"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"ebm_plot(m)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Is this the same climate we started with?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This is an example of a **hysteresis** in the climate system: the state of the climate depends on its history!\n",
"\n",
"- A global cooling caused snow and ice to expand to the equator\n",
"- External conditions (i.e. the solar constant) returned back to its present-day value\n",
"- The climate stayed cold and completely ice-covered.\n",
"\n",
"If the oceans froze over and the Earth were covered in ice and snow today, it would remain that way!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"____________\n",
"\n",
"\n",
"## 7. The Neoproterozoic Snowball Earth\n",
"____________"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### The Geologic Time Scale\n",
"\n",
"First, some information on the nomenclature for Earth history:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"> Walker, J. and Geissman, J. (2009). Geologic time scale. Technical report, Geological Society of America."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The long view of glacial epochs on Earth:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"> Hoffman et al. (2017), Science Advances 3:e1600983, doi:10.1126/sciadv.1600983"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Extensive evidence for large glaciers at sea level in the tropics \n",
"\n",
"Evidently the climate was **very cold** at these times (635 Ma and 715 Ma)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"> Hoffman, P. F. and Li, Z.-X. (2009). A palaeogeographic context for Neoproterozoic glaciation. Palaeogeogr. Palaeoclimatol. Palaeoecol., 277:158–172."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### The Snowball Earth hypothesis\n",
"\n",
"Various bizarre features in the geological record from 635 and 715 Ma ago indicate that the Earth underwent some very extreme environmental changes… at least twice. The **Snowball Earth hypothesis** postulates that:\n",
"\n",
"- The Earth was completely ice-covered (including the oceans)\n",
"- The total glaciation endured for millions of years\n",
"- CO$_2$ slowly accumulated in the atmosphere from volcanoes\n",
"- Weathering of rocks (normally acting to reduce CO$_2$) extremely slow due to cold, dry climate\n",
"- Eventually the extreme greenhouse effect is enough to melt back the ice\n",
"- The Earth then enters a period of extremely hot climate."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The hypothesis rests on a phenomenon first discovered by climate modelers in the Budyko-Sellers EBM: **runaway ice-albedo feedback** or **large ice cap instability**."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"____________\n",
"\n",
"\n",
"## 8. Computing the complete hysteresis curve for the 1D diffusive EBM\n",
"____________"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"The calculations in this section may take a long time to complete, depending on the speed of your computer.\n",
"
"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The ice edge in our model is always where the temperature crosses $T_f = -10^\\circ$C. The system is at **equilibrium** when the temperature is such that there is a balance between ASR, OLR, and heat transport convergence everywhere. \n",
"\n",
"Suppose that sun was hotter or cooler at different times (in fact it was significantly cooler during early Earth history). That would mean that the solar constant $S_0 = 4Q$ was larger or smaller. We should expect that the temperature (and thus the ice edge) should increase and decrease as we change $S_0$. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$S_0$ during the Neoproterozoic Snowball Earth events is believed to be about 93% of its present-day value, or about 1270 W m$^{-2}$.\n",
"\n",
"We are going to look at how the **equilibrium** ice edge depends on $S_0$, by integrating the model out to equilibrium for lots of different values of $S_0$. We will start by slowly decreasing $S_0$, and then slowly increasing $S_0$."
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Integrating for 450 steps, 1826.2110000000002 days, or 5 years.\n",
"Total elapsed time is 5.000000000000044 years.\n"
]
}
],
"source": [
"model2 = climlab.EBM_annual(num_lat = 360, **param)\n",
"S0array = np.linspace(1400., 1200., 200)\n",
"model2.integrate_years(5)\n",
"icelat_cooling = np.empty_like(S0array)\n",
"icelat_warming = np.empty_like(S0array)\n",
"# First cool....\n",
"for n in range(S0array.size):\n",
" model2.subprocess['insolation'].S0 = S0array[n]\n",
" model2.integrate_years(10, verbose=False)\n",
" icelat_cooling[n] = np.max(model2.icelat)\n",
"# Then warm...\n",
"for n in range(S0array.size):\n",
" model2.subprocess['insolation'].S0 = np.flipud(S0array)[n]\n",
" model2.integrate_years(10, verbose=False)\n",
" icelat_warming[n] = np.max(model2.icelat)\n",
"# For completeness -- also start from present-day conditions and warm up.\n",
"model3 = climlab.EBM_annual(num_lat=360, **param)\n",
"S0array3 = np.linspace(1350., 1400., 50)\n",
"icelat3 = np.empty_like(S0array3)\n",
"for n in range(S0array3.size):\n",
" model3.subprocess['insolation'].S0 = S0array3[n]\n",
" model3.integrate_years(10, verbose=False)\n",
" icelat3[n] = np.max(model3.icelat)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAGQCAYAAAD4GofZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FNX6wPHvm1ASkoB0QdSAImgwBIggPRR7R4ooSGzw\nA68IlmsXRLABiqiAIAIqCqhXvSpylRKkqYAglyYKRECRSycBAiQ5vz/ObNhsNsmGbLKb5P08T57s\nzpyZec/M7Oy750wRYwxKKaWUUqpkCAl0AEoppZRSyneavCmllFJKlSCavCmllFJKlSCavCmllFJK\nlSCavCmllFJKlSCavCmllFJKlSBBlbyJyM0i8r2I/E9EjovIHyLyuYhcfQbzmi4iyUUQZtATkQQR\nGS4iRbp9ReQsZznNi3I5JU1J2/dEJElEkgKwXCMiw89gukQRuTuX4UZEot2GDReRzoUK1HsMftvG\nIhLtxJ3op/nFOfWu5mWcEZGR/lhOHsuf7izH29/nbuWGe4xLd475U0XkHI95usoeF5EqXpaZ6Daf\nC4ugTsNFxLi9z/XY53yelvo7hrzicYYVx7b1974aIiLjRGS3iGS67x9FzfMz7Fa3e4sxhgRnmV0L\nOm3QJG8iMhj4DPgNuAe4DnDtiH4/+JZyCcAwin77nuUsR5O37J4Hbgl0EKVYIpAjeQO+BloDu92G\nDSP4jx+7sXF/7af5xWHrnSN5K0Z7sXXy/Punl7LtnHGdgBewx/6vc/nxeQro7mX4nUBK4cPO1TvY\nGF302Ocf3YEHgdFAW7zvH8qLcoEOwM0jwOfGmHvchi0EphR1C1J+RKSiMeZEIGNQ+QuW7WSM2Rro\nGMoiY8xebNJQojj77A+BjsPPThpjfK3Tj8aYdOf1EhHJAKYAjYBNHmX/BfQFproGiMi5QEfgPWxi\n73fGmF3ArqKYdxl3sfN/nDEmM6CRlDBB0/KG/ZX4t7cRnhtVRFqKyHwRSRWRoyKyQERa5rcAEXlO\nRH4WkcMisk9EForI5R5lXM2Y3URkiojsBfbkM9/6IvK+iPwtIidEZJuIvO5Rpo+I/CIiac6y3xeR\nOh5lkkXkAxG5TUQ2OXVbJSLtPMpdJiLfich+ETnmLG+CM2449hchwClXV8IZroMbReRNp9xeJ7az\nnDLRwHZnkiluXRaJuayjf4rISRGp7mXcRo/ulEoi8rKIbHem2S4iT7kn8XltJxG5SEQ+E9v9niYi\nO0TkYxEp54zP0b3mWndeuiIedLbFcRE56GyPPFvVPJvjnWERIvKSiGx19pG/ReRTEantVqa+iMx0\n1vUJEVmb37IKOq2zb212ymzIbf4i0lxEljjrb6eIPOnsO57rp5yIPOE2z79EZKyIhPkSt8e8LnQ+\nF9ud9b1NRCaKSFW3MknYL+q2bvtckjMu23Z1i/Upt7LDXfMRL13FYj+D0z2GdXE+M2nO9huQS/z5\n7re5TJejK8rZh3aJSDNnOxwTkd9E5P/ymVciMM15+5tbvaM9yg124ksRkcUiEuNlXt1E5Adn2Yec\nz9B5eS3fT444/8t7Gfce0EFEzncb1hfYAXyf34xFpLuzPuq5DRsrHt1lInKFM+wS533WsUF8PPaJ\nSFdnvzkmIutF5GYf4qspIm+LyBZnup0i8qF4dCPnPQt5ytl3jos9DSnOS6F8t62zP08Q+z2TKiL/\nBup5zsspm+/3m5dpkoHhztsM93Xo62dJRGo4x4g/nePPZhHp72VZPn2GHRVE5FWx3x/HROQrL5+f\n28R+d+511s0aEennZbnlROQxsd9xaU75eSLSOI/10sD5rC8Tt2NfDsaYoPjDtrIdAx4FLsqjXCxw\nHFiNbXK9FVjpDGvqVm46kOwx7TvYD3on4HpgFnASiHUrkwAY4E+n/NXAzXnEUx/7a/8PYAC2i6Yf\nMNOtTH9nnrOAa4F7gf8BW4BIt3LJznxWOnW7HlgDHALOcspEAgeAecANTryJwGRnfD0nboNthr4c\nuPwM18F24A3gSuABZx3PcMpUxHYNGmxXx+XOX81c1lNdIAMY5DG8hTOPW5335YAlwH5gCNAFeApI\nA8b6sp2c9fqTs290BG4HPgAqOOMTnWmjPWIZDhi393cA6cCzzvq6FngcuCeffXk6bvseUAFYjt2/\nnwGucLbvFKCxU+ZcZ59YD/QBrgLeBTKBG/NZnk/TAl2dYV9iu6YSsV96u4Ekt3I1gIPABqAncDOw\nGLtvGo9lzwKOOuuoq7OfHAI+9eEzb4Dhbu87AC8CNzmvE51tucKtzCXAz8AvbvvcJd62qzPOYJMZ\nV9l6zrgk9zp7fAanu72/GDgBLHPWQy9sa9BOj23s036by3qIduJM9NiHjjjLGuDsMx865TrlMa+a\n2G574+xjrnpXdFvnycB/gBudMtuB34FybvP5P6fsu9j93lXv7UCUD/v/LmedeP6J5+cNeywpB4Rj\njwdrsftyiJey5YFtwJNu4zY5dXZt/wvziK069jNwp9uwNdjP5oduw14E9ng7NpDPsc/Zt3ZjPz99\nsMem77DHklxjc6ZtBLyOPXZ1AG7Dfh8kA2G5Havctu1Osu+rv2L3yWoF3bbA+9jvhqew3wGjsccL\nz33Vp+83L3Vthv1sGvd1iO/fAZWd+u0A7sMef0Zjv2ceOIPPcLTbOnQdI+9ytuUWoLxb2SeBQc56\n6QqMwHbp/59HHT9xtvsYZz+4GXgV5zPM6e+xrm7r5G/g30B4nvtKfgfY4voDLgLWORUxwD7gI+BK\nLysjK5lx24gHgH95HECS81heqLOT/Aq87jbctTI/8zHu94BUoG4ey9kDLPIY3s5ZzmC3YcnYL82q\nbsPinXK3e7yPzSOm4U6ZcvnEnt86mOFR/k3sB0g8dvZ7fVxX3+H2RewMG+dsO9eXS19nnh08yj2F\nPZDUyms7YRMPQx4JD74nb28CP5/Bvpxt38Oen5VfTFOxPwKqe1lna/NZnk/TYg9eG8n+pdjKiS3J\nbdgLzrqu5zYs3NmP3ddPe2faOz2We4czPC6fuLMlb17Gl3P7nDRzG54ELPVluzrvR3opm4RvydtM\n7LEowm3Yuc76cd/GPu23udQzGu/JW7ZEDZs07MP5oebD/p0jUXCG/0b2L6LuzvA2zvtI4DDwrpc4\nTwJDfNj/TS5/j3h+3rz8bQIu8PbZdPaJEcAmZ3hLZ3jDvOrtMa9fgGnO62rYL/uxwG63Mj8AszyX\n72Wb5Tj2OfvWKaCh27BaznKezCs2L/MKdfY3A9ySWzxu29ZzX412Ynm+INsWm0RmAI97lJuI275K\nAb7fcqnfSC/18PU74Bns91FDj3JTnPVQroCfYdc29TxGtnWGe/3Rju3BLOcs9xe34Z3zWwe4JW/Y\nJPUI9ngemt++ETTdpsaYLdissyMwCvvr6xbgPyLytFvRDsBXxphDbtMewWaqHfNahtOMvUhE9mOz\n4VPYpLGRl+Kf+Rj6lU48f+UyvhH2gzvTfaAxZim2JcMz5hXGmINu7//r/Hc1af+GTV7fdpqqz/Ux\nTqDA68DzBOr/Yr9Aansp64v3gctFpKETSznsL8s55vS5aldj18typ8m5nFPuW+yv7ss95um5nfZj\nf5m/JCL3uZZ1hlYCcSLyhrPeKp3hfK4E/jbG/DuPMlcDc4HDHvX+D9BURCoXZloRCQUuAz4xbqch\nGGN+xCYs7i7H7oe73ModJ+f+cDX2APipl20F9rPqMxGpILZ7drOIHMfum0uc0d72z+LQGphrjDnq\nGmCMcbVuuCvofuuLY8aYRW7LPYH9/Be26/I7Y8wpt/eex5jW2B/EMz3qsgvYjG/b9X/Y/c3z730v\nZS93xrXCtvQeBb4Vt1MKPLwHNBaRy7AXKvxgjPnNh5hcFnH6IpYEbDLzKnC2iFwsIlHYFsCFBZin\np9/cYzLG/A+7TvLddiIy0OmCTMUeo3c4o3z5DHjuq8nYRNR1sYWv27YVNimZ4zH/WR7vC/r95gtf\nP0tXAz8C270c96pjW+lddfblM+zieYxchl0/WResiEhDEflIRP7EHqdOYVsc3bfRldjEbIoPde6B\nPYa/ZYy5xxiTkd8EQZO8ARhjMowx3xtjnjbGdAUaYA8sw9z6fquR/Woyl7+BXPuHxV7SPRfbSnYP\npw8YvwDezs/xtgxvqpP3iayuK75yi9nzirAD7m/ckpow5/1hbBfeX8AEYIfY8yluzS/QM1gHBzze\nZ4vlDHyKPTD3cd5fiU0E3Q/otYDzOf2BcP395Iz3PGcu23o19ufMFcAqbNfHFrHnTg08g3jfAwZi\nD2T/AQ6IyL88z3/wQXVs925eamG/iDzrPdptHoWZtgb2wOft/E3PYXWwXzT5lauF7RJO9Viua9q8\nYvbmRWyLwgfYLouWQDdn3Jnuc4VVB9/WWUH3W18c9DLsBIVfF/l9rms5/+eTsz6X4ltdThljVnn5\n87YuVzvjfjLGfIzd9vWBh7zN2BjzO7ACewy7Dfs5LYiFwHki0gB7LF1sjPkT2wPRCZvAlMMmeWfK\ncx2DD9tORB7AHtfnY/f9lpxOVnzZ7rntq65z5nzdtnXcps1r/gX9fvOFr5+lWtht5VnuY49yvn6G\n8xqetQ5FJBLbq9EUexpNe+z36LvYxg2X6sAB54dvfm7FnpY0zYeyQHBdbZqDMeYvEXkHew5AQ+zG\nOwCc7aX42Xj/wLjciv0V0839V6eTFB7yUt74GOY+Tn8wvHHFlFvMq3xcThZjzFrgVudXRjzwBDBH\nRJoaY9bnMWlB14FfGWOOishn2G61Ydgkbpvzy8ZlP/bci565zCbZc7ZelrMNuFNEBPsB+wcwQUSS\njTHfYJvawSYe7rJ9KTmJ4NvYVs6q2GRzLDAbm9D5ah/QJJ8y+7GtTC/nMj63ll1fp3W1snprzaiN\n/aXrspvTB3nPcp7LTcMevHJbbkHcBrxnjMm6V5VzoCwKadgWCE+eXza7yX2duSvofhvM9jv/E7Hn\nbXkqyltyYIzZIyL7sOc35+Y94C3sfj27gItYjD3vrbPzN8kZvtB5/wfwZwFb8/zlNmCBMeZh1wAR\nqV+A6XPbV10/Hn3dtq5krDa2JyO3+fv9+w3fP0v7sT8UH8yl3K/Of18/w3kNr43tDQTbAnc+0N5p\nYQSyepLc7QOqiUi4Dwlcf+wdN5JEpLMxZnM+5YOn5S2P7j/XVRmuK1EXA9c5TduuaaOwJ+8vzmMR\nlbB9+Flf9mJv3lnYLohvgesl9ytrfsVm7be5DxSRNtgdIK+Y82SMSTf2cvxnsNvSddm165d0uMck\n/l4HuS0nL+8DF4jIVdgT0z27UeZhz0dIzeWX+z5fF2SstZz+Be9KoP7weO/64F2Zx7wOGmNmY7sR\n8kvEPH2L7ZK5IY8y87BfVhtyqXdet0DJd1qnGX4l0F2yX7XbCnuuh7sfgNaS/Yq8cGyLiOdyw4Aq\nuSy3oMlbJWyC6e4uL+VO4Ps+dzKXsn8AF4lIVgIvIh2AKI9yK4BrRSTCrdy52PNg3Pltv/WDM/lc\nuluO/RK/MJe6/JrfDArDOZbWIO/bvszGnirzkjEmrx/tOTi9F2uwx+RLON09uhDbjdqF/LtMC7uO\nc+PrZyA3nvtqNM5pEM4gX7ftj9gE1zOBus3jfVF8v/n6WZqHzQ925FLOlYj6+hl28TxGtsVeCOha\nh67TZzwbQG7ymM+3gGC7U/NzBHuh2TZgkYhcnE/5oGp5Wy8ii7DnMG3H/iq+FntlzBxjjKvf/3ns\nVZILRORlbCLyGHaFjshj/vOwV65MF5Fp2PO8niH/7qz8DMN+qS0XkRewV22dA1xtjOljjMkQkWex\nrTcfYLuEzsGe1/cbBWgmBRCR67FZ+ufY9RQBDMZ+IF0710bn/8Mi8g2QYYxZhf/XwR7sr5/bRGQd\ntkt0uzFmfx7TzMe2yEzFbrMPPMbPxB6sFojIWGyXbgXgAuzVcTcbY47lNnMRicW21M7GbotQ7K/M\ndE4fkFcCW4HRzof0BPbKoYoe85rM6fX6P+z66svpc7p89QH2aqiPRORF7IExCvthHef8ynoW27L8\nvYi8if11WRWbKDYwxni7Ka2Lr9MOc2L/XETexl7Z9Rw5b9HzKra7+D8i8hx2/Tzk/M9K/I0xSSLy\nEfCJiLzqxJCJTQavBR4z9lxWX80D+onIf7HbrhvQxku5jcAgEemF3Y4peSQUG7E/9uZhuyH/cpLK\nWdjP0btibw3i6qY77DH9SOz5KN+KyGjsvvgcObtWCrXf+pnr83+/iMzAfsmsM8ac9GViY8wREXkU\neEtEagLfYNfLOdhzmJKMMR/mM5sK4nELIscxY8w6j2GtxN7bLQT7hf8o9kfmJM+J3WI8SOFuhL3Q\nWc7/jDGuFqgkbMtrdewxJC9ncuzzxTzgMRF5Evt56oz3mxLn5jin99WK2H31CPAa+L5tjTG/isiH\nwAjnGLkSezrKte4L8/f3m8PXz9Jr2CtHl4jIa9hEMgKb0LU3xriSKV8/wy5RZD9GvujUxdU9vxy7\nTt8SkWHOMp/GtrRlPf3DGLNIRD4FXnWSxYXYU1c6AF8bY5LcF2qMSRH7NKmvsQlcF7d9MydTgCtf\nivIPm6T9G/uLOA37YViDveNyBY+yrbBJQKpTbgHQ0qPMdHLeKuQBbMJzHLszdsXjqjM8Lt31MfYL\nsFfG7sN+wW0DXvMo0we7E57AfujfB+p4lEkGPvAyf4NzVR72hMjZTj3SsL9O5wKt3MqHYrsU/of9\nMjX+WAd4v5rvZuyXxSk8rpjLY32Ndsouz2V8GPbcp83O+jrgxDqc01cQ5RZjLWAG9tLuY860i4Gr\nPMrFOPVOxZ4Q/BA5ryjr55T5nxPHduwBo3I+9fO270U69f4D2xq0G3vldC23Mq7bvPzpVuY7oI8P\n69SnaYHe2IPcCWy3yS2e298p1xxY6uxjf2KT/NeBgx7lQrDdFr84ZQ87r1/BtsjlFXPWfu28r4FN\nqg46fzOx55Jk26+w3TFzsYm1ccWO9/2zLfa2QmleljcAe1A+jj0gt8DjalOnXFfsscj12R6QyzbO\nd7/NZT1Ee6njdGCXl7I5tlUu8xzmbDdXS3u02zofmd/yneHXYs/7OuKso9+x5/Vc4sP+b3L5W+9W\nbrjHuEzsD7svyXk8d5XNaz26tn+eV5s6Za9xys7yGP6L5z7kvnyPYV6PfeR+NXSOfctLmXDsFZ17\nsfv3V9gfFp77rrd4DDZpehJ7HnYa9nSKHFd9+7JtsT+uJzr7cSr2+9l15aXnvpLv91su9c1xtWlB\nPkvYH6mvYY/NJ7HH6iV4XBGND59hTn8OBmF/wO7Ffod8DdT3mF9nZ37HsT8gB+eyTcphr5Ld4sTn\n+r5u5IxPwON7DJsMLsQml01yW3euWz4opVSuxF6t+jOwzxjTJdDxKKVUWRZM3aZKqSAhIs9jf43/\nge1Guhd7Xt21eU2nlFKq6GnyppTyxmDPpavrvF6HPdfkm4BGpZRSSrtNlVJKKaVKkqC5VYhSSiml\nlMqfJm9KKaWUUiVIiT3nrUaNGiY6OrpIl3H06FEiIiLyL1hKleX6l+W6Q9muv9a9bNYdgrP+mZn2\nMZshIUXb1hKMdS9OxVH/1atX7zPG1PTHvEps8hYdHc2qVWfy5A3fJSUlkZCQUKTLCGZluf5lue5Q\ntuuvdU8IdBgBU5brX5brDsVTfxH5I/9SvtFuU6WUUipITZgwgQkTJgQ6DBVkNHlTSimlgtScOXOY\nM2dOoMNQQUaTN6WUUkqpEqTEnvPmzalTp9i1axdpaWl+mV+VKlXYtGmTX+ZVEhWk/mFhYdSrV4/y\n5csXcVRKKaVU2Vaqkrddu3YRFRVFdHQ0IlLo+aWkpBAVFeWHyEomX+tvjGH//v3s2rWL+vXrF0Nk\nSimlVNlVqrpN09LSqF69ul8SN+U7EaF69ep+a/FUSimlVO5KVcsboIlbgOh6V0op/0tKSgp0CCoI\nlaqWt9Jg+PDhjBkzBoBnn32W+fPnBzgipZRSSgWTUtfyVpqMGDEi0CEopZQKINeP+UceeSTAkahg\noi1vfvbee+8RGxtL06ZN6du3L3/88QddunQhNjaWLl26sGPHDoBch7tLTEzkk08+AewTJYYNG0bz\n5s259NJL2bx5MwB79+7liiuuoHnz5gwYMIDzzz+fffv2FV+FlVJKFZmvvvqKr776KtBhqCBTelve\nhgyBtWsLNYvwjAwIDT09IC4Oxo3LtfyGDRsYNWoUy5Yto0aNGhw4cIB+/fpx55130q9fP959910G\nDx7M559/zj/+8Q+vw/NSo0YNfv75ZyZMmMCYMWN45513eO655+jcuTNPPPEE8+bNY/LkyYWqs1JK\nKaWCm7a8+dHChQvp3r07NWrUAKBatWqsWLGC22+/HYC+ffuydOlSgFyH56Vbt24AtGjRguTkZACW\nLl3KbbfdBsDVV19N1apV/VonpZRSSgWX0tvylkcLma+OF/A+b8aYfK+6zG28L1drVqxYEYDQ0FDS\n09OzlqmUUkqpskNb3vyoS5cuzJkzh/379wNw4MAB2rRpw6xZswCYOXMm7dq1A8h1eEG1a9cu67l3\n3377LQcPHixsNZRSSgWJ8PBwwsPDAx2GCjKlt+UtAGJiYnjqqafo2LEjoaGhNGvWjPHjx3P33Xcz\nevRoatasybRp0wByHV5Qw4YNo3fv3syePZuOHTtSp06dMv1UCKWUKk2++eabQIeggpAmb37Wr18/\n+vXrl23YwoULc5SLjo72Onz48OFZr6dPn5712nWOG0B8fHzWjRurVKnCf/7zH8qVK8eKFStYtGhR\nVveqUkoppUofTd5KuB07dtCzZ08yMzOpUKECU6ZMCXRISiml/OT5558H4JlnnglwJCqYaPJWwjVs\n2JA1a9YEOgyllFJFYMGCBYAmbyo7vWBBKaWUUqoE0eRNKaWUUqoE0eRNKaWUUqoE0XPelFJKqSBV\nvXr1QIeggpAmbyVYmzZtWL58eaDDUEopVUQ+/fTTQIeggpB2mwaZjIwMn8tq4qaUUkqVPcWevInI\ngyKyXkQ2iMgQZ1g1EflORH5z/pfIp6u/8sorjB8/HoChQ4fSuXNnwF7q3adPHwYOHEh8fDwxMTEM\nGzYsa7ro6GhGjBhBu3bt+Pjjj0lISGDo0KF06NCBiy++mJUrV9KtWzcaNmzI008/nTVdZGQkAElJ\nSSQkJNC9e3caN27MHXfckfXM07lz59K4cWPatWvH4MGDuf7664trdSillCqkJ554gieeeCLQYagg\nU6zdpiLSBLgPaAmcBOaJyNfOsAXGmJdE5HHgceCxwixryBBYu7Zw8WZkhBMaevp9XFzez7vv0KED\nY8eOZfDgwaxatYoTJ05w6tQpli5dSvv27enRowfVqlUjIyODLl26sG7dOmJjYwEICwtj6dKlAEya\nNIkKFSrw/fff8/rrr3PTTTexevVqqlWrxgUXXMDQoUNznAexZs0aNmzYQN26dWnbti3Lli0jPj6e\nAQMG8P3331O/fn169+5duBWilFKqWK1YsSLQIaggVNznvF0M/GCMOQYgIouBW4CbgASnzAwgiUIm\nb4HQokULVq9eTUpKChUrVqR58+asWrWKJUuWMH78eObMmcPkyZNJT09n9+7dbNy4MSt569WrV7Z5\n3XjjjQBceumlxMTEUKdOHQAaNGjAzp07cyRvLVu2pF69egDExcWRnJxMZGQkDRo0oH79+gD07t2b\nyZMnF+k6UEopVUzS0mD7dr/MqtIff7Bj1QKOZhz3y/xKmrQjJavexZ28rQdGiUh14DhwLbAKqG2M\n2Q1gjNktIrUKu6C8Wsh8lZJyvEAPeS9fvjzR0dFMmzaNNm3aEBsby6JFi9i6dSvh4eGMGTOGlStX\nUrVqVRITE0lLS8uaNiIiItu8XM8nDQkJyfas0pCQENLT03Ms271MaGgo6enpWV2nSimlSqG+feGT\nT/wyK3MOnH+fX2ZVIo3JvJWrb+wR6DB8VqzJmzFmk4i8DHwHpAK/ADkzkVyISH+gP0Dt2rWzHs7u\nUqVKFVJSUvwWb0ZGRoHn16pVK0aPHs1bb71FTEwMQ4cOJS4ujt27dxMeHk5ISAhbt25l7ty5XH75\n5aSkpGCMITU1NSsBy8jI4OjRo6SkpHDs2DHS09Oz4nAfB3gtc/LkSdLS0jjnnHPYunUr69ev5/zz\nz+eDDz7IVs7f9U9LS8uxTUqq1NTUUlOXM1GW6691Twp0GAETjPU/dOgQgNe4mq9fj1x4ITv8cErM\n/PQ1wFf8M/MKauJ7o0VpUeecVkG37fNS7LcKMcZMBaYCiMgLwC5gj4jUcVrd6gD/y2XaycBkgPj4\neJOQkJBt/KZNmwrUUpaflJSUAs+va9eujBkzhi5duhAREUF4eDidOnWiTZs2tGjRgssvv5wGDRrQ\nrl07wsLCiIqKQkSIjIzMWlZoaCgRERFERUVRqVIlypUr53Uc4LVMhQoVCAsLo1atWkycOJHu3btT\no0YNWrZsyZ49e3yuU0HrHxYWRrNmzQqyuoKW6yKQsqos11/rnhDoMAImGOvfpEkTgNzjataMmBEj\nCr2cyTMfhN/hoUffp3Zk7ULPr6QJxm2fl2JP3kSkljHmfyJyHtANaA3UB/oBLzn/vyjuuPylS5cu\nnDp1Kuv9li1bsl5Pnz7d6zTJycnZ3rtn/wkJCdl2KPdxqampXsu8+eabWa87derE5s2bMcZw//33\nEx8f73tllFJKBdQHH3yQ+8iUFPBTg0Vquv0+qRpeIm/2UOYE4j5vn4rIRuBL4H5jzEFs0naFiPwG\nXOG8V34wZcoU4uLiiImJ4fDhwwwYMCDQISmllPIHPyZvR04dIbJCJBVCK/hlfqpoBaLbtL2XYfuB\nLsUdS1kwdOhQhg4dGugwlFJKnYEhQ4YAMM7zKjxjbPJWubJflpOSnkK18Gp+mZcqevp4LKWUUipI\nrc3thqVHj9oEzk8tb5q8lSz6eCyllFKqpHHdCcCP3aaavJUcmrwppZRSJc2RI/a/H7tNq4bpxQol\nhSZvSimlVEmjLW9lmiZvJVibNm0CHYJSSqkidNFFF3HRRRflHOFqefND8maM0XPeShi9YCHIZGRk\nEBoa6lOkwklwAAAgAElEQVTZ5cuXF3E0SimlAinX51G7Wt780G167NQx0k26Jm8liLa8+dErr7zC\n+PHjAXuLjs6dOwOwYMEC+vTpw8CBA4mPjycmJoZhw4ZlTRcdHc2IESNo164dH3/8MQkJCQwdOpQO\nHTpw8cUXs3LlSrp160bDhg15+umns6aLjIwETt8Zunv37jRu3Jg77rgj67mmc+fOpXHjxrRr147B\ngwdz/fXXF9fqUEopVVT82G164PgBAE3eSpBS2/I2ZN4Q1v6dyyXWPvJsBYs7O45xV+f+xPsOHTow\nduxYBg8ezKpVqzhx4gSnTp1i6dKltG/fnh49elCtWjUyMjLo0qUL69atIzY2FrCPllq6dCkAkyZN\nokKFCnz//fe8/vrr3HTTTaxevZpq1apxwQUXMHToUKpXr55t2WvWrGHDhg3UrVuXtm3bsmzZMuLj\n4xkwYADff/899evXp7cfnn+nlFKq+PTv3x/w0gLnx25TTd5KHm1586MWLVqwevVqUlJSqFixIq1b\nt2bVqlUsWbKE9u3bM2fOHJo3b06zZs3YsGEDGzduzJq2V69e2eZ14403AnDppZcSExNDnTp1qFix\nIg0aNGDnzp05lt2yZUvq1atHSEgIcXFxJCcns3nzZho0aED9+vUBNHlTSqkSZsuWLdkes5jFj92m\nmryVPKW25S2vFjJfFfTB7OXLlyc6Oppp06bRpk0bYmNjWbRoEVu3biU8PJwxY8awcuVKqlatSmJi\nImlpaVnTRkREZJtXxYoVAQgJCcl67Xqfnp6eY9nuZUJDQ0lPT8/qOlVKKVXKpKRASAiEhxd6Vpq8\nlTza8uZnHTp0YMyYMXTo0IH27dszadIk4uLiOHLkCBEREVSpUoU9e/bwzTffFHksjRs3Ztu2bVkP\nvp89e3aRL1MppVQxOHLEdpmKFHpWruRN7/NWcpTalrdAad++PaNGjaJ169ZEREQQFhZG+/btadq0\nKc2aNSMmJoYGDRrQtm3bIo8lPDycCRMmcPXVV1OjRg1atmxZ5MtUSilVDPz4XFNteSt5NHnzsy5d\nunDq1Kms9+7nKkyfPt3rNK6WMZekpKSs1wkJCSQkJHgdl5qa6rXMm2++mfW6U6dObN68GWMM999/\nP/Hx8b5XRimlVEDFxcV5H5GS4rcb9B44foDyUp5K5Sv5ZX6q6GnyVspNmTKFGTNmcPLkSZo1a8aA\nAQMCHZJSSikfjRuXy/nbrm5TPziYdpCo8lGIH7pgVfHQ5K2UGzp0KEOHDg10GEoppfzJz92mUeX8\nkwiq4qEXLCillFJBqk+fPvTp0yfnCD93m1Yu559EUBUPbXlTSimlgtSuXbu8j/Bjt+mB4weIKq8t\nbyWJtrwppZRSJY2fu0215a1k0eRNKaWUKkmM8Xu3aWS5SL/MSxUPTd5KqXHjxnHs2DGfyiYkJLBq\n1aoijkgppZRfHD8OGRl+Sd5OpJ/g6KmjVC6vLW8liSZvAZCRkVHkyyhI8qaUUio4tW7dmtatW2cf\n6Mfnmh5MOwigV5uWMJq8+VlycjKNGzemX79+xMbG0r17d44dO0Z0dDQjRoygXbt2fPzxx2zdupWr\nr76aFi1a0L59ezZv3gzAxx9/TJMmTWjatCkdOnQAbLL36KOPctlllxEbG8vbb78N2Bv2JiQk0L17\ndxo3bswdd9yBMYbx48fz119/0alTJzp16pQjxuPHj3PbbbcRGxtLr169OH78eNa4gQMHEh8fT0xM\nDKNGjQJgwYIF3HLLLVllvvvuO7p161Zk61AppZT14osv8uKLL2Yf6Ere/NDydvC4Td605a1kKdVX\nm7o/dcClZ8+eDBo0iGPHjnHttdfmGJ+YmEhiYiL79u3jlltuITQ0NGuc+9MN8vLrr78ydepU2rZt\ny913382ECRMACAsLY+nSpYB9EsOkSZNo2LAhP/74I4MGDWLhwoWMGDGC//znP5xzzjkcOnQIgKlT\np1KlShVWrlzJiRMnaNu2LVdeeSUAa9asYcOGDdStW5e2bduybNkyBg8ezKuvvsqiRYuoUaNGjvgm\nTpxIpUqVWLduHevWraN58+ZZ40aNGkW1atXIyMggISGBdevW0blzZ+6//3727t1LzZo1mTZtGnfd\ndZdP60IppZSfHTli//sheXM9Gktb3koWbXkrAueee27Ws0v79OmTlbD16tULsI+1Wr58OT169CAu\nLo4BAwawe/duANq2bUtiYiJTpkzJ6l799ttvee+994iLi6NVq1bs37+f3377DYCWLVtSr149QkJC\niIuLy/GoLW++//77rPsGxcbGEhsbmzVuzpw5NG/enGbNmrFp0yY2btyIiNC3b18++OADDh06xIoV\nK7jmmmv8s7KUUkrl6tZbb+XWW2/NPtCP3aau5E1b3kqWUt3ylldLWaVKlfIcX6NGDebOnUvUGfyy\n8XzEiOt9REQEAJmZmZx11lmsXbs2x7STJk3ixx9/5OuvvyYuLo61a9dijOGNN97gqquuylY2KSmJ\nihUrZr0PDQ0lPT09xzw/++wznnvuOQDeeecdrzECbN++nTFjxrBy5UqqVq3KHXfcQVpaGgB33XUX\nN9xwA2FhYfTo0YNy5Ur1rqOUUkFh//79OQf6sdtUW95KJm15KwI7duxgxYoVAHz00Ue0a9cu2/jK\nlStTv359Pv74YwCMMfzyyy8AbN26lVatWjFixAhq1KjBzp07ueqqq5g4cWLWA++3bNnC0aNH84wh\nKiqKFOcDfsstt7B27VrWrl1LfHw8HTp0YObMmQCsX7+edevWAXDkyBEiIiKoUqUKe/bs4bvvvsua\nX926dalbty4jR44kMTGxkGtIKaXUGdNu0zJPk7cicPHFFzNjxgxiY2M5cOAAAwcOzFFm5syZTJ06\nlaZNmxITE8MXX3wBwKOPPsqll15KkyZN6NChA02bNuXee+/lkksuoXnz5jRp0oQBAwZ4bWFz179/\nf6655hqvFywMHDiQ1NRUYmNjeeWVV2jZsiUATZs2pVmzZsTExHD33Xdz+eWXZ5vujjvu4Nxzz+WS\nSy4501WjlFKqsPzcbSoIEeUiCj0vVXy076sIhISEMGnSpGzDPM9Fq1+/PvPmzcsx7b/+9a8cw0SE\nF154gRdeeCHb8ISEhGwXZbz55ptZrx944AEeeOABr/GFh4cza9Ysr+OmT5+e9TolJSVbt/HSpUu5\n7777vE6nlFKqmPi527RqeFVCRNtyShJN3pRPWrRoQUREBGPHjg10KEopVWZ06dIl50BXt2lE4VvL\nDqQdoFp4tULPRxUvTd78LDo6mvXr1wc6DL9bvXp1oENQSqky55lnnsk50PVorJDCt5YdPH5Qk7cS\nSNtJlVJKqZLEz8811eSt5Cl1yZsxJtAhlEm63pVSyv+uueaanPfVPHLEL8nbXyl/8fuB36lZqWah\n56WKV6lK3sLCwti/f78mEsXMGMP+/fsJCwsLdChKKVWqHD9+PNsjDAHb8lbIK01TTqRw/YfXczLj\nJA+1fqhQ81LFr1Sd81avXj127drF3r17/TK/tLS0Mp2QFKT+YWFh1KtXr4gjUkopVdhu0/TMdHp+\n0pN1e9bxZe8viTs7jqTNSf6LTxW5UpW8lS9fnvr16/ttfklJSTRr1sxv8ytpynr9lVIqKB05Ag0a\nnNGkxhgGfT2Ieb/P4+3r3+aahvqow5KoWJM3EWkEzHYb1AB4FjgLuA9wNZk9aYyZW5yxKaWUUiVC\nIbpNX1r6ElN+nsIT7Z6gf4v+fg5MFZdiTd6MMb8CcQAiEgr8CXwG3AW8ZowZU5zxKKWUUsHs+uuv\nzznwDLtNP/zvhzy58El6N+nNyM4j/RCdCpRAdpt2AbYaY/7w9pB0pZRSqqx75JFHcg48g6tNFycv\n5q4v7qLD+R2YdtM0faJCCRfIrXcb8JHb+3+IyDoReVdEqgYqKKWUUiponTgBp04VqNt0095N3Dz7\nZhpUbcDnvT6nYrmKRRigKg4SiNtqiEgF4C8gxhizR0RqA/sAAzwP1DHG3O1luv5Af4DatWu3yO35\nnP6SmppKZGRkkS4jmJXl+pflukPZrr/WvWzWHYKz/kOGDAFg3LhxAJQ/fJi2N9/Mbw88wJ/duuU7\n/YGTBxj08yBOZp7krWZvUSe8jtdywVj34lQc9e/UqdNqY0y8X2ZmjCn2P+Am4NtcxkUD6/ObR4sW\nLUxRW7RoUZEvI5iV5fqX5bobU7brr3Uvu4Kx/h07djQdO3Y8PWDrVmPAmGnT8pwuPSPdTFk9xdQa\nXctUGlXJrPxzZZ7lg7Huxak46g+sMn7KowLVbdobty5TEXH/KXALUPoeDqqUUkoVVkqK/Z9Ht+ni\n5MXET4nnvi/vo2G1hiy9aynxdf3T4KOCQ7FfsCAilYArgAFug18RkThst2myxzillFJKwenkzcsF\nC8mHknnk20f4dNOnnFflPGbdOoueMT3RiwJLn2JP3owxx4DqHsP6FnccSimlVInyww8wdKh9Xbdu\ntlHbDm6j9dTWpJ5M5flOz/Nw64cJLx8egCBVcShVT1hQSimlSpOePXvCoUNw553w/vtQpw588AHE\nxGSV2X9sP9fOvJb0zHRW919N4xqNAxixKg6avCmllFLB6MQJBh05Ai+8YG8P8sQT9s+ty/T4qePc\nPPtmkg8lM//O+Zq4lRGavCmllFLBxBj48kt46CGObd0K111HpddfhwsucCti+HTTpzz63aMkH0pm\ndvfZtDuvXQCDVsVJb7GslFJKBYtNm+Dqq+Gmm6BCBa6NjeXa1NRsidua3WvoNKMTPT7uQVSFKBbc\nuYCeMT0DGLQqbpq8KaWUUoF26BAMGQKXXgo//gjjxsEvv0DV0w8c2pO6h/v+fR8tJrdgw94NTLxu\nIj8P+JnO9TsHMHAVCNptqpRSSgVKRgZMnQpPPQX798N998HIkVCzZlaRTJPJK8teYeT3Izmefpyh\nlw/lmY7PcFbYWQEMXAWSJm9KKaVUICxZAg8+CGvWQLt2MH48NGvGjsM7eObzfvy8+2e2/bWNUxmn\nWDJ/CTdcdANjrhzDRdUvCnTkKsA0eVNKKaWK086d8M9/wqxZUK8efPQR9OrF0VPHeHnRs4xePhqA\nqy64ir/L/42UF2b2mckVF1wR4MBVsNDkTSmllCoOx4/DmDHw4ov2itJnnoHHHiOzUjgz133A4wse\n56+Uv+jdpDcvdX2J86qcx/S06QCauKlsNHlTSimlisKuXfZctuXL7fuDB+15bd27w+jREB3Nip0r\nGPLREH768yfi68Yzp/sc2p7XNmsWiYmJgYldBTVN3pRSSil/Sks73cKWkQE33AAVKkC5cpCYCJ06\nsfPwTh779HY+Wv8RdSLrMP2m6fRt2pcQyX4TiH379gFQo0aNAFREBStN3pRSSil/MAY++wwefhiS\nk6FbN5vE1a+fVeTYqWO8kjScV5a9QqbJ5Kn2T/F4u8eJrBDpdZbdu3cHICkpqRgqoEoKTd6UUkqp\nwlq/3l45unAhNGkCCxZA5878fuB3Hp/TnR92/QBAyskUjpw4Qs+Ynrzc9WWiz4oObNyqRNLkTSml\nlCoIY2D+fPj9d/t+3TqYPBmqVIE334QBAzicfpSR3z7K6z++TsVyFel2cTfKh5SnXEg57rj0Dtqf\n3z6wdVAlmiZvSimllK82bLBPQpg///SwkBD4v/+DESPIqHoW7655l6cXPc3eo3tJjEtkVOdR1Imq\nE7iYVamjyZtSSimVn4MHYdgwmDABoqLsDXV79AARCA+HypVJSk5iyMdD+GXPL7Q7rx1zb59Li7ot\nAh25KoU0eVNKKaU8bdoE8+bZLtIjR2x36MGD0L8/PP88J6tWZvb62ew9theAJTuW8PnmzzmvynnM\n7j6bHpf0QEQKHcbAgQMLPQ9V+mjyppRSSrkcOgTDh9tkLSPj9PCOHeH11zGxsXz929c8POthtuzf\nkjU6onwEIzuN5KHWDxFePtxv4fTq1ctv81Klh8/Jm4hEAPcAHYDqQH9jzG8ichuw1hizuYhiVEop\npYrG5s3wyCOwcCHtMzNtwpaRYR8Q/8wzULmy7RqNimLD/zbw0Myr+XbrtzSq3oiven+VdeFBWLkw\nKoRW8Ht4O3fuBODcc8/1+7xVyeVT8iYi5wJJQD1gM9AEiHJGdwK6AvcWQXxKKaWU/x0+DM89B2+8\nAZUqwT338OfevZxXvz707ImJi+OLX79gw7YNAGw7uI0Zv8wgqmIUr131Gvdfdj/lQ8sXeZh9+/YF\n9D5vKjtfW97GAieAhsBfwEm3cYuB4f4NSymllCoCGRkwbRo8+STs2wf33AOjRkGtWmxLSuK8hARW\n/rmSIdPasXzn8qzJyoWUY0CLATzX6TlqVNKnHajA8jV5uwLbTbpDREI9xv0JnOPfsJRSSik/OHwY\nnn8e3nrLPrbKpW1b+OYbaHH6atB9J/aR+HkiM36ZQa2IWrxzwzv0ie1DiIQQIiGEhnh+/SkVGL4m\nbxWAlFzGVQFO+SccpZRSqhC2bIGPPoJTp+DkSZgxA/buhd694cILbZnYWPvoKudq0LT0NMYuH8vI\nn0aSKZn8s80/earDU1SuWDmAFVEqd74mb+uAW4F5XsZdA6z2W0RKKaVUQR05YlvYXn/dJm6hTitZ\nmzbw9dcQH5/rpOmZ6by18i0uq3YZ03pP44JqFxRT0EqdGV+Tt9HAJ849az50hl0iIjdhr0C9sQhi\nU0oppfKWmWlb1554AvbsgbvughdegLPP9nkWkRUiWTdwHet/Wh90idvDDz8c6BBUEPIpeTPG/EtE\nBgEvAXc7g9/DdqX+wxjjrUVOKaWU8q+UFJg40SZqAEuWwMqVcPnl8OWXcNllZzTbYL0I4YYbbgh0\nCCoI+XyfN2PMJBF5H2gN1AL2A8uNMbmdC6eUUkoVzvHj9kIDY+Crr+Cxx+DvvyEy0o6vVQvefx9u\nv90+Y7SU+fXXXwFo1KhRgCNRwaRAT1gwxhwF5udbUCmllCqMlBTb/fnqq/bCA5dWreCLL6Bly8DF\nVowGDBgA6H3eVHa5Jm8i0qEgMzLGfF/4cJRSSpVJ27bZ7tCjR20r2xdfwO7dcMcdp7tCzzsPbrqp\nVLawKVUQebW8JQHGeS1ur3OjN8BRSilVMKmp8OKLMHasTdqqVLHDGzWCf/3LnsumlMomr+Stk9vr\ns4A3gPXALGAPUBvoDcQA9xdVgEoppUohY+DDD+Gf/4S//oI+feCll+Acvee7UvnJNXkzxix2vRaR\n6cC3xhjP55e+JyJTgW7Al0USoVJKqZLv6FEYPx5++82+37ABfvrJ3n/tk0+gdevAxqdUCeLrBQs3\nAT1zGTcb2xqnlFJKWYcOwf799vWPP9qrRHftgnr17JMNIiNh6lRITNRz2PLw9NNPBzoEFYR8Td5C\ngAuB77yMa4ie76aUUgrg2DHb/Tl6dPZniTZvbh9b1a5d4GIrgbp27RroEFQQ8jV5+xp4UUT2Af8y\nxmQ4D6i/FRgJfFVUASqllApiO3bYRG3fPvt+2TLYuRN69YLrrrPDqlaFa645/cgq5bO1a9cCEBcX\nF+BIVDDxNXkbDJyL7SJNF5GDQFVn+qXOeKWUUqXdH3/Ye7AZY68Gffll+/q88+z4Bg3ggw+gQ4Hu\nNqVyMWTIEEDv86ay8/XxWPuA9iJyBXA5UAfYDawwxhTopr0ichbwDtAEe/uRu4FfsYlhNJAM9DTG\nHCzIfJVSShWhnTvtlaGzPE5x7tnTtry5kjelVJEr6BMWvsP7eW8F8TowzxjTXUQqAJWAJ4EFxpiX\nRORx4HHgsUIuRyml1JlatgzefNM+niozE+bPty1sTz0Fri68+vWhRYvAxqlUGVSg5K2wRKQy0AFI\nBDDGnAROishNQIJTbAb2BsGavCmlVHHIzIR164javBkqVLBJ20cfQc2aULeuLdOtG4waBeefH9hY\nlVK+JW8ikkk+T1gwxvhyJmoDYC8wTUSaAquBB4Haxpjdznx2i0gtX+JSSilVSMuXw+DBsHo1WW1o\nFSvCM8/Y23tERAQyOqWUF2JMfk+9AhEZTs7krTpwJVARmG6Mec6H+cQDPwBtjTE/isjrwBHgAWPM\nWW7lDhpjqnqZvj/QH6B27dotZnmee+FnqampREZGFukygllZrn9ZrjuU7fqX6rpnZnL2t99SMykJ\nycgg5MQJzvrvfzlRowbJfftyOCqKsLAwjl54ISdq1gx0tMUuGLf9+vXrAWjSpEmRLicY616ciqP+\nnTp1Wm2MiffHvHxK3nKd2N4u5Evs0xfG+VD+bOAHY0y087499vy2C4EEp9WtDpBkjGmU17zi4+PN\nqlWrzjh2XyQlJZGQkFCkywhmZbn+ZbnuULbrX6rqnpoKa9bYc9UOH4bnn4eVK+Gii6BaNVuma1fb\nwhYZWbrqfgbKcv3Lct2heOovIn5L3gp1zptzv7cJwJtAvsmbMeZvEdkpIo2MMb8CXYCNzl8/4CXn\n/xeFiUsppcq0zEx4/314/HH4++/Tw+vWtcNvv12falBCLF++HIA2bdoEOBIVTPxxwUJFoFoByj8A\nzHSuNN0G3IV9gsMcEbkH2AH08ENcSilV9vz4oz2H7aefoGVLmDQJoqJsshYfbx9LpUqMJ598EtD7\nvKnsfL1gwdsNfCpg79X2EuBz/6UxZi3grdmwi6/zUEophW1hW7HCdo8aY+/BNmMGnH22/d+nj7aw\nKVUK+dryloz3q00F2Arc76+AlFJK+WDlStvC9sMPp4dVqGDPX3vqKdvappQqlXxN3u4mZ/KWBvwB\nrDTGZPg1KqWUUqcZAx9+CBMnwokTkJFhL0SoXRsmTwbXlYjnn3/6vmxKqVLL18djTS/iOJRSSrkc\nPQqLFkF6uk3Wxo+392OLiTl9k9xrr7WPq6pcObCxKqWKna/nvG0DbjHG/OJlXBPg38aYBv4OTiml\nyhTXeWuPPgp//nl6eO3a8O670K+fnsNWxowbl++NHFQZ5Gu3aTT2qlJvwgB9XopSShXU0aPwyivw\n2Wf24oOjRyE5GZo3h3fesRceADRsqE86KKPiXM+RVcpNQW4VktvdfOOBQ36IRSmlSredO2HpUvv6\nwAF46SXYtQs6d4aqVUEEnn4aEhMh1JcnDqrSbv78+QB07do1wJGoYJJr8iYiQ4GhzlsDfCkiJz2K\nhWPv8Va0z6lSSqmS7Ngx28L28suQlnZ6eLNm9kKE9u0DF5sKaiNHjgQ0eVPZ5dXytg1Y4Lzuh72X\n216PMiewT0d4x/+hKaVUCbVzJzzxhL0HG8DBg/avVy97K49Kley5aw0aaAubUqrAck3ejDFf4Dym\nSkQARhhjthdTXEopVXKsWgXr1tnXW7fCa6/Ziw9uvNHee618edsV2qFDQMNUSpUOvt4q5K6iDkQp\npUqcXbvs7To++ij78J49bTfp+Xotl1LK//I65+1Z4B1jzF/O67wYY8zz/g1NKaWCzPLltttz61b7\nfv9+2/35zDNw1122C7RiRXtrD6WUKiJ5tbwNB+YBfzmv82IATd6UUqVHZib8+9/w11/2/bJl9uKC\nunXhuuvslaFRUfDAAxAdHdBQVen19ttvBzoEFYTyOuctxNtrpZQq9X74wT43dOXK08MqVrTPDH38\ncYiMDFxsqkxp1KhRoENQQcjXJyycB+w2xpzyMq4cUNcYs8PfwSmlVJHLzIT334fnn4f9+2mbng6p\nqbaF7b334KqrbLmICL1Rrip2X375JQA33HBDgCNRwcTXm/RuB1oDP3kZ19QZrte7K6VKlh9/tC1s\nP/0El10G113Hnl27qNeqFQwapC1sKuDGjh0LaPKmsvM1eZM8xpUHMv0Qi1JKFY/du23353vv2UdQ\nzZgBffpASAi/JyVRLyEh0BEqpVSu8rra9Czs0xNczhERz4fPh2Nv4Pt3EcSmlFL+sXIlPPTQ6XPY\nTp2CcuXslaNPPWUvPFBKqRIir5a3B4Fh2CtJDfBJLuXEKaeUUoFnjH3Q+8aN9v3mzTBzpr19xz/+\nYZO2ChXgzjvhwgsDG6tSSp2BvJK3z4FkbHL2LjAS2OpR5gSw0RizrkiiU0qp/Bhz+vXq1fDgg/Z+\nbC4VK8Kjj9oHvleuXPzxKaWUn+V1q5BfgF8ARMQAXxlj9hdXYEoplSdj7JMNnngCdrhd7F6rFkyd\nmnUOGyL6/FBVYr3//vuBDkEFIV8fjzWjqANRSqk8HTsG77wDe/bY94sX2xvnNm9un24gAlWqwN13\nawubKjXOPffcQIeggpCvV5siIk2Ae4BGQJjHaGOM6eLPwJRSCrAtbLNn267PXbvsOWtgW9imTDn9\nWCqlSqHZs2cD0KtXrwBHooKJrzfpbQUsxp4D1xBYB1QFzgN2Ab8XUXxKqbJszRp7DtuSJdCsmX08\nVfv2gY5KqWIzceJEQJM3lZ2vLW8vAP8C+gKngHuMMT+LSGfgfezFDEopdeZcV4kuXWrf795tW9yq\nV4fJk213qLawKaWUz8lbLPZ+bq7LukIBjDELRWQk8CLQyv/hKaVKrYwMOHTIvt6+HR55xJ7HFh5u\nu0bLlbOtbsOGwVlnBTZWpZQKIr4mb+WBo8aYTBE5ANRxG/cr0MTvkSmlSidj4JNP7Dlsf/xxenj1\n6jBpEtx7r7awKaVUHnxN3rYC5ziv1wF3i8hXzvu70CcsKKV8sW6dfZbo4sUQGwuvvWYTtYoVoUcP\nqFo10BEqpVTQ8zV5+xJIAD7Env/2NXAEyAAigcFFEZxSqgQzBv7+23aPpqXBq6/C22/bBG3iRNvC\nVs7nC96VKpM++SS3hxupsszX+7wNd3s9X0QuB24FKgHzjDHfFk14SqkS6b//teerLVp0elhoKNx/\nPwwfDtWq5TqpUuq0GjVqBDoEFYTO6GevMWYNsMbPsSilSiJj4Isv7J8xkJICn39uLzIYNcrejw2g\nbVu4+OLAxqpUCTN9+nQAEhMTAxqHCi7aZ6GUOnMbNtgWtgULoEYNiIiwTzoYNMi2sFWvHugIlSrR\nNCoKCBkAACAASURBVHlT3uSavInIdk7fGiQ/xhhzgX9CUkoFvYMH7S08Jkywj6J64w34v//Tc9iU\nUqoY5HWkXYzvyZtSqjTbuNFeGXrkiO0aXbjQJnADBsCIEbbVTSmlVLHINXkzxiQWYxxKqWB08KDt\n/nzrLahUCc5x7hjUqhW88AI0bRrQ8JRSqizSPg6lVE4ZGfa2Hk8/Dfv3Q//+8PzzULNmoCNTSqky\nLyDJm4iEAquAP40x14vIdKAjcNgpkmiMWRuI2JQqkw4dgpdfthcgAJetW2efftC+PYwfD3FxAQ5Q\nqbJp7ty5gQ5BBaFAtbw9CGwCKrsNe9QYo3cjVKo4ZWTAu+/CU0/Bvn32qQchIaRHRsKsWdCzp716\nVCkVEJUqVQp0CCoIhRT3AkWkHnAd8E5xL1sp5WbpUrjsMtsl2qgRrF4Na9fCzz+z5s03oVcvTdyU\nCrAJEyYwYcKEQIehgkwgWt7GAf8EojyGjxKRZ4EFwOPGmBPFHplSpVVmJkybBh9/bFvbjh2D5cuh\nXj346CNN1JQKUnPmzAFg0KBBAY5EBRMxpvjuBiIi1wPXGmMGiUgC8Ihzzlsd7MPtKwCTga3GmBFe\npu8P9AeoXbt2i1mzZhVpvKmpqURGRhbpMoJZWa5/aap75fXrafjGG0Rt2cLR884jPcr+bjoYH8+O\nXr3IDA/PMU1pqn9Bad3LZt0hOOs/ZMgQAMaNG1ekywnGuhen4qh/p06dVhtj4v0yM2OMT3/AOcCr\n2AsNtgFNnOFDgFY+zuNFYBeQjE3WjgEfeJRJAL7Kb14tWrQwRW3RokVFvoxgVpbrXyrqvnOnMbff\nbgwYc845xsycaUxmpk+Tlor6nyGte9kVjPXv2LGj6dixY5EvJxjrXpyKo/7AKuNjzpXfn0/nvIlI\nDPBfoC/wF3A+tpUM5/WDPiaKTxhj6hljooHbgIXGmD5OyxsiIsDNwHpf5qeU8iItzT5TtFEj+PRT\nezHC5s1w++3aNaqUUqWAr+e8jcVeHXoVkAacdBu3HHi5kHHMFJGagABrgf8r5PyUKnuMsQ+Ef/hh\n2L4dunWDMWOgfv1AR6aUUsqPfE3e2gG9jTGpzj3a3O0Bzi7ogo0xSUCS87pzQadXSrlxf0B8TAzM\nnw9dugQ6KqVUISUlJQU6BBWEfE3eMvMYVwM47odYlFK+MAb+/W8YOxaOHrXv163TB8QrpVQZ4et9\n3n4C7splXE9gmX/CUUrlaeNGuOoquPlm+PtvqFvXPm/0wQdhyxb4xz80cVOqFBkzZgxjxowJdBgq\nyPh6lH8emC8i3wIfAgboKiIPArcAHYooPqUU2MdXDR8Ob74JUVHw+uswcCCULx/oyJRSReirr74C\n4JFHHglwJCqY+NTyZoxZjL0KtD7wLvbCgpeA9sDNxpgfiyxCpcqyjAyYPBkaNrTPGL33XtvCNniw\nJm5KKVVG+dy/Yoz5GvhaRC4EagH7jTG/FllkSpV1S5bYJG3tWn1AvFJKqSwFfrapMeZ3Y8xyTdyU\nKiI7d8Jtt0GHDrB/v31A/OLFmrgppZQCfGx5E5E78xidCRwG1hhjdvklKqXKouPHYfRoeOklewXp\ns8/CY49BpUqBjkwpFSDhXh5fp5Sv3abTsRcpgD3fzcV9WKaIzAbuMv/f3r2HyVFXCR//Hu4LKAGR\niIBc5KIuajR5EFBxUJCL4A0UeREVfTauihoVXwFhF0XFdd9dUVZuuoiKCCgLi0KA5RLuqAFDwNVA\nDChRARPlEsCJxPP+UTXSDNOT7s50V/X09/M8/XR3VXXXOV3TM2d+py6ZjSfxlTSezOJKCEccAb/+\nNbztbUURt+WWVUcmqWKzZ8+uOgTVUKtt01cCvwb+A3gN8ILy/mTgN8AbgKMojjw9bsKjlCar+fPh\nta8tCrYNNoCrr4bzzrNwkyQ11erI2xHAOZl5dMO0O4HrIuIRYGZmviUingkcAhw91ptIKi1dWrRF\nTz0VpkyBk0+Gf/gHz9Em6SmOP/54AI499tiKI1GdtDrytidwZZN5VwEj1+G5FthsVYOSJrXTTitO\n/XHaafDBD8JddxXnbLNwkzTKlVdeyZVXNvvzq0HVavG2HJjeZN50nrxQ/WrAo6salDRpffWrxeWr\npk0rTgFy0kmw0UZVRyVJ6iOt/qv/feAzEbEC+AHwAMW53t5GsY/bGeVy0wBPISKN5aKLYNYseNOb\nigMUVl+96ogkSX2o1eLt48AzgC+Vt0ZnA58oH98B3DQxoUmTyA03wMEHw/Tp8N3vWrhJkjrWUvGW\nmY8D74yIzwKvADYFfg/8ODPvbFju4q5EKfWr+++Ho4+Gb36zOIL0hz+E9darOipJfeJZz3pW1SGo\nhtraQ7os1O5c6YKS4NZb4XWvg0cfhU98Ao45pjgdiCS16Pzzz686BNVQ0+ItIp7Xzhtl5m9WPRxp\nkrj3XthvP3jGM+Dmm2GHHaqOSJI0SYw38nYPT15BoRXuxCMBPPJIUbgtW1bs62bhJqlDRx11FAAn\nnHBCxZGoTsYr3t7Lk8Xb2sAxwMPAecD9wHOAt1McyHB8F2OU+scTT8BBB8HPfw4XXwwvfnHVEUnq\nYzfd5DGAerqmxVtmnjnyOCJOBG4F3pKZ2TD9s8CFwIu6GKPUHzLhox+F2bOLE/DutVfVEUmSJqFW\nT9J7MHBaY+EGUD4/Ffg/Ex2Y1He+8pXiMlef/CTMnFl1NJKkSarV4m194NlN5m0CeO4DDbb58+Hj\nH4cDDoAvfrHqaCRJk1irpwqZA3whIn6RmT8dmRgROwGfL+dLg+uCC4r7U06B1Vr9n0iSxrf55ptX\nHYJqqNXi7XDgCuDmiLiX4oCFqcAWwN3lfGlwzZ4NO+0Ez242QC1J7TvrrLOqDkE11NIQQWbeDbwA\n+EfgSmBpef9+4IWZeU+3ApRq7w9/gJ/8BPbdt+pIJEkDoOUrLGTmX4CvlzdJIy6/vDjSdJ99qo5E\n0iQza9YsAE488cSKI1GdtHV5rIh4CbAb8CyKo0/vi4htgfsz85FuBCjV3uzZRbt0+vSqI5E0ycyb\nN6/qEFRDLRVvEbE2cBbwViAoTt77Q+A+4EsU1zs9sksxSvW1YgVcemnRMvVABUlSD7T61+bzwB7A\noRQHKkTDvNmAZyPVYJo7F5YudX83SVLPtNo2PRg4JjPPjojR1zC9G9hqQqOS+sXs2cWI2+tfX3Uk\nkqQB0Wrx9izgF03mrUZx7VNp8Fx9NcyYARttVHUkkiah7bffvuoQVEOtFm93A7sAV40xbydgwYRF\nJPWThx6CLbesOgpJk9Tpp59edQiqoVb3efs2cGREHAKsVU7LiNgd+BhwRjeCk2pveBjWduBZktQ7\nrRZvXwIuBr4D/LGcdj3FVRcuzcyTuhCbVH/Ll1u8SeqamTNnMnPmzKrDUM201DbNzBXAOyLiaxRH\nlm5CcZWFSzPzmi7GJ9Xb8DCstdbKl5OkDtx5551Vh6AaauskvZl5HXBdl2KR+o9tU0lSj/X0rKIR\nsU5E/CQibouIn0fEZ8rpW0fEjyPirog4NyIcylB/sG0qSeqxXp8Sfhh4bWa+FJgG7B0ROwP/Anw5\nM7cD/gS8r8dxSZ2xbSpJ6rGeFm9ZWFY+XbO8JfBa4Afl9G8Bb+5lXFJHMm2bSuqqadOmMW3atKrD\nUM1EZvZ2hcUVGm4BtgW+BvwrcHNmblvO3wKYnZk7jvHamcBMgKlTp04/55xzuhrrsmXLWH/99bu6\njjob5PxbyT2eeILX7Lkni973Pn7zznf2KLLecNub+yAa5PwHOXfoTf677777LZk5YyLeq60DFiZC\neeTqtIiYAlwAvHCsxZq89nTgdIAZM2bk0NBQt8IEYM6cOXR7HXU2yPm3lPuyYhB5mx12YJtJ9jm5\n7YeqDqMSg5w7DHb+g5w79F/+bRVvEfESYDeKy2Wdlpn3RcS2wP2Z+Ug775WZD0bEHGBnYEpErJGZ\nTwCbA79r572kSgwPF/e2TSV1yTvLUf2zzjqr4khUJy3t8xYRa0fE94GfAV8F/gl4bjn7S8CnW3yf\nZ5cjbkTE3wF7UFwz9WrgwHKxdwP/3WoCUmWWLy/uLd4kdcnixYtZvHhx1WGoZlo9YOHzFIXWocBU\nIBrmzaY4cW8rNgWujoj5wE+B/8nMHwGfAj4eEQspRvX+s8X3k6ozMvLm0aaSpB5qtW16MHBMZp5d\nHnDQ6G5gq1beJDPnAy8bY/oiigvcS/3DtqkkqQKtjrw9i6K92ew9/OulwWPbVJJUgVZH3u4GdgGu\nGmPeTsCCCYtI6he2TSV12S677FJ1CKqhVou3bwNHR8Q9wH+V0zIidgc+Bhw38aFJNWfbVFKXnXDC\nCVWHoBpqtW36JeBi4DvAH8tp1wNXAJdm5kldiE2qN9umkqQKtDTyVp5Y9x0R8TWKI0s3AZZSFG7X\ndDE+qb5sm0rqsgMOOACA888/v+JIVCdtnaQ3M68DrutSLFJ/sW0qqcuWLl1adQiqoVZP0rtfRBze\nZN6HImLfiQ1L6gO2TSVJFWh1n7djgfWazPu7cr40WGybSpIq0Grx9gLg1ibz5jH2xeWlyc22qSSp\nAq3u87YasH6Tec8A1pyYcKQ+YttUUpe97nWvqzoE1VCrxdttwCHABWPMOwSYP2ERSf3CtqmkLjv2\nWPdK0tO1Wrz9G3B+RHwf+DqwGNgMmAm8BXhbd8KTasyRN0lSBVo9z9sFEfFR4PPAW8vJASwDPpKZ\n/9X0xdJk5T5vkrpsn332AWD27NkVR6I6afk8b5l5UkScCexKcaH6JcCNmbmsS7FJ9TY8DKutBquv\nXnUkkiapxx9/vOoQVEPtnqT3EeCyLsUi9Zflyx11kyT1XNPiLSK2aeeNMnPRqocj9ZHhYYs3SVLP\njTfythDINt7L3pEGy/CwR5pKknpuvOLtsJ5FIfUj26aSumy//farOgTVUNPiLTO/1ctApL5j21RS\nlx1xxBFVh6AaavXyWJJGs20qSaqAxZvUKdumkrpsaGiIoaGhqsNQzVi8SZ1y5E2SVAGLN6lT7vMm\nSaqAxZvUKdumkqQKWLxJnbJtKkmqQFuXx5LUwLappC57+9vfXnUIqiGLN6lTtk0lddkHP/jBqkNQ\nDdk2lTpl21RSlz322GM89thjVYehmnHkTeqUbVNJXbbvvvsCMGfOnGoDUa048iZ1yrapJKkCFm9S\np2ybSpIqYPEmdcq2qSSpAhZvUidWrChuFm+SpB7zgAWpE8uXF/e2TSV10Xve856qQ1ANWbxJnRge\nLu4deZPURRZvGktP26YRcUZEPBARdzRMOy4ifhsR88rbvr2MSerIyMibxZukLlqyZAlLliypOgzV\nTK/3eTsT2HuM6V/OzGnl7ZIexyS1b2TkzbappC468MADOfDAA6sOQzXT0+ItM68F/tjLdUpdYdtU\nklSRuhxtenhEzC/bqhtWHYy0UrZNJUkViczs7QojtgJ+lJk7ls+nAkuABI4HNs3M9zZ57UxgJsDU\nqVOnn3POOV2NddmyZay//vpdXUedDXL+K8t9/bvuYsbMmdxx/PEsedWrehhZb7jtzX0Q1TH/WbNm\nAXDiiSd2dT11zL2XepH/7rvvfktmzpiI96r8aNPMvH/kcUR8HfjROMueDpwOMGPGjBwaGupqbHPm\nzKHb66izQc5/pbmvsw4AO06fDpPwM3LbD1UdRiUGOXeoZ/5TpkwB6Hpcdcy9l/ot/8qLt4jYNDN/\nXz59C3DHeMtLtWDbVFIPfOADH6g6BNVQT4u3iPgeMARsHBGLgX8GhiJiGkXb9B7g/b2MSeqIR5tK\n6oGDDjqo6hBUQz0t3jLz4DEm/2cvY5AmhEebSuqBe++9F4Atttii4khUJ5W3TaW+ZNtUUg8ceuih\nQLFPljSiLqcKkfqLbVNJUkUs3qRO2DaVJFXE4k3qhG1TSVJFLN6kTtg2lSRVxAMWpE7YNpXUA5/4\nxCeqDkE1ZPEmdcK2qaQe2H///asOQTVk21TqxMjI25prVhuHpEltwYIFLFiwoOowVDOOvEmdGB4u\n9neLqDoSSZPY+99fXHTI87ypkSNvUieWL7dlKkmqhMWb1ImRkTdJknrM4k3qxPCwI2+SpEpYvEmd\nsG0qSaqIByxInbBtKqkHjjnmmKpDUA1ZvEmdsG0qqQf22GOPqkNQDdk2lTph21RSD8ybN4958+ZV\nHYZqxpE3qRO2TSX1wKxZswDP86ancuRN6oRtU0lSRSzepE7YNpUkVcTiTeqEbVNJUkUs3qRO2DaV\nJFXEAxakTtg2ldQDX/jCF6oOQTVk8SZ1wrappB7Yddddqw5BNWTbVOqEbVNJPXDjjTdy4403Vh2G\nasaRN6kTy5c78iap644++mjA87zpqRx5kzrhyJskqSIWb1K7Mj1gQZJUGYs3qV1/+Utxb9tUklQB\nizepXcPDxb0jb5KkCnjAgtQuizdJPXLiiSdWHYJqyOJNatfy5cW9bVNJXTZt2rSqQ1AN2TaV2uXI\nm6QeueKKK7jiiiuqDkM148ib1C6LN0k98rnPfQ6APfbYo+JIVCeOvEntsm0qSaqQxZvULkfeJEkV\nsniT2mXxJkmqUG2Kt4jYOyIWRMTCiDiy6nikpmybSpIqVIsDFiJideBrwJ7AYuCnEXFRZv5vtZFJ\nY3DkTVKPnHbaaVWHoBqqRfEG7AQszMxFABFxDvAmoLLibdZhD3HDNVuz3npLqgqhco8+Orj5j5v7\nwy8ArobD/x7W72lYPfPgg9OYMqXqKKph7lVHUZ165r9DT9ZSz9x7Z+ONt2VoqOooWleX4m0z4N6G\n54uBV4xeKCJmAjMBpk6dypw5c7oW0IO3JuvdHV17/36wXtUBVKiV3B9+7HH++sSKrsdShRUrVvDg\ngw9WHUYlzH0wc4d65v/QQ7MB2GCDfbq6njrm3ksbbLC8qzXFRKtL8TZWlZRPm5B5OnA6wIwZM3Ko\ni2Xy0OX3M/fCC5kxY0bX1lF3c+fOHdj8V5r7hhvCNpv0LqAemzNnDt38ftWZuQ9VHUZl6pj/0FDR\nNp0z5+CurqeOuffSnDnz+ir/uhRvi4EtGp5vDvyuolgKU6eybIcdYPr0SsOo0rJHHhnY/Ac5d0lS\nvdXlaNOfAttFxNYRsRbwDuCiimOSJEmqnVqMvGXmExFxOHAZsDpwRmb+vOKwJEmSaqcWxRtAZl4C\nXFJ1HJIkSXVWm+JNkiQ91Xe+852qQ1ANWbxJklRTW2yxxcoX0sCpywELkiRplHPPPZdzzz236jBU\nM468SZJUU6eccgoABx10UMWRqE4ceZMkSeojFm+SJEl9xOJNkiSpj1i8SZIk9REPWJAkqaZ+8IMf\nVB2CasjiTZKkmtp4442rDkE1ZNtUkqSaOvPMMznzzDOrDkM1Y/EmSVJNWbxpLBZvkiRJfcTiTZIk\nqY9YvEmSJPURizdJkqQ+4qlCJEmqqUsuuaTqEFRDFm+SJNXUuuuuW3UIqiHbppIk1dTJJ5/MySef\nXHUYqhmLN0mSauq8887jvPPOqzoM1YzFmyRJUh+xeJMkSeojFm+SJEl9xOJNkiSpj0RmVh1DRyLi\nD8Cvu7yajYElXV5HnQ1y/oOcOwx2/uY+uAY5/0HOHXqT/5aZ+eyJeKO+Ld56ISLmZuaMquOoyiDn\nP8i5w2Dnb+6DmTsMdv6DnDv0X/62TSVJkvqIxZskSVIfsXgb3+lVB1CxQc5/kHOHwc7f3AfXIOc/\nyLlDn+XvPm+SJEl9xJE3SZKkPjJwxVtEnBERD0TEHQ3T/jUifhkR8yPigoiY0jDvqIhYGBELImKv\nhul7l9MWRsSRvc6jE+3kHhF7RsQtEXF7ef/ahtfMKXOfV942qSKfdrWZ/1YR8XhDjqc2vGZ6+bks\njIivRkRUkU872sz9kIa850XEXyNiWjlvMm3748vc50XE5RHx3HJ6lNt1YTn/5Q2veXdE3FXe3l1F\nLu1qM/dDyunzI+LGiHhpw2vuKX/u50XE3CpyaVebuQ9FxEMNP9v/1PCavvt9D23n/8mG3O+IiBUR\nsVE5b1Js+4Z5R0RERsTG5fP++85n5kDdgN2AlwN3NEx7PbBG+fhfgH8pH78IuA1YG9ga+BWwenn7\nFbANsFa5zIuqzm2Cc38Z8Nzy8Y7AbxteMweYUXU+Xc5/q8blRr3PT4BdgABmA/tUndtE5j7qdS8G\nFk3Sbf/MhscfAU4tH+9bbtcAdgZ+XE7fCFhU3m9YPt6w6twmOPddR3IC9hnJvXx+D7Bx1fl0Mfch\n4EdjvEdf/r5vN/9Rr9sfuGqybfty+hbAZRTnid24nNZ33/mBG3nLzGuBP46adnlmPlE+vRnYvHz8\nJuCczBzOzLuBhcBO5W1hZi7KzOXAOeWytdZO7pn5s8z8XTn958A6EbF2z4Ltgja3/ZgiYlOKX343\nZfHt/jbw5m7EO5FWIfeDge91Obyua5L/ww1P1wNGdgB+E/DtLNwMTCm3+17A/2TmHzPzT8D/AHt3\nP/pV007umXljmRu08H2ouza3ezN9+fseVin/vv/ej5V76cvA/+Wpeffdd37gircWvJeiAgfYDLi3\nYd7iclqz6f2uMfdGBwA/y8zhhmnfLIfQj+2HtmGLRue/dUT8LCKuiYhXl9M2o9jeIyb7tj+Ip/8S\nnzTbPiI+HxH3AocAI22ygfjeN8m90ft46s9EApdHsRvFzF7E2C3j5L5LRNwWEbMj4u/LaZNqu8P4\n2z4i1qUoUM5vmDwptn1EvJGii3TbqFl99523eGsQEZ8GngC+OzJpjMVynOl9a4zcR6b/PUVL7f0N\nkw/JzBcDry5vh/Yqzm4ZI//fA8/LzJcBHwfOjohnMljb/hXAY5nZuM/IpNr2mfnpzNyCIvfDy8kD\n8b1vkjsAEbE7RfH2qYbJr8zMl1O0Uz8UEbv1LNgJ1iT3WykuX/RS4CTgwnL6pNruMP62p2iZ3pCZ\njaNWfb/ty6L004z9j0rffect3krljoj7UfxxGtk4iyn64yM2B343zvS+1CR3ImJz4ALgXZn5q5Hp\nmfnb8v4R4GyKtkLfGiv/slW+tHx8C8U+L9tTbPvGVtKk3PaldzBq1G2ybfsGZ1OMMMOAfO8bNOZO\nRLwE+AbwppHvAMDIbhSZ+QDF74XJsO3/lntmPpyZy8rHlwBrlju0T9btDqO2fWms7/1k2PbPp9h3\n/baIuIdiO94aEc+hD7/zFm8URxJR/If5xsx8rGHWRcA7ImLtiNga2I5iZ/WfAttFxNYRsRbFD/tF\nvY57IjTLPYojDy8GjsrMGxqmr9FwhM6aFH/4n3Y0T78YJ/9nR8Tq5eNtKLb9osz8PfBIROxctgzf\nBfx3BaGvsnF+7omI1YC3UezfMzJtsm377RqevhH4Zfn4IuBd5RFoOwMPldv9MuD1EbFhRGxIccDH\nZT0NeoI0yz0ingf8F3BoZt7ZsPx6EfGMkccUufflth8n9+eM7AYQETtR/H1cyiT6fQ/j/twTERsA\nr6Hhd9pk2faZeXtmbpKZW2XmVhSF2csz8z768TvfzaMh6nij+I/i98BfKDbe+ygORLgXmFfeTm1Y\n/tMUoy4LaDiqkOLolDvLeZ+uOq+Jzh04Bni0Yfo8YBOKHVxvAeZTHMjwFWD1qnPrQv4HlPndRtFO\n2b/hfWZQ/PL6FfAflCe7rvOtg5/7IeDmUe8x2bb9+eV2nA/8ENisXDaAr5Xb93Yajq6l2DdwYXk7\nrOq8upD7N4A/NfxMzC2nb1N+F24rt30//85rlvvhDd/5m4FdG96n737ft5t/ufx7KA7Sa3yPSbPt\nR82/hyePNu2777xXWJAkSeojtk0lSZL6iMWbJElSH7F4kyRJ6iMWb5IkSX3E4k2SJKmPWLxJkiT1\nEYs3SZKkPmLxJkmaEBGxTkRcGBG/iIh5EXFZeYUSSRPI4k2SNJFOycwXZuY0ijP4f6PqgKTJxuJN\n6gMR8eaIuDYiHoiIxyPi1+UIx95tvs9xETGQl1UpP8OP13VdEXFSRPywfHxwRGRE7DZqmanl9PvH\neP2Hynk7rlr0ncvMP2dm47Ufb6a4vNLfRMTHImJ+ef1cSR3wyyPVXER8BLgAuIvi2oRvAD5Xzn5t\nVXH1oTcDPSne2l1XRDwfeD/wmXLSNeX9bqMW3Q14DNgkIl4wxrylFNefrIsP03CR89KpFNdJfnfv\nw5EmhzWqDkDSSh0BXJiZ72uYdhXw9apHLyJi7cwcrjKGSWIWcFtmzgXIzN9FxCLGLt6uAl5YPv5l\nw7xXA9dlFy9YHRG3As9rMvtlmXlvw7JHAdsDr2tcKDMfj4hvU/xcf7NbsUqTmSNvUv1tBNw31ozM\n/Gvj84jYOyJuKlurD5Wt1R3Ge/OI2DYivhMRd5evWxQRp0TEhqOWO26kLVfuiL4MOG+c931pRFwQ\nEUvL911Q/kFvK96G9W4XERdHxLKybfxPjcVrRGxfru+BiPhzRPwmIr4fEWtExJkUIz2ble+VEXHP\nKnwGTWNZ2brG+JzWBt4JnD1q1jXALhHR+E/2bsB1wPU0FHYRsR2wKXBts/WMiv8F5TZ8tPycDivn\nHxoRvyzzurocEfybzHx5Zm7c5NZYuB0BHADsk5mPjRHKOcCLImLX8eKVNDaLN6n+fgK8OyI+GRHb\nN1uo3P/tYmAZcBDwAWBH4PqI2Gyc938usJhi9Gcv4LMUoyWXNFn+vykKizcCX24Sy07ATcDzgY9R\ntHr/Hdh8FeK9gGLU6c3AhRQtxsbW24+Azcr32Qs4Ehim+D13fJnPH4BdyttbVuEzGC+Wla1rtJ2B\nKRRFWaNrgfWBlwNExBSKz+e68tY4Krdbw2ta8X2Kz/7NwC3AGRHxBYrP7kjgMGAHnl5QrlS5r9/B\nwJ6Z+WCTxeYBDwNt7bMpqZSZ3rx5q/GNovU0H8jytgT4HvD6UcvNpdgvbo2GaVsDfwH+vXx+XPG1\nH3d9awCvKtf1sobpx5XTPtpCzNcC9wLrjrPMSuMdtd7DRr3+duDy8vHG5TJvHGd9ZwKLW/zMfcVY\nNAAABG1JREFUV/YZNI2lg3V9CvgrsNao6duU6zqifL4/xf5ua5U/EwlsVc77FvAQsPpK1jUS/7sa\npm0IPEGxv9wzG6Z/pFx2yzZ+VjcvX/MrigJtHjC3ybLXNX5m3rx5a/3myJtUc5l5J/Ay4DXA5yn+\nIL4FuCwijgGIiPUoRmjOzcwnGl57N3BD+doxRcRaEXF02S57nKJ4GhkFGqvlesF48UbEusArge/m\n2C2zTuO9eNTzO3hy/6ulwCLgixHxD2UbsWUdfAbjxdKu5wIPZ+byxomZuYhiNHBkVG034MeZubz8\nmXhg1LwbMnNFi+uc3bCeP5XvdXNmPtywzMj+dFu0mkhmLs7MyMznZ+a08jajyeJ/oMhdUpss3qQ+\nkJkrMvPazDwmM/egGJW5Hfjncr+sDYEAfj/Gy++j2G+umRMoRmTOomhv7gS8tZy3zhjLj7WORhtS\n/G5ZvJJl2o33j6OeD4/El5kJ7EkxmncCcGe539oHVhLriHY/g6axdGCd8vVjuRZ4VUQET+7vNuJ6\nYLeI2BzYitZbpgB/GvV8eZNpI/F1w+PA33XpvaVJzeJN6kOZ+TuKk5+uAWxH8Yc3geeMsfhzKEam\nmnkH8O3M/FxmXpWZPwWa7atEuZ7x/ImiDTjefnarEu/YQWUuysx3Ac+mGKm8Cjg5IvZp4eXtfgYT\naSlFMTuWa8t5O1OMVDYWbyP7vY2MUl5Df9mIYhcASW2yeJNqLiKata1GzvN1X2Y+SrHj+dsiYvWG\n124J7Mr4f9jXpWgTNjqsw3ApW6XXA++MiDFHVlYx3pWtPzNzHk+eZ23kpLXDNB/pmdDPYCXrGu2X\nwJrlCNpoI5/DkRQjlTc1zLueonB/O8W+cHM7C7UyWwMLqg5C6kee502qvzsi4mqKfc3uBp4J7Av8\nI3BeZv6mXO5Yin2xfhQRJ1McqfgZih3Z/22c97+U4mjW24GFFO3CVT2FwxEUhcdNEfFvFC3UbYBp\nmfnhVYz3aSLiJcBXgHPLHFYH3kOxI/5V5WL/C2xUtlLnAn/OzNvLeRP9GYy3rtFG2p07MarVnJm/\njIgHKA5WuCUzlzXM/hnFkbr7A1dn5ujis7bKI2e3B/5f1bFI/ciRN6n+PkXxXf0scDlFgbILxWjM\noSMLZealFPtrTaE4/9qpwC+AV5Vt1mY+DFxEcTDEucAzKE710LGy7fhKiiNOT6I4dcYnaShOViHe\nsdwH/IZitO0iiqNxnwvsl5m3lMt8g+L8Yl+gOP3KDxteP9GfwXjreorMvKdcZv8mi1xLMer2lFOJ\nlAcn3FTOa2d/tzp4A8U+deMe/CJpbFHs5ytJqkpEvIdi5HDTZkfoTiYRMRtYkpmHrnRhSU9j8SZJ\nFSv3+7sdOCMzJ3UrMSKmUVywfsfMXFh1PFI/sm0qSRUrW6DvpTjwYLJ7DsVJji3cpA458iZJktRH\nHHmTJEnqIxZvkiRJfcTiTZIkqY9YvEmSJPURizdJkqQ+YvEmSZLURyzeJEmS+ojFmyRJUh/5/8+5\nzSo13en2AAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure( figsize=(10,6) )\n",
"ax = fig.add_subplot(111)\n",
"ax.plot(S0array, icelat_cooling, 'r-', label='cooling' )\n",
"ax.plot(S0array, icelat_warming, 'b-', label='warming' )\n",
"ax.plot(S0array3, icelat3, 'g-', label='warming' )\n",
"ax.set_ylim(-10,100)\n",
"ax.set_yticks((0,15,30,45,60,75,90))\n",
"ax.grid()\n",
"ax.set_ylabel('Ice edge latitude', fontsize=16)\n",
"ax.set_xlabel('Solar constant (W m$^{-2}$)', fontsize=16)\n",
"ax.plot( [const.S0, const.S0], [-10, 100], 'k--', label='present-day' )\n",
"ax.legend(loc='upper left')\n",
"ax.set_title('Solar constant versus ice edge latitude in the EBM with albedo feedback', fontsize=16);"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There are actually up to 3 different climates possible for a given value of $S_0$!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### How to un-freeze the Snowball"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The graph indicates that if the Earth were completely frozen over, it would be perfectly happy to stay that way even if the sun were brighter and hotter than it is today.\n",
"\n",
"Our EBM predicts that (with present-day parameters) the equilibrium temperature at the equator in the Snowball state is about -33ºC, which is much colder than the threshold temperature $T_f = -10^\\circ$C. How can we melt the Snowball?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We need to increase the avaible energy sufficiently to get the equatorial temperatures above this threshold! That is going to require a much larger increase in $S_0$ (could also increase the greenhouse gases, which would have a similar effect)!\n",
"\n",
"Let's crank up the sun to 1830 W m$^{-2}$ (about a 35% increase from present-day)."
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Integrating for 3600 steps, 14609.688000000002 days, or 40 years.\n",
"Total elapsed time is 4044.99999997769 years.\n",
"The ice edge is at [-0. 0.] degrees latitude.\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4lFXax/HvnR4SSCCEGgiEkNC7gAoIgoAVkcXuqqui\nLvYCsuiqa1n769rL2juKBQGlSUAQBEILoYRQE3oNpJc57x8z7GYxwJBkcmYm9+e65nLmmZLfMSF3\nnnLuI8YYlFJKKXcE2A6glFLKd2jRUEop5TYtGkoppdymRUMppZTbtGgopZRymxYNpZRSbtOioZRS\nym1aNJRSSrlNi4ZSSim3BdkOUB2io6NNYmKi7Rgek5eXR0REhO0YHqPj823+PD5/HhtAamrqfmNM\n7Om8xy+KRuPGjVm2bJntGB6TkpLCwIEDbcfwGB2fb/Pn8fnz2ABEZNvpvkcPTymllHKblaIhIqNF\nJF1EHCLS67jnJohIpohsEJFhNvIppZSqmK3DU2uAy4C3y28UkQ7AlUBHoBkwW0SSjDFlNR9RKaXU\n8azsaRhj1hljNlTw1AjgS2NMkTFmC5AJ9K7ZdEoppU7E206ENwcWl3uc7dr2ByIyBhgDEBsbS0pK\nisfD2ZKbm6vj82E6Pt/lz2OrLI8VDRGZDTSp4KmJxpgfTvS2CrZVuEqUMeYd4B2A5ORk489XOPj7\nFRw6Pt/mz+Pz57FVlseKhjFmSCXelg20KPc4DthZPYmUUkpVlbcdnpoCfC4iL+E8Ed4WWGI3klLu\nOZxfzJb9eWQdKiCnoISjhSUUlTjI3l5MZuBm6oUF0yw6nGbRYbRoUIfgQL3iXfkeK0VDREYCrwKx\nwDQRWWmMGWaMSReRScBaoBQYq1dOKW/kcBjSduSwaPMBlm09xIrthziQV3ziN2xc9z8PQ4IC6NC0\nHl3iojirTQxnJzakbliwh1MrVXVWioYx5jvguxM89xTwVM0mUurUjDGkbjvElFU7mZm+h91HCgFo\n3TCCQe0akdy4Lq0aRhAfU4fo8GDqhgUTGhTA7Lkp9DmrHzn5JezMKWDn4QLW7z7K6uzDTE7N5uNF\n2wgKEHq3bsCl3ZpzQZemRIZ620EApZz0J1OpUzhaWMI3qdl8sWQ7GXtyCQsO4JykWMZ1TGZAUiwN\nI0NP+v6QQCEqPJio8GBaxtT5n+dKyhws33aIuRv2MSN9N+Mmr+bRKelc0LkpN/dvTfum9Tw5NKVO\nmxYNpU4gJ7+ED37bwgcLt5JTUELXuCieHdWZi7o0I6Ka9gSCAwPokxBDn4QYxg9PZvn2w3yTms0P\nK3cweXk25yTFMnZQIr1bN6iWr6dUVWnRUOo4hSVlfLBwK2/MzeRoUSnndWjM2EGJdGsR7dGvKyL0\njK9Pz/j6jB+ezGe/b+eDhVu4/O1FDG7XiPHntyOpcV2PZlDqVLRoKOVijGFG+h6emr6WrIMFDGnf\niPvOS6ZDs5o/RBRdJ4SxgxK5qV9rZwFLyWT4y/O5uk9LHhzWjqhwPWmu7NCioRSw90ghD3+/hplr\n95DcuC6f3NSb/m1Pa5kBjwgLDuT2gW248owW/GvORj5etJUZ6Xt47OKOXNC5CSIVzYdVynO0aKha\nzRjDdyt28NiUdIpKHTx0fjtu7teaIC+bQ1E/IoTHLunIqB5xTPhuNWM/X86FnZvy1MhORNcJsR1P\n1SJaNFStlVtUyiPfr+G7FTvoFV+f5/7UhYTYSNuxTqpzXBTf//Vs3v11Cy/O3EDqtkO8dHlXzkps\naDuaqiW8688ppWpI+s4cLnrlV35YuYP7zkviq1vP9PqCcUxQYAC3D2zDd389mzqhgVzz3u+8Omcj\nDkeFbdqUqlZaNFSt8+OqnYx68zcKSxx8cUtf7hrclsAA3zs30Dkuiql39uPSbs15cVYGYz5J5Uhh\nie1Yys9p0VC1hsNheH7Geu78YgWdm0fx45396JMQYztWldQJCeKly7vy2MUdSNmwl0tfX8i2A3m2\nYyk/pkVD1QpFpWXc+cUKXp+7iat6t+Szm/sSW/fkM7l9hYhww9mt+ezmPhzMK2bkG7+xfPsh27GU\nn9Kiofze0cISbvxgKdPSdjHxgvY8PbITIUH+96PfJyGGb28/i7phQVz1zmJ+XrPbdiTlh/zvX45S\n5ew9WsgVby9myZaD/N8VXbllQIJfz21IiI3k29vPokOzevz1s1S+XZ5tO5LyM1o0lN/acbiA0W8t\nYsv+PN69vhcju8fZjlQjYiJD+fSmPvRNiOH+r1fx+e/bbUdSfkSLhvJLOw8XcOU7iziYV8xnt/Rh\nUHIj25FqVERoEO/fcAYDk2L523dpvLdgi+1Iyk9o0VB+Z1dOAVe+s5jDeSV8elMferSsbzuSFWHB\ngbx9XS+Gd2zCE1PX8u78zbYjKT+gRUP5ld05hVz5zmIO5RXz8U296erhzrTeLiQogNeu7u5sOTJ9\nnR6qUlWmbUSU3ziYV8zV/17MgVxnweheS/cwjhcUGMD/XdGN/OJSJn6fRkRoICO6NbcdS/ko3dNQ\nfiG/uJQbP1zKjkMFfHDjGbX2kNSJhAQF8Oa1PendqgH3TVrFrLV7bEdSPkqLhvJ5JWUObv90OWnZ\nh3nt6h6c0UpXuatIWHAg/76+F52a1WPs58tZsuWg7UjKB2nRUD7N4TCM/2Y18zL28fTIzpzXobHt\nSF6tblgwH97Ym7j64Yz5ZBmb9+XajqR8jBYN5dNemLmBb1fs4P7zkriyd0vbcXxC/YgQPryhN4Ei\n3PjhUg7kFtmOpHyIFg3ls75dns0bKZu4qncL7jg30XYcn9Iypg7vXt+L3TmF3PLxMgpLymxHUj5C\ni4bySanbDvHQ5DT6JjTgHyM6+XVrEE/p0bI+L1/RjRVZh7l/0iqM0fU41Klp0VA+Z8fhAm79ZBlN\no8N485qeBHvZ0qy+5PzOTXloeDumpe3ijZRNtuMoH6D/2pRPyS8u5eaPllFU4uC963tRP0LXx66q\nMQMSGNGtGS/M3MDc9Xttx1FeTouG8hnGGB6anMaG3Ud49eruJDaqazuSXxARnrmsC+2b1OOuL1ew\nZb8u4qROTIuG8hkfL9rGlFU7uX9oMgNrWQNCTwsPCeTt63oSFCCM+XgZuUWltiMpL6VFQ/mE1G2H\neHLaWga3a8Tt57SxHccvtWhQh9ev7sHm/XmM+0ZPjKuKadFQXm9/bhFjP1tO06hwXrq8GwEBeqWU\np5yV2JAHhyUzPW03ny7eZjuO8kJaNJRXK3MY7v5yBYfyi3nz2h5E1Qm2HcnvjemfwKDkWJ6Yuo41\nO3Jsx1FeRouG8mpvzdvEwswD/GNERzo2i7Idp1YICBBevLwbMZEhjP18OUcKS2xHUl7EStEQkdEi\nki4iDhHpVW57KxEpEJGVrttbNvIp75C67SAvzcrg4q7NuLxXC9txapUGESG8elV3sg8VMGFymp7f\nUP9ha09jDXAZML+C5zYZY7q5brfVcC7lJXIKSrjri5U0jQrjqZE649uGXq0a8OCwZKal7eKLJVm2\n4ygvYaVoGGPWGWM22PjayvsZY/jbt2nsPlLIK1d1p16YnsewZUz/BPolNuSJqWt1/oYCvPOcRmsR\nWSEi80Skv+0wquZNWpbFtLRd3Hdeki6mZFlAgPDC6K6EBAVwz1crKSlz2I6kLBNPHasUkdlAkwqe\nmmiM+cH1mhTgAWPMMtfjUCDSGHNARHoC3wMdjTFHKvj8McAYgNjY2J6TJk3yyDi8QW5uLpGRkbZj\neEz58e3Nd/DIwgISogJ48IwwAvzgsJQ/fP+W7CrljVVFjGgTzMi2/9u6xR/GdyL+PDaAQYMGpRpj\nep36lf/lsTXCjTFDKvGeIqDIdT9VRDYBScCyCl77DvAOQHJyshk4cGCV8nqzlJQUasP4HA7Dle8s\nJiSohH+PGUDz6HDb0aqFP3z/BgK7A1byw6qd3DDsjP9Zf90fxnci/jy2yvKqw1MiEisiga77CUBb\nYLPdVKqmvL9wC0u2HuTvF3fwm4LhTx4b0ZEm9cK496uV5GmbkVrL1iW3I0UkGzgTmCYiM1xPDQBW\ni8gq4