5 to 6.4 years with a mean 
of 3.7 years among the 20 CMIP5 models, while the slow 
response time (τs) is around 200–400 years for most of the 
models (Table 1; similar τf and a slightly wider range for τs 
for the 19 CMIP6 models, Table 2). As implied by the multi-
millennium simulations analyzed above, the ~ 150 years of 
simulation from these models may be sufficient for estimat-
ing ECS using our methods 2–4, although longer simula-
tions would help reduce the error. Ideally, such 4 × CO2 
simulations should be at least 180 years in order to avoid 
the large underestimate by all the methods examined here, 
as discussed above (cf. Figs. 6, 7).

Similar to Figs. 5 and 6, Fig. 15 shows that method 4 
reproduces well the pre-defined (−dN/dT) slope and ECS 
(through fitted Eqs. 1, 2, see Sects. 2.3, 2.4) in the synthetic 
data generated by combining the fitting functions and the 
randomly sampled noise (through 10-year block sampling 
of the residual series of the fitting), while method 1 (i.e., the 
method of Gregory et al. 2004) overestimates the (−dN/dT) 
slope and thus underestimates ECS (by 0.42 K on average) 
for most of the 20 CMIP5 models with a simulation length 
L = 150 or 140 years (Table 1). Methods 2 and 3 perform 
better than method 1, but still have a tendency to underes-
timate ECS (by ~ 0.18 K on average for both of them, com-
pared with a mean underestimate of ~ 0.10 K by method 4 
(for L = 140–150 years) (Fig. 15b). Similar results are seen 
for the 19 CMIP6 models (Fig. 15c, d).

When applied to the ΔT(t) and ΔN(t) data from the 
CMIP5 4 × CO2 simulations, method 1 produces ECS esti-
mates that are about 25% lower than our new estimates using 
method 4 for models with an ECS above about 3.0 K, while 
the two estimates are similar for models with an ECS around 
2.5 K (see the regression line in Fig. 16a). When averaged 
over the 20 CMIP5 models, the ECS from method 1 is about 
10% lower than that from method 4 (Table 1). Thus, the 
ECS values reported previously by Andrews et al. (2012), 
Forster et al. (2013) and Flato et al. (2013) are likely to 
be underestimated by about 10% on average and as much 
as 25% for models with medium–high ECS (above 3 K). 
These biases are consistent with the findings of Paynter et al. 
(2018), who found that the ECS values reported by Flato 
et al. (2013) based on Gregory et al. (2004)’s method for 
two GFDL models are about 0.8–0.9 K lower than those 
estimated from multi-millennium simulations. On the other 
hand, our ECS estimates appear to be comparable to those 
implied by the equilibrium warming under 4 × CO2 esti-
mated by Geoffroy et al. (2013b) for the limited number of 
models with estimates available in both our analyses and 
their study (Table 1). This is expected because both our 
method 4 and Geoffroy et al. (2013b) rely on the fitting to 
the 2-layer model solutions to extrapolate the T response as 
N approaches zero, although the actual implementation of 
our method (including the fitting procedure and estimating 
the realized warming, see Sects. 2.2, 2.3) differs from Geof-
froy et al. (2013b), who used a number of steps (described 
in section 2d of Geoffroy et al. 2013b and section of Geof-
froy et al. 2013a) to estimate the various parameters in their 
2-layer model and the equilibrium T response using the data 

Fig. 12   Comparison of the 
ECS estimates using the 
2 × CO2 (dashed) and 4 × CO2 
(solid) CESM1 experiments 
and Method 1 (Gregory’s, 
blue lines), 2 (green lines), 3 
(red lines) and 4 (black lines) 
as a function of the simula-
tion length. The equilibrium 
temperature response from the 
4 × CO2 experiment was multi-
plied by 0.4769 (the ratio of the 
TOA forcing between 2 × CO2 
and 4 × CO2 according to Byrne 
and Goldblatt 2014) to derive 
ECS for the 4 × CO2 case



4535Improved methods for estimating equilibrium climate sensitivity from transient warming…

1 3

from CMIP5 4 × CO2 simulations. In our method, we first 
estimated the α parameter in Eq. (1) using our Method 4 
and specified the Fo parameter in Eq. (2) based on Byrne 
and Goldblatt (2014), and then used the least squares fit-
ting (Eq. 4) to estimate the best combination of the other 
parameters in Eqs. (1, 2), which were then used to update the 
estimate of parameter α for the next iteration. Also, the slope 
from the fitted model is only used to estimate the unrealized 
warming, whereas Geoffroy et al. (2013b) used the fitted 
model to estimate the entire ECS.

