ENV 480: Climate Laboratory, Spring 2014

Assignment 1: Intro to Python, global energy balance and albedo feedback
Due: Tuesday February 4 2014

Question 1:

Read through Section 2.1 of the “Fun with Python” document (available on the class
web page), and work through all the Python exercises in Canopy on your laptop.
Comment on something that you found surprising or interesting in the exercises.
Also describe your previous experiences, if any, with computer programming.

If you found nothing surprising or interesting in the exercises, comment on why you
are so experienced with Python, and/or why it is so difficult to impress you.

Question 2a:
In class we defined a zero-dimensional energy balance model for the global mean
surface temperature T as follows

dT
C —=(1-a(M)Q — OLR(T)

dt
OLR = eoT*
where C = 4x108 ] m2 K-1is a heat capacity for the atmosphere-ocean column, « is
the global mean albedo (which varies with temperature to represent the ice-albedo
feedback), 0 = 5.67x1078 W m™> K is the Stefan-Boltzmann constant, € = 0.612 is an
effective global-mean emissivity for the atmosphere, and Q = 341.3 W m™ is the global-
mean incoming solar radiation.

We are choosing to represent the ice-albedo feedback as follows:

a; TSTl
(T_To)z
a(T)=1a,+ (a;—a,) ——— T, <T<T,
o L o (TL_TO)Z l o
a, T=T,

where a, = 0.289,a; = 0.7,T, = 293 K, T; = 260 K. Note that this formula
reproduces the observed albedo for T = 288 K.

In class we used the following Python code. Enter this code on the command line
exactly as written (or experiment with changing whitespace).

Q = 341.3

def OLR( T ):
sigma = 5.67E-8
epsilon = 0.612
return epsilon * sigma * T**4

def albedo( T ):
To = 293.
Ti = 260.



alpha_o 0.289

alpha_i 0.7
alpha=where(T>Ti,alpha_o+(alpha_i-alpha_o)*(T-To)**2/(Ti-To)**2,alpha_i)
alpha = where( T >= To, alpha_o, alpha )

return alpha

We also found equilibrium solutions to the global energy balance by plotting the
solar and terrestrial radiation as functions of temperature and finding the
intersections of the graphs:

T = linspace (200, 300)

figure()

plot( T, (l-albedo(T))*Q, T, OLR(T) )
xlabel('Global mean temperature (K)')
ylabel('Energy flux to/from space')
grid(Q)

This reveals three possible solutions to the energy budget with very different global
mean temperatures.

Imagine the energy output from the sun were different (in fact, it was significantly
weaker in the deep past). Re-draw the graph for different values of Q. How do the
intersections of the two curves change as you make the solar constant larger and
smaller?

What happens to the number of solutions when Q gets very large or very small?
You may need to adjust the temperature range of the graph. Try repeating the above
“linspace” command but with different limits.

You may answer with words and hand-drawn sketches of the graphs, OR you are
welcome to figure out how to save your graphs as image files, paste them into a
document with the rest of your answers, and submit by email.

Question 2b:

In class we also defined a time-stepping method to investigate the adjustment of the
climate system towards equilibrium. This example starts from a temperature of 300
K, uses a discrete time step of one year, steps forward 50 years, and stores the
temperature for each year in an array called Tsteps.

C = 4.0E8
delta_time = 60. * 60. * 24. * 365.
def stepforward( T ):
return T + delta_time / C * ( (l-albedo(T)) * Q - OLR(T) )

numsteps = 50
Tsteps = zeros(numsteps)
Tsteps[0] = 300.
for n in range(l,numsteps):
Tsteps[n] = stepforward( Tsteps[n-1] )



Make a graph of the output. Is 50 years sufficient for the system to reach
equilibrium? Redo the calculation with different initial temperatures. Try to plot the
results on the same graph. (Hint: each plot () command will draw on the same
figure. To create a new blank figure, type figure().)

By choosing different initial temperatures, is it possible to get the system to
equilibrate in all of the three different solutions we found above? Why, or why not?