The ECS results for CMIP6 models (Table  2 and 
Fig. 16b) show a mean underestimate bias of ~ 0.27 K for 
the Gregory method compared with our Method 4, and as 
much as 1.0 K for models with large ECS (e.g., E3SM-1-0). 
When a conversion ratio of 0.5 is used, our method 1 (i.e., 
the Gregroy method) yielded ECS values for both CMIP5 
and CMIP6 models that are very similar to those of Zelinka 
et al. (20,202), who used the Gregory method. Our new ECS 
estimates for the 19 CMIP6 models show a mean of 3.43 K 
with a range of 1.79–5.93 K, very similar to the mean of 

3.45 K and slightly higher than the range of 1.75–5.36 K for 
the 20 CMIP5 models (Tables 1, 2). Thus, while the ECS 
range from CMIP6 is higher than that from CMIP5, their 
multi-model ensemble means are very close.

Tables 1, 2 and Fig. 16 show that the difference of the 
ECS estimates from the Gregory method and our method 4 
is smaller for models with lower ECS than for models with 
higher ECS for both CMIP5 and CMIP6 models. We are 
unsure about the cause behind this, but Fig. 9 shows that 
for GISS-E2-R, which has a low ECS compared with the 
other two models, methods 2–4 all show noticeable under-
estimates compared with ECSbest for L < 1000 years, lead-
ing to a smaller difference of the ECS estimates between 
method 1 (i.e., the Gregory method) and method 4 than for 
the other two models. Since the ECS from our method 4 is 
very close to the equilibrium warming represented by the 
fitted two layer model, the fact that the ECS from method 
4 has a relatively large bias in Fig. 9b for short L suggests 
that the fitting for short L has a relatively large error in rep-
resenting the long-term evolution of the dT for this model, 

Fig. 13   Time series of anoma-
lies (relative to the control 
climate) of global-mean and 
annual-mean surface air tem-
perature (T(t) or TREFHT, blue 
dots) and TOA net radiation 
flux (N(t) or FNET, gray dots, 
positive downward) from the 
4 × CO2 experiment from three 
select CMIP5 models. The 
black line is the best fit using 
the two-layer model solution of 
Geoffroy et al. (2013b), with 
the fitting results shown on the 
figure. The red line is a fit of 
the temperature data following 
the one-time-scale solution of 
the two-layer model of Gregory 
et al. (2015)

a

b

c
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which seems to be confirmed by the long-dashed green line 
in Fig. 8b. Thus, it is possible that due to the particular dT 
response curve during the first several hundred years from 
models like GISS-E2-R that has a low ECS, the fitted two-
layer model has a relatively large underestimate bias in rep-
resenting the ECS. In other words, the difference in the dT 
response curves for short L between models with low and 
high ECS might be behind the different bias in the ECS from 
method 1 relative to method 4 among the CMIP models. 
This difference is also reflected by the different deviations 
between the forced long-term (solid green in Fig. 10) and 
unforced local (red, blue and black lines in Fig. 10) (−dN/
dT) slopes between GISS-E2-R and the other two models in 
Fig. 10. The underlying physical processes leading to such 
differences require further investigation.

Given the comparable performance of method 2 shown in 
Fig. 9, one may want to apply it to the CMIP models due to 
its simplicity. Tables 1, 2 and Fig. 16c, d show that indeed 
the ECS estimates from method 2 are very close to those 
from method 4, with a mean ECS of 3.36 K from method 2 

vs. 3.45 K from method 4 for the CMIP5 models and a mean 
ECS of 3.34 K from method 2 vs. 3.44 K from method 4 for 
the CMIP6 models.

Figure 17 shows that the transient climate response (TCR) 
at the time of CO2 doubling in a 1% per year increase run is 
correlated with ECS among the CMIP5 and CMIP6 models, 
as shown previously (Flato et al. 2013). However, this corre-
lation becomes weaker for our new ECS estimates (Fig. 17b, 
d). Furthermore, because of our increased ECS estimates, on 
average the TCR accounts for only about 53% of the ECS 
from our method 4, compared with 58% of the ECS based 
on Gregory et al. (2004)’s method for the CMIP5 models 
(Table 1; 57% vs. 62% for CMIP6 models, Table 2). Thus, 
the differences in the ECS estimates also substantially alter 
this realized warming fraction at the time of CO2 doubling in 
a transient run. Our analyses did not reveal a strong relation-
ship between the TCR/ECS ratio and the long-term response 
time (τs) listed in Tables 1, 2.

Fig. 14   Same as Fig. 13 but 
for three select models from 
CMIP6 without the red line

a

b

c
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4 � Summary and discussions

In this study, we first examined the nonlinearity in the 
global-mean T response to TOA forcing N and discussed 
its implications for estimating ECS using the slope between 
ΔT(t) and ΔN(t). We then designed a benchmarking frame-
work using the ΔT(t) and ΔN(t) data from a 1000-year 
abrupt 4 × CO2 simulation by the CESM1, a fully coupled 
model, to quantify the performance of four methods for esti-
mating ECS using data with varying lengths of simulation 
(L). These methods were further evaluated using three multi-
millennium (~ 5000 year) 4 × CO2 simulations from three 
different coupled models. These analyses were repeated 

using the abrupt 4 × CO2 experiment with 140–160 year 
integrations from 20 CMIP5 and 19 CMIP6 models. The 
ECS estimates from the 4 × CO2 experiment by the CESM1 
were also compared with those based an abrupt 2 × CO2 
experiment by the same model to verify whether a simple 
re-scaling of the equilibrium T response from the 4 × CO2 
experiment would yield an ECS estimate similar to that from 
the 2 × CO2 experiment, as ECS is conventionally defined as 
the equilibrium warming after an abrupt CO2 doubling. The 
main results are summarized below.

The first 40 years or so show a steeper (−dN/dT) slope 
than the later years in the 4 × CO2 (and 2 × CO2) experiment; 
thus one should exclude these first 40 years in estimating 

Fig. 15   a, c Scatter plot of the pre-defined true (−dN/dT) slope 
(embedded in the synthetic data) (as the x axis) vs. the mean (−dN/
dT) slope estimated by methods 1, 2, and 4 from the noisy data (for 
length of 150 years, y axis) from a 20 CMIP5 and c 19 CMIP6 mod-

els, with each different symbol representing one method and each 
data point for one CMIP model. b Same as a but for the pre-defined 
true ECS (x axis) vs. the ECS estimated by the four different methods 
(y axis). d Same as b but for 19 CMIP6 models
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the (−dN/dT) slope for extrapolating the equilibrium T 
response as N approaches zero. Further, we show that the 
estimated (−dN/dT) slope is a better choice than the (−dT/
dN) slope for estimating the long-term relationship (needed 
for estimating ECS) between ΔT(t) and ΔN(t) due to the dif-
ferent signal-to-noise levels in ΔT(t) and ΔN(t) series. Inter-
nal variability such as that associated with Arctic sea–ice 
fluctuations may cause global-mean T to vary on decadal 
to centennial time scales, but these short-term variations 
appear to have little influence on ECS, although they can 
complicate the estimation of the long-term (−dN/dT) slope 
using simulations with limited length. In particular, the three 

multi-millennium simulations do not show large changes in 
the externally-forced feedback parameter (λ = −dN/dT) that 
is largely reflected in the early part (from years ~ 40 – 1000) 
of the simulation. This provides a physical basis for using 
a constant λ to estimate ECS. Furthermore, using local 
ΔT(t) and ΔN(t) or their values after year 1000 would 
yield a (−dN/dT) slope that mainly reflects the relationship 
resulting from internal variations, and such a slope can vary 
greatly on 10–102 year time scales and may differ from the 
externally-forced slope; thus one should not use the inter-
nally-generated slope to estimate ECS.

Fig. 16   Scatter plots of the estimated equilibrium climate sensitiv-
ity (ECS) based on Gregory et  al. (2004)’s linear fitting method (y 
axis, colored symbols) and our new method 4 (x axis) among the a 
20 CMIP5 and b 19 CMIP6 models estimated using their 150-year 
abrupt 4 × CO2 simulations. Also shown in a (black dots, on y axis) 

are the ECS estimates based on Table 1 of Geoffroy et  al. (2013b). 
c, d Similar to a, b except that the y axis is the ECS estimated by our 
method 2 for the c 20 CMIP5 and d 19 CMIP6 models. The dashed 
line represents the 1:1 ratio and the solid line is the regression line of 
the colored symbols, with the regression equation shown
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The change in the (−dN/dT) slope during the earliest part 
of the simulation has been noticed previously (e.g., Andrews 
et al. 2015; Gregory et al. 2015; Rose and Rayborn 2016; 
Armour 2017), but still the first 40 years of data were used 
in estimating the ECS of the CMIP5 and CMIP6 models 
(Andrews et al. 2012; Forster et al. 2013; Zelinka et al. 
2020). However, the previous studies did not explicitly dis-
cuss the difference between the externally-forced and inter-
nally-generated (−dN/dT) slopes. Because of this chang-
ing slope, the ECS estimates based on the (−dN/dT) slope 
over the whole simulation period proposed by Gregory 
et al. (2004) and used by Andrews et al. (2012), Forster 
et al. (2013) and Flato et al. (2013) for CMIP5 models, and 
recently by Zelinka et al. (2020) for CMIP6 models would 
underestimate the true ECS, likely by about 10% on average 

and by as much as 25% for models with medium–high ECS 
(above 3 K), consistent with findings from Geoffroy et al. 
(2013b), Paynter et al. (2018) and Rugenstein et al. (2019b). 
Simply excluding the first 40 years in the analysis would 
reduce the underestimation by more than half, and using 
the slope from the best fit to the 2-layer model solutions 
for ΔT(t) and ΔN(t) would further reduce the underestima-
tion to be < 0.03 K for L ≥ 180 years based on our tests with 
synthetic data.

Our analyses of the three multi-millennium simulations 
confirm our test results using synthetic data, and suggest that 
ECS can be reliably estimated by our methods 2–4 with an 
error within about 0.1 K even using relatively short simula-
tions of 150–500 years. The results also show that the two-
layer model (Eqs. 1, 2) fitted to either the first 1000 years of 

Fig. 17   Scatter plots of the transient climate response (TCR, y axis) 
vs. equilibrium climate sensitivity (ECS, x axis) estimated based on 
a the linear fitting of Gregory et  al. (2004) and b our new method 

4 among the 20 CMIP5 models. c Same as a but for the 19 CMIP6 
models. d Same as b but for the 19 CMIP6 models
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data or the entire simulation captures well the warming at 
the end of the long simulation. This suggests that the two-
layer model, which has a constant (−dN/dT) slope after the 
first 40–50 years, can be used to depict the long-term evo-
lution of the ΔT(t) and ΔN(t) series from an abrupt fully 
coupled 4 × CO2 simulation.

Our analyses of the CESM1 experiments with 2 × CO2 
and 4 × CO2 showed that one needs at least 240 (180) years 
of simulation when abrupt 2 × CO2 (4 × CO2) experiments 
are used to estimate ECS; otherwise, the underestimation 
will be large for all the methods. Furthermore, the ECS esti-
mates using the 4 × CO2 experiment and a conversion ratio 
of 0.4769 (as implied by the TOA forcing for 2 × CO2 and 
4 × CO2 given by Byrne and Goldblatt 2014) yielded slightly 
lower values than those based on the 2 × CO2 experiment 
for L > 240 years. Using a conversion ratio of 0.5 would 
lead to substantially higher ECS than that using the 2 × CO2 
experiment. For simulations longer than 240 years, using a 
conversion ratio of 0.485 yielded better agreements between 
the ECS estimates from the two types of experiments. Thus, 
we recommend to multiply the estimate of the equilibrium T 
response to 4 × CO2 by a factor of 0.485 to derive ECS. Our 
best estimate of the ECS for the CESM1 (with CAM4, ~ 2° 
grid) is around 3.17 K, close to the slab-ocean based esti-
mate of 3.2 K by Gettelman et al. (2012) and that implied by 
the long simulation shown in Figs. 8a and 9a.

Thus, we recommend following steps to estimate the ECS 
of a fully coupled climate model. Fortran codes are available 
upon request from the lead author for carrying out Steps 2–3:

1.	 make an abrupt 4 × CO2 (or 2 × CO2) simulation with 
at least 180 (240) years of integration, with a 500 year 
integration is preferred;

2.	 fit the global-mean and annual-mean surface air tem-
perature ΔT(t) and TOA net radiation ΔN(t) anomaly 
(relative to a pre-industrial control run climatology) time 
series from this experiment to the two-layer model solu-
tions (Eqs. 1, 2) by minimizing the cost function (Eq. 4) 
and with pre-specified parameter Fo (= 8.1246 W/m2 
for 4 × CO2 and 3.8749 W/m2 for 2 × CO2 according to 
Byrne and Goldblatt 2014) and α, which is the equilib-
rium T response and is estimated iteratively (after each 
fitting to the ΔT(t) and ΔN(t) data) as described in the 
2nd paragraph of Sect. 2.2;

3.	 Estimate ECS either as the final α × θ, where θ is 1.0 if 
the 2 × CO2 experiment is used or 0.485 if the 4 × CO2 
experiment is used, or as ECS = θ × (ΔTmean + ΔNmean/b), 
where ΔTmean and ΔNmean are the ΔT and ΔN, respec-
tively, averaged over the last 50 years of the simulation 
(referred to as the realized warming and the remaining 
forcing), and b is the (−dN/dT) slope estimated from the 
fitted T(t) and N(t) functions. The two estimates should 
be very similar. Our benchmark tests using synthetic 

data indicated that this ECS estimate may still underes-
timate the true ECS by up to 0.03 K for using 4 × CO2 
simulations exceeding 180 years.

The ECS estimates using our new method for 20 CMIP5 
models yielded a range from 1.75 to 5.36 K with a mean 
of 3.45 K (Table 1), which is about 10% higher than the 
mean of Flato et al. (2013) and may be as much as 25% 
higher for models with relatively high ECS. The ensemble-
mean ECS estimate for 19 CMIP6 models is similar to that 
for the CMIP5 models, but with a higher range. Further-
more, because the use of a relative short simulation of 140 
or 150 years, these estimates contain a mean bias of about 
− 0.10 K. Accounting for this underestimation and using 
0.485 (instead of 0.4769 as in Tables 1, 2) for the 4 × CO2 to 
2 × CO2 conversion, the revised mean ECS should be around 
3.61 K with a range of about 1.78–5.45 K for the 20 CMIP5 
models and around 3.60 K with a range of 1.85–6.25 K for 
the 19 CMIP6 models analyzed here (note that the range 
is not affected noticeably by the mean bias, see Fig. 16a, 
b). Thus, the ECS reported previously by the IPCC AR5 
is likely to be underestimated by about 0.4 K for the multi-
model ensemble mean, especially for the models with an 
ECS above 3 K. Also, while the transient climate response 
(TCR) is still correlated with our new ECS estimates among 
the CMIP5 models, the correlation becomes weaker with 
the TCR accounting for a smaller fraction of the new ECS 
estimates.

Li et al. (2013) showed that the (−dN/dT) slope becomes 
extremely large during the quasi-equilibrium (year 
1200–4600) and equilibrium (year 4600–6080) periods 
when ΔT is very small while ΔN continues to fluctuate pre-
sumably due to internal variability. Clearly, such slopes are 
irrelevant for estimating ECS because they result from inter-
nal variability rather than the CO2 forcing, and because the 
ECS estimates based on recent climate variability are shown 
to be a poor proxy of ECS (Dessler et al. 2018; Marvel et al. 
2018b). This raises the issue of the externally-forced vs. 
internally-generated (−dN/dT) slopes and how to separate 
them for estimating ECS as the internally-generated slope 
produces poor estimates of ECS. We briefly discussed this 
issue using Figs. 10 and 11 in Sect. 3.3, but further inves-
tigation is needed. Local (−dN/dT) slopes over periods of 
101–102 years tend to vary greatly (Fig. 3a), presumably due 
to different internal processes involved over different time 
periods; this further suggests that they should not be used 
to estimate ECS. On the other hand, using all the data of the 
transient period (years 41–1000 in our case, year 141–1200 
in Li et al. 2013) produces a stable slope (for simulations 
longer than about 180 years) mainly reflecting the forced 
ΔN and ΔT changes, and this estimate is close to the long-
term slope implied by the fitted two-layer model solutions 
(Fig. 3a) and by the multi-millennium simulations (Fig. 10). 
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This suggests that one should use all the data from about 
year 40 to about year 1000 to estimate the (−dN/dT) slope 
for estimating ECS. According to Li et al. (2013), the simu-
lation may enter a quasi-equilibrium period after year 1200, 
when the (−dN/dT) slope becomes extremely large and is 
not related to the CO2 forcing (however, the impact of the 
later years on the (−dN/dT) slope is small if all the data after 
year 40 are used due to the small changes in later years, see 
Figs. 10 and 11). Using the (−dN/dT) slope from the tran-
sient period of Li et al. (2013) would yield an overestimation 
of ECS, in contrast to other studies and our estimate which 
suggest an underestimation by the Gregory method. This 
difference is likely due to the use of the 1%/year ramping-
up simulation during the first 140 years to reach the 4 × CO2 
level that was kept constant thereafter in Li et al. (2013), in 
contrast to an instantaneous CO2 quadrupling in standard 
4 × CO2 experiments commonly used to estimate ECS.

Previous studies using multi-millennium simulations by 
fully coupled models with coarse resolutions have shown 
that the slab ocean run may either slightly overestimate (Li 
et al. 2013) or underestimate (Danabasoglu and Gent 2009) 
the ECS of the fully coupled model, but this bias seems to be 
quite small. Our estimated ECS for the CESM1 is also very 
close to that based on the slab ocean simulations (Gettel-
man et al. 2012). Unfortunately, the CMIP5 and CMIP6 data 
archives do not contain slab ocean runs for the 2 × CO2 or 
4 × CO2 experiments, so we cannot verify this for other mod-
els. But given these results and the relatively low costs, using 
slab ocean runs to estimate ECS may still be a valid option, 
although properly specifying the horizontal heat fluxes in 
the slab ocean requires some effort.
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Appendix: a note on the estimates 
of the slopes in noisy data

For two correlated noisy time series xi and yi, we can use 
least-squares fitting to estimate the slopes in the following 
equations

as

where rxy = r(x, y) =
cov(x,y)

�x�y
 is the correlation coefficient 

between xi and yi, σx and σy are the standard deviation of xi 
and yi, respectively, and εyi and εxi are the residuals from the 
fitting and are considered as noise here. Thus, by <  bx if 
σy < σx, and by ≠ 1/bx if rxy ≠ 1.

For an exact relationship: y = a + b x, we have rxy = 1, 
σy = b σx, so that by = b, bx =1/b. Adding weakly correlated 
noise (with zero mean) to x and y to form two new variables: 
X = x + εx, and Y = y + εy with r(εx, εy) ≈ 0. Then, we have 
�2
X
= �2

x
+ �2

�x
and �2

Y
= �2

y
+ �2

�y
 , and 

Following (7), the slope between X (as the predictor) and 
Y (as the predictand) is

Thus, ||bY || < |b| , and the difference between the estimated 
slope bY and the true slope b increases with the squared 
noise-to-signal ratio ( �

2
�x

/
�2
x
 ). Therefore, one should avoid 

using the variable with large noise (e.g., N(t)) as the predic-
tor in estimating the slope between two data series. For 
X = T(t) (i.e., the global-mean temperature change series) 
and Y =  = N(t) (i.e., the TOA net radiation change series), 
the estimated slope (−dN/dT) using least squares fitting 
should underestimate the true slope between the forced T 
and N changes (the signals) due to the existence of the noise 
induced by internal variability (Dai and Bloecker 2019). 
Since ECS = F/(−dN/dT), this underestimation should lead 
to an overestimation of ECS in Gregory et  al. (2004)’s 
method. However, as stated in the main text of this paper, 
the use of the data from the first 40 years or so greatly 
increase the magnitude of the slope (−dN/dT), whose effect 
dominates over the effect of noise and leads an underestima-
tion of ECS by the Gregory’s method.
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