BvgNmOMLmRcC2TuPcpzMzYwpH1j/tQzznYcVYF6YcG8dHlXth3M58lpa23HUZZ47PDUyRhj\nvgO+q2D7ZGByzSdSNpU6DPdNWkVESCBPX6aX13qzPgkxjBmQwNvzNnN+p6YMSIq1HUnVMK86PKVq\np2mbS1idncNTIzvTqG6Y7TjqFO4dkkSb2AgmfJum3XBrIS0ayqo1O3KYsqmEEd2acUHnprbjKDeE\nBQfy3J+6sjOngGd+Wmc7jqphWjSUNaVlDsZPXk1kiPD4JR1tx1GnoWd8ff5ydms+XbyddQfKbMdR\nNUiLhrLmvQVbSN95hGvbhxBdR5dt9TUPDE0mPqYO768pIr9YD1PVFlo0lBVb9+fx0qwMhnZoTK/G\ngbbjqEoIDwnk2VFd2FdgeHFmhu04qoZo0VA1zhjD375LIyQwgCcu1aulfFnfhBjObRnE+wu3kLpN\nr46vDbRoqBr39bJsftt0gAkXtKdxPb1ayteNTgqhWVQ4E75No7hUe1P5Oy0aqkbtPVrIk9PW0rt1\nA648Q9fI8AfhQcI/RnQkY08u7/6qDRz8nRYNVaMen7KWwlIHz1zWWdf69iOD2zdmeMcmvDJnI9sP\n5NuOozxIi4aqMXPX72Va2i7uHtyWhFj/7RxaWz16SQeCAoRHflijK/35MS0aqkYUlpTx6JR0EhtF\nckv/BNtxlAc0jQrn/qHJzMvYx7S0XbbjKA/RoqFqxJspm9h+MJ9/jOhISJD+2Pmr689qRefmUTz+\n41qOFJbYjqM8QP/1Ko/buj+PN+dtYkS3ZpzVpqHtOMqDAgOEp0d25kBuES/M0BWd/ZEWDeVRxhge\nnZJOaGAAEy9obzuOqgGd46L485mt+GTxNlZlHbYdR1UzLRrKo2ak72Zexj7uPS+JRjono9a4f2gS\nDSND+fuUdBwOPSnuT7RoKI/JKyrl8R/X0r5pPf58ZrztOKoG1Q0LZsL57ViVdZhvlmfbjqOqkRYN\n5TGv/LKRXTmFPHlpJ4IC9UetthnZvTk94+vz7E/rySnQk+L+Qv8lK4/I2HOU937dwuW94ugZX992\nHGWBiLPl/cH8Yl6erQ0N/YUWDVXtjDE8NiWdiNAgxg9vZzuOsqhT8yiu7t2SjxdtY8Puo7bjqGqg\nRUNVuxnpe/ht0wHuH5pETGSo7TjKsgeGJlM3LIhHp+hMcX+gRUNVq8KSMp6evo6kxpFc3bul7TjK\nC9SPCOGBocks3nyQqat1priv06KhqtX7C7ew/WA+j17cUU9+q/+4qndLOjarx9PT15FXpKv8+TL9\nV62qzZ4jhbz2SyZDOzTm7ESd+a3+KzDAeVJ8V04hr8/NtB1HVYEWDVVtnvt5A6VlhokX6sxv9Ue9\nWjVgZPfm/PvXLWQd1PbpvkqLhqoWK7MOM3l5Nn/p15r4mAjbcZSXGjc8mYAAeOan9bajqEpyq2iI\nSJyIDHLdDxUR/a2g/sPhcF5iG1s3lDvOTbQdR3mxplHh3DqgDdPSdrFsq64p7otOWTRE5C/AFODf\nrk3xwA+eDKV8yw+rdrAy6zDjhiUTGRpkO47ycreek0DjeqE8MXWt9qXyQe7sadwF9AWOABhjMoBG\nngylfEd+cSnP/LSeLnFRjOoRZzuO8gF1QoIYN6wdq7Jz+GHVDttx1Glyp2gUGmOKjz0QkUBAF3dW\nALwzfzN7jhTx94s66Jrfym0juzenc/Monvt5AwXFZbbjqNPgTtFYKCLjgDDXeY2vgKmejaV8wd4j\nhbw9bzMXdG5Cr1YNbMdRPiQgQHjkog7syinknfmbbcdRp8GdojEOOAqsB+4G5gATPRlK+YaXZmVQ\n6nAwbpj2l1Knr3frBpzfqQlvzdvEniOFtuMoN520aLgORb1vjHnTGDPSGHOp676jhvIpL7V+9xEm\nLcviur6taNVQL6ZTlTPh/PaUOQzP69KwPuOkRcMYUwY0FZHgGsqjfMQ/p68nMjSIO/USW1UFLWPq\ncOPZrZi8PJs1O3Jsx1FucOfw1GbgVxGZICJ3HbtV5YuKyPMisl5EVovIdyISXe65CSKSKSIbRGRY\nVb6O8oz5GfuYl7GPO89tS/2IENtxlI8be24i9euE8PT0ddoF1we4UzT2AbOAOkBsuVtVzAI6GWO6\nABnABAAR6QBcCXQEhgNvuA6RKS9R5jA8PX0dcfXD+fNZuoSrqrp6YcHcdW4iv206wLyMfbbjqFM4\n5UwsY8wj1f1FjTEzyz1cDPzJdX8E8KUxpgjYIiKZQG9gUXVnUJUzeXk263cf5dWruhMapPVcVY+r\n+8TzwW9beean9fRvG0ugXr7ttdyZET5LRGYef6vGDH8BfnLdbw5klXsu27VNeYH84lJenLmBbi2i\nuahLU9txlB8JCQrgwWHJrN99lG+XZ9uOo07CnZ4PD5e7HwaMAopO9SYRmQ00qeCpicaYH1yvmQiU\nAp8de1sFr6/wIKeIjAHGAMTGxpKSknKqSD4rNzfXK8b3Q2Yxe46UcFN7Yd68edX2ud4yPk/R8bkn\nwhhaRwXwz6lpROVkEhJof2/D3793lWKMOe0bMK8y7zvuM67HedipTrltE4AJ5R7PAM481WclJSUZ\nfzZ37lzbEcyeIwWm/SM/mVs/Xlbtn+0N4/MkHZ/7Fm3ab+LHTzVvzM2sts+sCn//3gHLzGn+7nbn\n8FS9crdoERkMVOnYhIgMB8YDlxhjyjfWnwJc6eqk2xpoCyypytdS1ePl2RspLnUw/nydyKc8p29C\nDIPbNeKNlEwO5RWf+g2qxrlz9VQ6sMb13xU4Z4PfUsWv+xpQF5glIitF5C0AY0w6MAlYC/wMjDXO\nuSLKok37cvlqaRZX92lJa53Ipzxs/PntyCsq5TVd4c8ruXNOI8EYU1J+g4hUqf+1MeaEM8KMMU8B\nT1Xl81X1emlmBqFBAdx5blvbUVQtkNS4LqN7tuDjRVu54axWtGhQx3YkVY47exq/V7BNDxnVEquz\nDzMtbRc392tNbN1Q23FULXHveUkEBoi2F/FCJywaItJIRLoC4SLSWUS6uG79cE70U7XAsz+vp0FE\nCLcMSLAdRdUiTaLCuLlfAlNW7SQtW9uLeJOT7WlciPPcQxzwBvC66/Y3oNon/Cnvs2DjfhZmHmDs\noETqhmn7MVWzbj0ngQYRIfzzJ20v4k1OWDSMMR8YY/oDNxlj+pe7XWCM+boGMyoLHA7Dsz+vp3l0\nONf0aWk7jqqF6mp7Ea/kThuRSa7GgR1xTu47tv1pTwZTdk1fs4u0HTm8MLorYcHaLkTZUb69yIC2\nsbo6pBdwZ57GGzgn4t0HhAPXAtoP24+VlDl4cWYGSY0jGdldu7goe0KCAnhgqLO9yJRVO23HUbh3\n9VQ/Y8zVwAHjbF7YB+d5DuWnJi3LYsv+PB4c1k4bxynrLuzclI7N6vHirA0Ul+r6b7a5UzSOrcNY\nKCJNXI9beSyRsqqguIx/zd5Ir/j6DGnfyHYcpQgIEMYNb0fWwQK+XLrddpxaz52iMd21SNILwEpg\nK/CNJ0Mpez74bQt7jxYx/vx2iOhehvIOA9o2pG9CA16Zk0leUantOLXaqdYIDwB+MsYcdl0x1Rro\nbIz5W42kUzXqcH4xb6Zs4tx2jTijVQPbcZT6DxHn3sb+3CI+WLjFdpxa7VRrhDuAf5V7XGCMOejx\nVMqKN1M2kVtUyrjhybajKPUHPVrWZ2iHxrw9b7M2M7TIncNTs0RkhMeTKKt25RTw4W9bGdmtOe2a\n1LMdR6kKPTAsmdziUt6ct8l2lFrLnaJxB/CdiBSIyEEROSQiurfhZ/41eyMOY7j3vCTbUZQ6oaTG\ndbmsexwf/raVXTkFtuPUSu4UjYZAMBAJxLoex3oylKpZmXtzmbQsi2v6xGtHUeX17hnSFozzDx1V\n805ZNFzrWYwGxrvuNwW6eTqYqjkvzNhAeHAgd5yrczaV92vRoA7X9G3JpGVZZO7NtR2n1nFnRvhr\nwCDgOtemfOAtT4ZSNWdl1mF+Tt/NLQMSaBiprc+Vbxg7KJHw4EBemqWt02uaO4enzjLG3Iprkp/r\n6qkQj6ZSNcIYw7M/rScmIoSb+2vrc+U7GkaGcnP/BKan7WZV1mHbcWoVd4pGiWu+hgEQkRhA5/L7\ngfkb97No8wHuODeRyNAqLcaoVI27uX9rGkSE6EJNNcydovE6MBmIFZHHgQXAsx5NpTzO4TA89/N6\n4uqHc7W2Plc+qG5YMGMHJbIgcz8LNu63HafWcOdE+MfAwzjbiBwERhtjvvR0MOVZU9N2kb7zCPcP\nTSI0SFufK990TZ+WNI8O57kZ63Whphrizp4GQCBQAhSfxnuUlyoudfDizA20a1KXS7pq63Plu8KC\nA7lnSFtWZ+fw85rdtuPUCu5cPTUR+AJohrMl+uciMsHTwZTnfLUsi20H8hk3PFlbnyufd1mPONo2\niuT5mRsoLdPTrZ7mzl7DtcAZxpiHjTETgd7Anz0bS3lKfnEpr8zZSO9WDRiUrK3Ple8LDBAeGJbM\n5n15TF6ebTuO33OnaGzjf5eFDQI2eyaO8rT3F2xh39Eixp+frK3Pld8Y2qEx3VpE8/LsjRSWlNmO\n49fcKRr5QLqI/FtE3gXSgMMi8pKIvOTZeKo6Hcor5u15mxnSvjE947X1ufIfIsL44e3YlVPIJ4u2\n2Y7j19y5OH+a63bMYg9lUR72RkomucXa+lz5pzPbxDAgKZbXUzK5oncL6oUF247kl05ZNIwx79VE\nEOVZOw8X8NGibVzWPY6kxnVtx1HKI8YNS+aiVxfw7vzN3D9U/zjyBHeunhouIktFZK+2RvddL8/O\nAAP3ntfWdhSlPKZT8ygu6tKUf/+6hb1HC23H8UvunNN4DbgVaI62RvdJmXuP8k1qNtf2jSeuvrY+\nV/7t/qHJlJQ5eHVOpu0ofsmdopENrDTGlBhjyo7dPB1MVZ/nZ2ygTkgQYwe1sR1FKY9r3TCCK85o\nwRdLtrN1f57tOH7HnaIxDvhRRB4UkbuO3TwdTFWPFdsPMSN9D7f0TyBGW5+rWuLuwW0JDgzgxVkZ\ntqP4HXeKxuNAGRCN87DUsZvycsYYnv35WOvz1rbjKFVjGtUL46Z+rflx1U7SsnNsx/Er7lxy28gY\n09PjSVS1m79xP4s3H+SxizsQoa3PVS0z5pwEPvt9G8/NWM8nN/WxHcdvuLOnMUdEzq3OLyoiz4vI\nehFZLSLfiUi0a3srESkQkZWum64QWEkOh3OBJWfr83jbcZSqcfVcrdN/3bifhZnaOr26uFM0bgFm\ni0huNV5yOwvoZIzpAmQA5RsgbjLGdHPdbqvi16m1pqbtYu0uZ+vzkCBtTKxqp2v7xtM8OpxnflqP\nw6Gt06uDO79NGgLBQBTVdMmtMWamMabU9XAxzu65qpqUb30+Qlufq1osLDiQe89LIm1HDtPX7LId\nxy+IOwuXiMiVQIIx5mkRiQMaG2NSqyWAyI/AV8aYT0WkFZCOc+/jCPCwMebXE7xvDDAGIDY2tuek\nSZOqI45Xys3NJTIy0u3X/7K9hI/XFnNPj1C6NfL+cxmnOz5fo+Ozy2EMf19YQIkDnuoXTtBpLAfg\n7WOrqkGDBqUaY3qd1puMMSe94Zzc9zawzvW4AbDUjffNBtZUcBtR7jUTge/4b/EKBWJc93sCWUC9\nU32tpKQk48/mzp3r9mvzikpMrydnmdFv/mYcDofnQlWj0xmfL9Lx2TcrfbeJHz/VfLJo62m9zxfG\nVhXAMnOK36/H39z5M/QsY0wPEVnhKjIHRSTEjWI05GTPi8j1wEXAYFd4jDFFQJHrfqqIbAKSgGVu\n5FTABwu3su9oEW9d20NbnyvlMrh9I85oVZ9/zdnIZT2aUyfE+/fAvZU75zRKRCQAMAAiEgNUaXks\nERkOjAcuMcbkl9seKyKBrvsJQFt07Q63Hcor5q2UTdr6XKnjiAgPnd+OfUeL+GDhVttxfNoJi4aI\nHCvFrwOTgVgReRxYADxbxa/7GlAXmHXcpbUDgNUisgr4BrjNGKPNEd10rPX5g8O0u6dSx+sZ34Ah\n7RvzVsomDuUV247js062j7YE6GGM+VhEUoEhgACjjTFrqvJFjTGJJ9g+GWeBUqcp+1D+f1qfJzfR\n1udKVWTc8GSGvzyf1+dm8vBFHWzH8UknKxr/OSBujEnHeVWT8lIvznT22LlvaJLlJEp5r6TGdRnV\nI46PF23jxn6taR4dbjuSzzlZ0YgVkftO9KQxRpd69RJrduTw3Yod3HZOG/1HoNQp3HteEj+s2sn/\nzcrghdFdbcfxOSc7ER4IROI891DRTXkBYwxPT19H/TrB/FVbnyt1Ss2iw7n+zHgmL89m/e4jtuP4\nnJPtaewyxvyjxpKoSknZsI/fNh3g0Ys76JrISrlp7KBEvlqaxT+nr+ejv/S2HcennGxPQy/y93Jl\nDsM/f1pHq5g6XKNNCZVyW3SdEO4a3JZ5GfuYn7HPdhyfcrKiMbjGUqhK+SY1i4w9uYwb3k6bEip1\nmq47M56WDerw9PR1lGkzQ7ed8DeNzo/wbvnFpbw4M4PuLaM5v1MT23GU8jmhQYGMH96O9buP8k1q\nlu04PkP/PPVR//51C3uPFjHxgvbaLkSpSrqgcxN6tIzmxZkZ5BWVnvoNSouGL9p3tIi3521iWMfG\n9Gql7UKUqiwRYeKFHdh7tIh35mvHIndo0fBBL8/OoKjUwfjh7WxHUcrn9Yyvz4Wdm/LO/M3sOVJo\nO47X06LhYzL35vLl0iyu7tOShFj/7fOvVE0aNzyZUodz8TJ1clo0fMzT09cRHhzIXYPb2o6ilN+I\nj4ng+jNb8XVqNut26YS/k9Gi4UNSNuzll/V7ufPcRBpGhtqOo5RfuePcROqFBfP09HXHFolTFdCi\n4SNKyhw8MXUt8TF1uOHsVrbjKOV3jk34+3XjfubphL8T0qLhIz5dvI1N+/J4+MIOhAYF2o6jlF+6\nrm888TF1eHLaOkrKqrTWnN/SouEDcosNL8/eSL/Ehgxp38h2HKX8VkhQABMvaE/m3lw+WbTNdhyv\npEXDB3zjdtRsAAATdklEQVSXWczRwhIeuaiDTuRTysPO69CY/m0b8n+zMzhSrOc2jqdFw8tl7DnK\n3KxSru0bryvyKVUDRIRHL+5AQXEZkzN0WdjjadHwYsYYnpi6lvAguHeIrsinVE1JbFSXG85qxfzs\nUtKyc2zH8SpaNLzYnHV7+XXjfi5tE0L9iBDbcZSqVe4a0pa6IfDolDV6CW45WjS8VFFpGU9OW0ti\no0gGtTzZWllKKU+oFxbM6KQQlm8/zPcrd9iO4zW0aHipd+dvZuuBfP5+UQeCAvTkt1I2nN08iK5x\nUfxz+npytQsuoEXDK2UdzOfVXzK5sHNTBiTF2o6jVK0VIMKjl3Rk79EiXvsl03Ycr6BFwws9/mM6\ngQHCwxe1tx1FqVqvR8v6jOoRx3sLNrN5X67tONZp0fAys9buYfa6vdwzpC1No8Jtx1FKAePPTyYs\nKJC//5Be60+Ka9HwIgXFZTw2JZ2kxpHceHZr23GUUi6N6obx4PBkFmTu54eVO23HsUqLhhd5fW4m\nOw4X8MSITgQH6rdGKW9yTZ94usZF8eS0teTkl9iOY43+ZvISm/bl8s78zVzWvTl9EmJsx1FKHScw\nQHhqZGcO5hXzzM/rbcexRouGFzDG8Mj3awgNDmDCBXryWylv1al5FDee3ZovlmwnddtB23Gs0KLh\nBb5Ozea3TQd46Px2xNbVxZWU8mb3nZdE06gw/vbtmlrZPl2LhmV7jxby5NS19G7dgKvOaGk7jlLq\nFCJCg3jsko5s2HOU9xZssR2nxmnRsOzxKWspLHXwz8s6E6Azv5XyCcM6NmFI+8a8PDuDrfvzbMep\nUVo0LJqZvptpabu4e3Bb2sRG2o6jlDoNT1zakeCAAMZNXo3DUXvmblgrGiLyhIisFpGVIjJTRJq5\ntouIvCIima7ne9jK6ElHCkt45Ic1tGtSlzEDEmzHUUqdpqZR4TxyUQeWbDnIp7/XnlX+bO5pPG+M\n6WKM6QZMBf7u2n4+0NZ1GwO8aSmfRz05dS37jhbx7KguOidDKR81ulccA5Jieean9WQdzLcdp0ZY\n+21ljDlS7mEEcGz/bgTwsXFaDESLSNMaD+hBs9fuYdKybG47pw1dW0TbjqOUqiQRcZ6PFOGhb1fX\nihYjYnOQIvIU8GcgBxhkjNknIlOBZ4wxC1yvmQOMN8YsO+69Y3DuiRAbG9tz0qRJNRu+ko4WGyYu\nKCAqVPj7mWEEu3HyOzc3l8hI/z3noePzbf48PnfHlpJVwofpxVzfIYRBLYNrIFn1GDRoUKoxptdp\nvckY47EbMBtYU8FtxHGvmwA87ro/DehX7rk5QM+TfZ2kpCTjK/76WapJ/Ns0k74jx+33zJ0713OB\nvICOz7f58/jcHZvD4TDXvLvYtH/kJ7N5X65nQ1UjYJk5zd/rHj08ZYwZYozpVMHth+Ne+jkwynU/\nG2hR7rk4wC86hE1ZtZNpq3dxz5AkOjSrZzuOUqqaiAjPj3aen7znq5V+PenP5tVTbcs9vAQ41sxl\nCvBn11VUfYEcY8yuGg9YzXblFPDI92vo1iKaW/VqKaX8TtOocJ4e2ZlVWYd5dc5G23E8xubi08+I\nSDLgALYBt7m2TwcuADKBfOBGO/GqT5nDcPeXzr8+Xrq8K0F6tZRSfunCLk35ZX0cr83NZEBSLL1a\nNbAdqdpZKxrGmFEn2G6AsTUcx6Ne/WUjS7Yc5MXRXUnQSXxK+bXHLunAkq0HuOerlfx0d3/qhvnO\niXF36J+8HrZ48wFembORy7o3Z1TPONtxlFIeVjcsmJev6MbOwwU89G2a312Gq0XDgw7mFXPPlyuJ\nj4ngH5d2sh1HKVVDesY34IFhyUxbvYuPF/nXbHEtGh7icBge+HoVB/OKefWq7kSG2jx9pJSqabcN\naMPgdo14ctpaVmw/ZDtOtdGi4SEvz9nIL+v38vBF7enUPMp2HKVUDQsIEF68vCuN64Vxx+crOJRX\nbDtStdCi4QEz03fzypyN/KlnHNf1jbcdRyllSXSdEN64pgf7jhZx76SVftENV4tGNcvcm8t9k1bR\nJS6KJy/thIiukaFUbdYlLppHLu5AyoZ9PD9zg+04VaYH2qvRkcISxnyyjNCgAN66tidhwYG2Iyml\nvMC1fVqybtcR3kzZRGJspE9fSal7GtWkpMzBnZ+vYPuBfF6/pgfNosNtR1JKeQkR4fFLOnJWmxgm\nfJvGsq0HbUeqNC0a1cAYwyPfr2Fexj6euLQTfRNibEdSSnmZ4MAA3rimB82iw7j1k1SfXX9Di0Y1\neO2XTL5cmsUdgxK5qndL23GUUl4quk4I791wBsVlDm76aCmH833viiotGlU0OTWbF2dlcFn35tw/\nNMl2HKWUl2sTG8nb1/Vk6/58bvxwKfnFpbYjnRYtGlUwd8Nexk9ezdmJMTwzqoteKaWUcstZbRry\n6tXdWZV1mFs/SaWotMx2JLdp0aikhZn7ufWTVJKb1OXNa3sSEqT/K5VS7hvWsQnPjOrCrxv3c99X\nqyjzkTkcesltJSzZcpCbP1pG65gIPr2pD/X8rIulUqpmXN6rBUcKSnhy2jrCggN57k9dCHRjCWib\ntGicpsWbD3DTh0tpGh3Gpzf3oX5EiO1ISikfdnP/BPKKyvi/2RmUOhy8ONq719zRonEa5q7fy22f\nptKiQR0+u7kPsXVDbUdSSvmBu4e0JShQeH7GBkrKHPzryu4Ee2nh0KLhph9X7eTer1bSvmk9PvpL\nbxroHoZSqhqNHZRIaFAAT05bx9HCpbxxTQ+vXMDJO0uZFzHG8EZKJnd+sYIeLevz2S19tGAopTzi\n5v4JPDeqC79tOsDlby9mz5FC25H+QIvGSRSXOhj3zWqe+3kDF3dtxsc39daT3kopj7r8jBa8d30v\nth/IY+TrC1mzI8d2pP+hReMEduUUcPW7i/k6NZu7BrfllSu7aQNCpVSNGJjciK9uPRMDjHrzN75J\nzbYd6T+0aFQgZcNeLnxlAWt3HeGVq7pz33lJOnFPKVWjOjWP4sc7+9GjZX0e+HoVE79Lo6DY/iRA\nLRrlFBSX8cTUtdz44VJiI0OZckc/LunazHYspVQt1TAylE9u6s2t5yTw2e/bufDVX1mVddhqJi0a\nLos3H2D4v+bz3oItXNOnJd+PPZvERpG2YymlarmgwAAmnN+ez27uQ0FxGZe9+RsvzNhgba+j1heN\nHYcLuOfLFVz5zmKMgc9v6cOTl3YmPETPXyilvMfZiQ35+Z4BjOjWjNfmZjLkpXn8vGYXxtRs+5Fa\nO0/jQG4R7y3YwnsLtgDw14FtuOPcROqE1Nr/JUopLxcVHsxLl3fjil4teHRKOrd9upwzWtXn7sFJ\nnJ0YUyPnXmvdb8it+/N4f+EWJi3LorDEwYhuzRg3vB3NdaU9pZSP6JMQw9Q7+/HF0ixe/yWTa9/7\nnZ7x9bnx7FYM7dDEow1Ua0XR2J9bxIz03Xy3fAfLth0iOFAY2b05Ywa00fMWSimfFBQYwHV947m8\nVxyTlmXz9rxN3PH5CmIiQhjVM45hHRvTrUX9am+A6HdFo7CkjE37csncm0tadg4LNx1g3a4jACQ2\nimTc8GRG9Yijcb0wy0mVUqrqQoMCua5vPFf3bsmvG/fxxZLtvL9gC+/M30z9OsH0axtLl+ZRdGoe\nRZtGEcREhFapkPhF0diZ6+DMf84hp6CE/HJXFIQEBtAzvj4PDkvmnKRYOjarp/MtlFJ+KTBAGJjc\niIHJjcgpKGF+xj7mrNvD71sO8uOqnf/zuoaRIUSEVu7Xv18UjeBA4ezEhkSFBxMdHkzr2AjaNqpL\n64YRujiSUqrWiQoP5uKuzbjYNc9sf24RaTtyyD6Yz54jRew9WkhecRlzK/HZflE0YsOFF0Z3tR1D\nKaW8UsPIUAYlN/rD9jeuOf3P0j/DlVJKuc1K0RCRJ0RktYisFJGZItLMtX2giOS4tq8Ukb/byKeU\nUqpitvY0njfGdDHGdAOmAuWLw6/GmG6u2z8s5VNKKVUBK0XDGHOk3MMIoGbnwSullKoUayfCReQp\n4M9ADjCo3FNnisgqYCfwgDEm3UY+pZRSfySeanYlIrOBJhU8NdEY80O5100Awowxj4pIPcBhjMkV\nkQuAfxlj2p7g88cAYwBiY2N7Tpo0qfoH4SVyc3OJjPTfmes6Pt/mz+Pz57EBDBo0KNUY0+t03uOx\nouF2AJF4YJoxplMFz20Fehlj9p/sM5KTk82GDRs8lNC+lJQUBg4caDuGx+j4fJs/j8+fxwYgIqdd\nNGxdPVV+7+ESYL1rexNxTdkWkd448x2o+YRKKaUqYuucxjMikgw4gG3Aba7tfwJuF5FSoAC40rix\nK5SRkZErIv67qwENgZPubfk4HZ9v8+fx+fPYAJJP9w3WD09VBxFZdrq7WL5Ex+fbdHy+y5/HBpUb\nn84IV0op5TYtGkoppdzmL0XjHdsBPEzH59t0fL7Ln8cGlRifX5zTUEopVTP8ZU9DKaVUDfDpoiEi\nXUVkkYikiciPrhnlx56bICKZIrJBRIbZzFkVInKnawzpIvJcue0+P76TdDsWEXnFNb7VItLDdtbK\nEJHhru9Ppog8ZDtPVYlImIgsEZFVrp/Hx13bW4vI7yKyUUS+EpEQ21krS0SiReQbEVkvIutE5EwR\naSAis1zjmyUi9W3nrAwRuVtE1ri+d/e4tp3+2IwxPnsDlgLnuO7/BXjCdb8DsAoIBVoDm4BA23kr\nMb5BwGwg1PW4kZ+Nr165+3cBb7nuXwD8BAjQF/jddtZKjC3Q9X1JAEJc368OtnNVcUwCRLruBwO/\nu74/k3DOqQJ4C7jddtYqjPEj4GbX/RAgGngOeMi17SHgWds5KzGuTsAaoA7O+XmzgbaVGZtP72ng\nnJgy33V/FjDKdX8E8KUxpsgYswXIBHpbyFdVtwPPGGOKAIwxe13b/WJ85sTdjkcAHxunxUC0iDSt\n8YBV0xvINMZsNsYUA1/iHJfPcn0/cl0Pg103A5wLfOPa/hFwqYV4VeY6UjEAeA/AGFNsjDmM8/v2\nketlvjq+9sBiY0y+MaYUmAeMpBJj8/WisQZnGxKA0UAL1/3mQFa512W7tvmaJKC/a9d/noic4dru\nL+NDRJ4SkSzgGv67roo/jM8fxvAHIhIoIiuBvTj/UNsEHHb9IgLfHmcCsA/4QERWiMi/RSQCaGyM\n2QXg+u8f1031fmuAASISIyJ1cO7Nt6ASY/P6oiEis13H4Y6/jcB5SGqsiKQCdYHiY2+r4KO88jKx\nU4wvCKiP8xDAg8AkV28ufxkfxpiJxpgWwGfAHcfeVsFHeeX4TsIfxvAHxpgy41w8LQ7n3lT7il5W\ns6mqTRDQA3jTGNMdyMN5yMbnGWPWAc/iLPQ/4zxcWnrSN52AtfU03GWMGXKKlwwFEJEk4ELXtmz+\nu9cBzh/wndWfrupONj4RuR341jgPOC4REQfOXjh+Mb7jfA5MAx7Fh8Z3Ev4whhMyxhwWkRScf9BE\ni0iQa2/Dl8eZDWQbY353Pf4GZ9HYIyJNjTG7XIdJ957wE7yYMeY9XIfeRORpnOM97bF5/Z7GyYhI\nI9d/A4CHcZ6EA5gCXCkioSLSGucJnyV2UlbJ9ziPFx8riiE4m6f5xfjkBN2OcY7vz66rqPoCOcd2\noX3IUqCt68qiEOBKnOPyWSISKyLRrvvhwBBgHTAXZ7NRgOuBHyr+BO9mjNkNZImzmSrAYGAtzu/b\n9a5tPju+cr8vWwKXAV9QibF5/Z7GKVwlImNd978FPgAwxqSLyCSc3/BSYKwxpsxSxqp4H3hfRNbg\nPPR2vWuvw1/Gd6Jux9NxHnPNBPKBG+3EqzxjTKmI3AHMwHkl1fvG91ehbAp8JCKBOP/gnGSMmSoi\na4EvReRJYAWuv2Z91J3AZ65Cvxnnz14AzkPDNwHbcZ4/9UWTRSQGKMH5O+OQiDzDaY5NZ4QrpZRy\nm08fnlJKKVWztGgopZRymxYNpZRSbtOioZRSym1aNJRSSrlNi4ZSxxGR3FO/6j+vHSgiZ5V7fJuI\n/Nl1/wZxde49za+/VUQanu77lKoJvj5PQynbBgK5wG8Axpi3yj13A86eP746Q1qpP9CioZQbRORi\nnF0HQoADOBsshuOckFgmItfinBg2GGcR2Qr0wjlRrAA4E+fs6V7GmP0i0gt4wRgz0DXh6gsgFufM\nfin3da/F2TY+BGcr8r/66ERO5Sf08JRS7lkA9HU1svsSGGeM2Yqzdc3/GWO6GWN+PfZiY8w3wDLg\nGtdzBSf57EeBBa7PngK0BBCR9sAVwNmuJoFlOIuVUtbonoZS7okDvnI1dQsBtlTjZw/A2QsIY8w0\nETnk2j4Y6AksdTY3JhwfbZan/IcWDaXc8yrwkjFmiogMBB6rxGeU8t+9+7Djnquon48AHxljJlTi\naynlEXp4Sin3RAE7XPevL7f9KM61XCpy/HNbce45wH9XmQTn6pPXAIjI+TjXUAGYA/ypXHfSBiIS\nX8n8SlULLRpK/VEdEckud7sP557F1yLyK8729Mf8CIwUkZUi0v+4z/kQeMv1XDjwOPAv12eUP5n9\nOM5V1ZbjXB9mO4AxZi3Ok+8zRWQ1zgV0fG3ZW+VntMutUkopt+mehlJKKbdp0VBKKeU2LRpKKaXc\npkVDKaWU27RoKKWUcpsWDaWUUm7ToqGUUsptWjSUUkq57f8BGFn3JdO0DkAAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"my_ticks = [-90,-60,-30,0,30,60,90]\n",
"\n",
"model4 = climlab.process_like(model2) # initialize with cold Snowball temperature\n",
"model4.subprocess['insolation'].S0 = 1830.\n",
"model4.integrate_years(40)\n",
"plt.plot(model4.lat, model4.Ts)\n",
"plt.xlim(-90,90); plt.ylabel('Temperature'); plt.xlabel('Latitude')\n",
"plt.grid(); plt.xticks(my_ticks)\n",
"print('The ice edge is at ' + str(model4.icelat) + ' degrees latitude.' )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Still a Snowball... but just barely! The temperature at the equator is just below the threshold.\n",
"\n",
"Try to imagine what might happen once it starts to melt. The solar constant is huge, and if it weren't for the highly reflective ice and snow, the climate would be really really hot!\n",
"\n",
"We're going to increase $S_0$ one more time..."
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Integrating for 900 steps, 3652.4220000000005 days, or 10 years.\n",
"Total elapsed time is 4054.999999977441 years.\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGXax/HvnR5IQiAECIQWQhI6CFJUkCLFjgp2F12R\nVVfXtiK6rq4dLKuia29YVkVEQVCqoAgi0msgEELvLYQQ0u73jxnyZhUhCZk5M5P7c11zzczJzOT3\nMGHuOecpR1QVY4wxBiDI6QDGGGN8hxUFY4wxJawoGGOMKWFFwRhjTAkrCsYYY0pYUTDGGFPCioIx\nxpgSVhSMMcaUsKJgjDGmRIjTAcoiNjZWk5OTnY7hMUeOHKF69epOx/CIQG4bWPv8XaC3b9GiRXtV\nNb48z/GLolC3bl0WLlzodAyPmT17Nj179nQ6hkcEctvA2ufvAr19IrKpvM+xw0fGGGNKWFEwxhhT\nwoqCMcaYElYUjDHGlLCiYIwxpoQVBWOMMSWsKBhjjCnhF/MUjHGaqrLjUB4b9uSwK/sYh/MKyD5a\nSFZWPuuCNhARGky9mAgSa1ajUVw1osLtv5bxT/aXa8wJFBQVszDrAPMz9zE/cx8rth0iN7/ohI/9\nan3677Yl14miQ8NYzmxaiz5pdYiLCvd0ZGMqhRUFY9xUlfmZ+5m4bDtTVu7gQG4BQQKtG9Tgyk4N\nSa4TRbP4KOrHRhATEUp0RAg//PADXc/uzpH8QnYeymPL/qNs2JPDsi0HmZm+my8WbSVIoFPjWlzU\nLoGBHRoQExHqdFON+UNWFEyVl5tfyPjF2/hgXhbrd+dQLSyYvi3rckGbBLo1izvph3hwkFA9PITq\n4SHUiY6gbWJsyc9UldU7spm2ahdTV+3kkQmreObbdC5pV5+buzclpW60N5pnTLlYUTBVVl5BER/P\n38Rrszew/0g+rRvE8PzgdlzYJoHIsODTfn0RoVX9GrSqX4N7+qawfOtB/vvLZiYs3c7YRVu4oHUC\nd/ZJJq1eTCW0xpjKYUXBVDnFxcqXi7fywrR17MzOo3vz2tzZuzlnNqmJiHjs97ZNjKVtYiwjzk/j\n3Z828v7cLCav2MHgjokMH5BGfLT1OxjnWVEwVUr6zmwe/molCzcdoH3DWP59VTvOalbbqxliq4Vx\nX79Uhp6TxGuz1/Pe3I1MWbmTu85rzk1nNyU4yHOFyZhTsaJgqoSComJGz8zg9dkbiI4I4dkr2jKo\nYyJBDn4A16gWyoMXtOCqMxvyxKTVPDl5DZNX7OD5we1oFh/lWC5TtdnkNRPwMvfkMOj1ebzy/Xou\naV+f7+/ryZVnNnS0IJSWFB/FezeeyehrOrBx7xEueHkO7/60EVV1OpqpgmxPwQS0r5Zs5aHxKwkP\nDeK1687ggjYJTkc6IRHhknb16ZpUi4fGr+CJSav5JXMfzw1uR41IG8JqvMf2FExAKigq5l8TV3HP\n58tok1iDKXf18NmCUFqd6Aje/lMn/nlRS75P381Fr8xh5bZDTscyVYgVBRNw9uUc49q35/PBvCyG\nntOUT4Z2oV6NCKdjlZmIcPM5TRl7azeKipTBb/zM1FU7nY5lqggrCiagbNx7hMtfn8fyrYd4+er2\nPHxRS0KD/fPP/IxGNZlwxzmk1ovm1o8X8eYPG6yfwXicf/5vMeYEFm06wOWvzeVwXiH/vaUrl7Zv\n4HSk0xYfHc5nw7pyYZsEnvkunUcmrKK42AqD8RzraDYB4aeMvQz98FfqxUTwwU2daVK7utORKk1E\naDCvXNOBBjUjefOHTA4dLeCFK9v57R6Q8W1WFIzfm5W+m798vIik2tX5eGgXagfgiqQiwoPntyA2\nMoxRU9I5nFfA69d3JCL09JfjMKY0j33VEJFUEVla6pItIneLSC0RmS4iGe7rmp7KYALflJU7GfbR\nQlLrRvPpLV0DsiCUdlvPZjxzeRtmr9vDsI8WkVdw4uW8jakojxUFVV2rqu1VtT3QEcgFvgJGADNV\ntTkw033fmHKbvHwHf/3vYlo3qMHHQ7tQs3qY05G84prOjRh1eVt+XLeH2z9ZTH5hsdORTADx1kHJ\nPsAGVd0EXAqMcW8fAwz0UgYTQGav3c1dny3hjEaxfHRzlyo3wevKMxvy1GWt+T59N3f8dzEFRVYY\nTOXwVlG4GvjUfbuuqu4AcF/X8VIGEyB+zdrPrR8vIrVeNO/eeGaVPfXldV0a89glrZi2ehd3f7aU\nIhuVZCqBeHrcs4iEAduBVqq6S0QOqmpsqZ8fUNXf9SuIyDBgGEB8fHzHsWPHejSnk3JycoiKCswF\n0Cq7bZuyixi5II8aYcJDXSKJCXd2/SJfeO++21jA52vz6dMohOtbhFXq8t++0D5PCvT29erVa5Gq\ndirXk1TVoxdch4umlbq/Fkhw304A1p7qNVJSUjSQzZo1y+kIHlOZbcvam6Mdn5im3Z6eoVsP5Fba\n654OX3nvnpy0Shs/MElfn72+Ul/XV9rnKYHePmChlvMz2xuHj67h/w8dAUwEhrhvDwEmeCGD8XOH\ncgu46f1fKSpWPhrahQaxkU5H8ikPnt+Ci9vVZ+R36Xy9ZJvTcYwf82hREJFqQF9gfKnNI4G+IpLh\n/tlIT2Yw/i+/sJhbP17E1gNHefOGTnaugRMIChKeH9yWrkm1uH/cMuau3+t0JOOnPFoUVDVXVeNU\n9VCpbftUtY+qNndf7/dkBuPfVJWHv17Bz5n7GDWoDZ2b1nI6ks8KDwnmzRs6kVQ7its+XsTGvUec\njmT8kM2TNz7tzR8zGbtwK3/rncxlHRKdjuPzakSG8s6QTgQHCbd8uJDDeQVORzJ+xoqC8Vnfp+9i\n1JR0Lm5Xn3v6pjgdx280rFWN167rSNbeIzZU1ZSbFQXjkzbtc32gtagXw3OD2lbqMMuqoFuzOB69\nuCUz03fzwrS1TscxfqRqzvoxPi03v5C/fLQIEeHNG2zRt4q6vmtjVu84zGuzN9CyfgwXta3vdCTj\nB2xPwfgUVeXB8StYu+swo6/pQMNa1ZyO5LdEhMcuacUZjWIZ8eUKMvfkOB3J+AErCsanfDAviwlL\nt3Nf3xTOTYl3Oo7fCwsJ4tVrzyA0WLj9k8W2qqo5JSsKxmcs23KQp79dw3kt6nB7z2Sn4wSM+rGR\nvHhVe9J3HuaRCSudjmN8nBUF4xMO5xVw56dLiI8K5/nB7QgKso7lytQztQ539Epm7MKtfLFwi9Nx\njA+zomAcp6o89NVKth08yuhrOhBbrWqcF8Hb7umbQrekOP45YSXrdx92Oo7xUVYUjOO+WLiVb5Zt\n557zmtOpic1Y9pTgIOHlq9tTLSyEv326lGOF1r9gfs+KgnHU+t2HeWTiSs5OjuM260fwuDoxEYy6\noi2rd2Tz/FSbv2B+z4qCcUx+YTF3fbaUamEhvHhle4KtH8Er+rasy/VdG/H2nI38lGEL55n/ZUXB\nOObV7zNYtT2bpy9rQ52YCKfjVCn/uKAlyXWiuHfsUvYfyXc6jvEhVhSMI5ZsPsB/Zm/gijMSGdC6\nntNxqpzIsGBevro9B3MLeHD88uMnwDLGioLxvqP5Rdw3dhl1o8N59JKWTsepslrVr8F9/VKYumoX\nE5dtdzqO8RFWFIzXjfxuDZl7j/D84HbERIQ6HadKG9o9iTMaxfLIhFXszs5zOo7xAVYUjFfNydjD\nmJ83cdPZTTgrubbTcaq84CDhucHtyCso4qGvVtphJGNFwXhPdl4Bw8ctp1l8dR4YkOZ0HOPWLD6K\n+/unMmPNLr5eaud3ruqsKBiveebbdHZl5/HCle1tOWwfc9PZTenUuCaPTljFLjuMVKVZUTBe8fOG\nfXy6YDNDuyfRvmGs03HMbwQHCc8Oakt+UTEPjV9hh5GqMCsKxuPyCop4cPxyGsdV457z7LSaviop\nPor7+6cxM303Xy2xw0hVlRUF43EvzlhH1r5cnrmsDZFhdtjIl910VhM6Nq7JE5NW26S2KsqKgvGo\nrENFvDNnI1ef2dBGG/mBoCDhmcvbkHOskCcnr3Y6jnGAFQXjMQVFxby7Mp+46mE8eEELp+OYMkqp\nG81fejRj/OJtrNprK6lWNVYUjMe89WMmWw4X8/ilrakRaZPU/MkdvZNpWrs6Y1Yfs1N4VjFWFIxH\nbN6Xy+iZGXSqG2xrG/mhiNBgnhrYmt25yuiZGU7HMV5kRcFUOlXl0YkrCQkSrmthZ1HzV2cl1+ac\nBiG89WMma3ZkOx3HeIkVBVPppq3exay1e7inbwo1I+xPzJ9dnRpGTGQoD45fQVGxzV2oCux/rKlU\nufmFPDZxFWn1ohlyVhOn45jTFBUm/POiFizdcpDPf93idBzjBR4tCiISKyLjRCRdRNaISDcRqSUi\n00Ukw31d05MZjHeNnrme7YfyeHJga0KD7TtHIBjYvgGdm9bi2anpHLC5CwHP0/9rXwamqGoa0A5Y\nA4wAZqpqc2Cm+74JABm7DvPOnEyu7JRIpya1nI5jKomI8PilrTicV8hz0+y8zoHOY0VBRGKAHsC7\nAKqar6oHgUuBMe6HjQEGeiqD8R5V5eGvVxIVEcKI821OQqBJqxfDkG5N+HTBZpZvPeh0HONBntxT\nSAL2AO+LyBIReUdEqgN1VXUHgPu6jgczGC/5euk2ftm4nwcGpFGruo04CkR3921OXPVw/jlhFcXW\n6RywxFOrIYpIJ2A+cLaq/iIiLwPZwJ2qGlvqcQdU9Xf9CiIyDBgGEB8f33Hs2LEeyekLcnJyiIqK\ncjpGhR0pUB6ck0vtyCAe7hpBkEjJz/y9badS1do3d1sBb6/I56ZWYZzb0P8nJAb6+9erV69Fqtqp\nXE9SVY9cgHpAVqn73YHJwFogwb0tAVh7qtdKSUnRQDZr1iynI5yWRyes1KYjJumKrQd/9zN/b9up\nVLX2FRcX66DX52r7x6bqgSPHnAlViQL9/QMWajk/uz12+EhVdwJbRCTVvakPsBqYCAxxbxsCTPBU\nBuN5GbsO89H8TVzTuRGtG9RwOo7xMFenc2uy8wp5bqp1OgeiEA+//p3AJyISBmQCN+HqxxgrIjcD\nm4HBHs5gPERVeXzSaqqHBXNfv9RTP8EEhBYJMdzQtTFjfs7i6jMb0SbRvgwEEo8OSVXVparaSVXb\nqupAVT2gqvtUtY+qNndf7/dkBuM5M9bsZk7GXu7pm2Kdy1XMPX1TiKsexqMTV9pZ2gKMzS4yFXKs\nsIgnJ6+meZ0oru/a2Ok4xstqRIYyvH8aizcfZOKy7U7HMZXIioKpkPd+ymLTvlweubilzVyuoq7o\nmEir+jGM+i6do/m2vHagsP/Nptx2Z+fx6vcZnNeiLt2bxzsdxzgkOEh45KKWbD+Ux1s/Zjodx1QS\nKwqm3J6dupaCIuXhC23mclXXJSmOC9rU440fNrDj0FGn45hKYEXBlMvSLQcZt2grfz6nKU1qV3c6\njvEBD57fgiJVnptiQ1QDgRUFU2aqymPfrCI+Opw7eic7Hcf4iIa1qjH0nKaMX7KNJZsPOB3HnKYy\nFQURSRSRXu7b4e41jEwV883yHSzZfJD7+6cSFe7pKS7Gn9zeK5n46HAen7Tahqj6uVMWBRH5M65Z\nyO+4NzXGZiFXOXkFRYz6Lp0WCTFccUai03GMj4kKD+H+/qkssSGqfq8sewp/A7riWswOVV2HrWxa\n5YyZl8W2g0d5+MIWBAfJqZ9gqpxBZ7iGqI60Iap+rSxFIU9VS063JCLBgH0qVCH7j+Tz6qz19EqN\n5+zk2k7HMT4qKEh49OJW7DiUx7s/2RBVf1WWojBXRIYDEe5+hc+BSZ6NZXzJ6JkZHDlWyEMX2BBU\nc3Kdm9aiX8u6vPFDJntzjjkdx1RAWYrCcOAwkA7chesUmv/wZCjjOzL35PDx/E1c3bkRzetGOx3H\n+IEHzk/jaEERL8/IcDqKqYCTFgX3oaL3VPV1Vb3Mvajd66pa7KV8xmEjv0snPCSIe85LcTqK8RPN\n4qO4tnMj/rtgMxv25Dgdx5TTSYuCqhYBCSLi/6dYMuU2P3Mf01bvKhluaExZ3XVecyJCghj1XbrT\nUUw5lWWweSYwR0QmAEeOb1TV0R5LZRxXXKw8NXkNCTUi+PPZTZ2OY/xM7ahwbj23GS9MX8eCjfvp\n3LSW05FMGZWlT2EPMB2oBsSXupgANnHZdlZsO8T9/VOJDAt2Oo7xQ0O7J1E3Jpynv11jE9r8yCn3\nFFT1n94IYnxHXkERz05Jp3WDGAa2b+B0HOOnIsOCua9vKsO/XM7kFTu4qG19pyOZMjhlURCR6cDv\nyryq9vNIIuO49+dmsf1QHs9f2Y4gm6hmTsMVHRN5b+5Gnp2ylr4t6xIeYnudvq4sh48eBv7pvjyF\na2jqMk+GMs45mJvPa7PX0zutDmc1s4lq5vQEBwkjzk9j8/5cPp6/2ek4pgzKcvjol99s+kFEfvBQ\nHuOw12ZvIOdYIcMHpDodxQSIc1PiOSe5Nq98n8GgjonUiLTBjL6sLAvixZS6xIpIHyDBC9mMl207\neJQP5mVxeYdE0urFOB3HBAgR4cEL0jh0tIDXZq13Oo45hbIMSV2Fq09BgEJgI3CLJ0MZZ7w4fR0A\n9/aziWqmcrWqX4PLOjTg/XlZ3NCtMYk1qzkdyfyBsvQpJKlqI1VtqKpNVbU3MNfTwYx3rd15mC8X\nb2VIt8Y0iI10Oo4JQH/v5zok+fxUO0ObLytLUfhtnwLAgsoOYpz13NR0osJDuL2nnVHNeEb92Ehu\nOrsJE5ZtZ/X2bKfjmD/wh0VBROqISDsgUkTaiEhb9+UcXBPZTIBYsHE/M9bs5raezahZPczpOCaA\n3X5uMtHhITw71Za/8FUn61O4EPgzkAi8Vmr7YVzDU00AUFVGfreGujHh3HSWLWdhPKtGtVBu65nM\nqCnpzM/cR9ekOKcjmd/4wz0FVX1fVbsDN6tq91KXC1T1Cy9mNB40bfUuFm8+yD3npdhyFsYrbjyr\nCXVjwhn5Xbotf+GDyjJPYayI9AdaARGltj/tyWDG8wqLinl2SjrN4qszqKOdd9l4R2RYMPecl8KI\n8SuYumoXA1rXczqSKaUs8xReA4YA9wKRwPWA9UYGgHGLtrJhzxHu759GSHBZxhwYUzkGdUykWXx1\nnpuaTmGRnZ7Fl5Tlk+AcVb0W2OdeHK8Lrn6GUxKRLBFZISJLRWShe1stEZkuIhnu65oVj28q6mh+\nES/NyKBDo1j6t6rrdBxTxYQEB3F//1Q27DnCl4u3Oh3HlFKWopB3/FpE6rnvNynH7+ilqu1VtZP7\n/ghgpqo2x3VqzxHleC1TST6Yl8XO7DxGDEhDxBa9M97Xv1U92jeM5cXpGeQVFDkdx7iVpSh8KyKx\nwPPAUiALGHcav/NSYIz79hhg4Gm8lqmA44ve9UmrQxcb/WEcIiI8MCCNndl5jJmX5XQc43aqczQH\nAd+p6kH3iKOmQBtVfaiMr6/ANBFZJCLD3NvqquoOAPd1nQpmNxX0/4vepTkdxVRx3ZrFcW5KPK/N\n3sChowVOxzGAnGpImIjMV9WuFXpxkfqqul1E6uA6e9udwERVjS31mAOq+rt+BXcRGQYQHx/fcezY\nsRWJ4BdycnKIioryyu/ad7SYB+YcpWtCCEPbeP68y95smxOsfadvU3YRj87L48KmoQxO9e7kyUB/\n/3r16rWo1KH7MinLgnjTReRSVZ1Q3kCqut19vVtEvgI6A7tEJEFVd4hIArD7D577FvAWQGpqqvbs\n2bO8v95vzJ49G2+17+9fLCMoaDujbujhlTWOvNk2J1j7Ksfi3CVMXbWTR67pSt2YiFM/oZIE+vtX\nEWXpU7gD+EpEjorIfhE5ICL7T/UkEakuItHHbwP9gJXARFxDXHFfl7vYmIpZu/Mw4xdv5cazmtii\nd8an3Nc3laJi5aUZGU5HqfLKUhRqA6FAFBDvvh9fhufVBX4SkWW4FtCbrKpTgJFAXxHJAPq67xsv\neG5qOtXDQ7i9ZzOnoxjzPxrFVePazo0Yu3ALG/bkOB2nSjtlUVDVImAw8ID7dgLQvgzPy1TVdu5L\nK1V9yr19n6r2UdXm7utT7nWY01d60bvYarbonfE9d/ZpTkRIEC9Ms6W1nVSWGc2vAr2AG9ybcoE3\nPBnKVC5VZdSUdFv0zvi02lHhDO2exLcrdrJsy0Gn41RZZTl8dJaq/gX3JDb3N3v7qulHpq/exaJN\nB7jbFr0zPu6WHknEVQ9j1BRbLM8pZSkKBe75CgogInGALVbiJwqLinlu6lqS4qsz2Ba9Mz4uKjyE\nO3onM2/DPuZk7HU6TpVUlqLwH+BLIF5EHgN+AkZ5NJWpNOMXbyNjdw7D+6faonfGL1zbpRGJNSMZ\nNSWd4mLbW/C2snQ0fwg8jGuZi/3AYFX9zNPBzOnLKyjixRnraN8wlv6tbHli4x/CQ4K5r18Kq7Zn\nM2nFDqfjVDll/eoYDBQA+eV4jnHYhz9nseNQHg/YonfGz1zargFp9aJ5Ydpa8gvtaLU3lWX00T+A\nT4H6uJbM/q+IPOjpYOb0HDpawH9mbeDclHi6NbNF74x/CQpyLZa3aV8un/+62ek4VUpZvvVfD5yp\nqg+r6j9wLVXxJ8/GMqfrzR9cC4wNH5DqdBRjKqRnajxdmtbi5ZkZHDlW6HScKqMsRWET/7tGUgiQ\n6Zk4pjLsys7jvbkbGdi+Pq3q13A6jjEVIiKMOD+NvTn5vDNno9NxqoyyFIVcYJWIvCMibwMrgIMi\n8m8R+bdn45mKeGlGBkXFyn39bC/B+LcOjWpyfut6vPXjBvbmHHM6TpVQllVSJ7svx833UBZTCTbs\nyWHswi3c0LUxDWtVczqOMaft7/1TmbZ6F69+v55/XdLK6TgB75RFQVXf9UYQUzlemLaWiJAg7uid\n7HQUYypFs/gorjqzIZ/8sombzm5C47jqTkcKaGUZfTRARH4Vkd3lWTrbeN/SLQf5dsVOhnZPonaU\n50+gY4y33N2nOSFBQbwwbZ3TUQJeWfoUXgX+AjSgfEtnGy9SVUZ9l05c9TBu6ZHkdBxjKlWdmAiG\ndm/KxGXbWbntkNNxAlpZisJWYKmqFqhq0fGLp4OZ8vkxYy8/Z+7jzt7JRIWXpavIGP8yrEcSNauF\nMvK7dKejBLSyfHoMB74RkdlASfe/qo72VChTPsXFrr2EhrUiubZLY6fjGOMR0RGh3Nm7OY9PWs2c\njD10b24HLDyhLHsKjwFFQCyuw0bHL8ZHfLN8O6t3ZHNf31TCQmwVEhO4ruvqWixv5He2WJ6nlGVP\noY6qdvR4ElMh+YXFvDBtHS0SYrikXX2n4xjjUeEhwfy9Xyp3f76Ub5Zv59L2DZyOFHDK8rVypoj0\n9ngSUyGfLtjM5v25DB+QSlCQLXpnAt8l7erTMiGG522xPI8oS1G4BZghIjk2JNW3HDlWyCvfZ9Cl\naS16ptgRPVM1BAW5lr/Ysv8on/yyyek4AacsRaE2EArUwIak+pR35mxkb04+I863pbFN1dK9eW3O\nTo7jle/XczivwOk4AaUsJ9kpAgYDD7hvJwDtPR3MnNyew8d468cNDGhVjw6NajodxxivEnEtrb3/\nSD5v/2jrc1amssxofhXoBdzg3pQLvOHJUObUXpqxjmOFxbY0tqmy2ibGclHbBN6es5Hdh/OcjhMw\nynL46CxV/QuQB6Cq+4Ewj6YyJ7V+dw6f/bqF67o0Iik+yuk4xjjm7/1SKSgqZvTMDKejBIyyFIUC\nEQkCFEBE4gDr8nfQyO/SqRYazN/6NHc6ijGOalK7Otd1acSnC7aQuSfH6TgB4Q+Lgogcn8PwH+BL\nIF5EHgN+AkZ5IZs5gfmZ+5ixZhe39mxGnC16Zwx39mlOREgQz01d63SUgHCyPYUFAKr6IfAw8Dxw\nABisqp95IZv5jeJi5elv15BQI4Kbz2nqdBxjfELtqHBu6ZHEdyt3smjTAafj+L2TFYWSMY6qukpV\nX1bVl1R1pRdymRP4Zvl2lm89xH39UokIDXY6jjE+Y1iPJOpEh/Pk5NWo2vIXp+Nky1zEi8i9f/RD\nVbVTcXrRscIinpu6lpYJMVzWwab2G1NatbAQ/t4vleFfLmfS8h1cbEu+VNjJ9hSCgSgg+g8uZSIi\nwSKyREQmue83FZFfRCRDRD4XERvJVAYfztvE1gNHeeiCFgTbchbG/M4VHRNpkRDDqCnp5BXY6v4V\ndbI9hR2q+ngl/I67gDVAjPv+KOBFVf1MRN4AbgZer4TfE7AO5ubzyvcZnJsSzznNazsdxxifFBwk\nPHxhC6575xfGzMviL+c2czqSXypTn0JFiUgicCHwjvu+AL2Bce6HjAEGnu7vCXSvfr+enGOFPHhB\nmtNRjPFpZyfXpndaHV79fj37co6d+gnmd05WFPpUwuu/hOskPcfnNcQBB1W10H1/K67TfJo/sHlf\nLmN+zmJQx0TS6sWc8vHGVHUPXZBGbkERL9uEtgr5w8NH7pnLFSYiFwG7VXWRiPQ8vvlEv+oPnj8M\nGAYQHx/P7NmzTyeOT8vJyfnD9r26JA9B6Ra1zy//DU7WtkBg7fNN5yYG8/H8TaQF76Z+1B9/9/XX\n9nmUqnrkAjyDa08gC9iJa82kT4C9QIj7Md2Aqad6rZSUFA1ks2bNOuH2nzfs1cYPTNLRM9Z5N1Al\n+qO2BQprn2/aezhPWz8yRf/8/oKTPs5f21dWwEIt52e3x87dqKoPqmqiqjYBrga+V9XrgFnAIPfD\nhgATPJXBnxUVK49/s5oGsZHc0iPJ6TjG+JW4qHD+2juZmem7mbt+r9Nx/IoTJ/R9ALhXRNbj6mN4\n14EMPu+LhVtYvSObEeen2UQ1YyrgxrOa0CA2kicnr6HIzudcZl4pCqo6W1Uvct/OVNXOqpqsqoNV\n1YYI/MbhvAKen7aWTo1rclHbBKfjGOOXIkKDeeD8NNbsyObLRVudjuM3nNhTMKfw6qz17M3J55GL\nW9oZ1Yw5DRe3TeCMRrE8O3Ut2XaGtjKxouBjNu07wvs/uYagtk2MdTqOMX5NRPjXJa3Yd+QYo2fY\nENWysKLgY57+dg0hwcL9/e2MasZUhraJsVzVqSEfzMti/e7DTsfxeVYUfMi8DXuZumoXf+2VTN2Y\nCKfjGBPhmHr5AAAS6ElEQVQw7u+fSmRYMI99Y6uonooVBR9RWFRcMgTVzpVgTOWKiwrn3r4pzMnY\ny/TVu5yO49OsKPiIj+dvIn3nYR6+sIUNQTXGA67v2piUulE8MXm1raJ6ElYUfMChY8oL09bRvXlt\nBrSu53QcYwJSaHAQj17cii37j/L2j5lOx/FZVhR8wNi1+eQVFvHYJa1sCKoxHnR2cm3Ob12P/8xe\nz/aDR52O45OsKDjs16z9zN1eyC3dk0iKj3I6jjEB7x8XtkDVNdLP/J4VBQcVFhXzz69XUitCuKN3\nstNxjKkSEmtW47aezZi0fAer91nfwm9ZUXDQR+7O5WvTwqgWdrKT4BljKtOt5zajcVw1xqw6Zp3O\nv2FFwSG7D+fxb3fncse6NtrIGG+KCA3miUtbsytXeeOHDU7H8SlWFBzy9OQ11rlsjIN6pMTTpV4w\nr83awMa9R5yO4zOsKDjgh3V7+Hrpdm7vmWydy8Y46JoWYYSHBvHPr1faTGc3KwpelptfyD++WkFS\nfHVu79XM6TjGVGmx4UEM75/KT+v3MnHZdqfj+AQrCl720owMth44yjOXtSE8xPoSjHHatV0a065h\nLE9MWs2hXFte24qCF63cdoh35mRyTeeGdEmKczqOMQYIDhKeGtia/UfyGTU13ek4jrOi4CWFRcU8\nOH4FcVHhjDi/hdNxjDGltG5Qgz+f3ZT//rKZeRuq9jmdrSh4yQfzslix7RD/urgVNSJDnY5jjPmN\n+/ql0iSuGiO+XEFufqHTcRxjRcELtuzP5YVp6+iTVocL2tiCd8b4osiwYEZd0ZbN+3N5bupap+M4\nxoqChxUXK/ePW0ZIkPD4wNY2J8EYH9YlKY4h3RrzwbwsFmbtdzqOI6woeNiHP2cxP3M//7yoJQ1i\nI52OY4w5heED0mgQG8nwccur5BIYVhQ8KGvvEUZOSadXajyDOyU6HccYUwbVw0MYdUVbMvce4d/T\n1zkdx+usKHhIUbHy9y+WERYcxDOXt7XDRsb4kbOTa3NN54a8MyeTxZsPOB3Hq6woeMj7czeycNMB\n/nVJK+rViHA6jjGmnB66oAUJNSK59/OlHDlWdUYjWVHwgPSd2Tw7dS3ntajLZR0aOB3HGFMB0RGh\nvHBlOzbtz+WJSaudjuM1VhQqWV5BEX/7dAkxEaGMvKKNHTYyxo91TYrj1nOb8dmvW5iycqfTcbzC\nikIle/rbNazblcMLV7ajdlS403GMMafpnvNSaN0ghgfHL2d3dp7TcTzOikIlmrF6Fx/+vImh5zTl\n3JR4p+MYYypBWEgQL13VgaMFRfx93HKKiwN7iW2PFQURiRCRBSKyTERWichj7u1NReQXEckQkc9F\nJMxTGbxpV3Ye949bRsuEGO4fkOp0HGNMJUquE8U/LmzJj+v28NacTKfjeJQn9xSOAb1VtR3QHhgg\nIl2BUcCLqtocOADc7MEMXlFYVMzdny3laEERo69pb0tiGxOAru/SiAvbJPDc1LUs2Bi4s509VhTU\nJcd9N9R9UaA3MM69fQww0FMZvOWF6ev4OXMfT1zamuQ60U7HMcZ4gIgw8oo2NKwZyZ2fLmZvzjGn\nI3mER/sURCRYRJYCu4HpwAbgoKoeH/S7FfDrMZvTVu3k9dkbuKZzIwZ3auh0HGOMB0VHhPLadR05\nkFvA3Z8tpSgA+xfEG+clFZFY4CvgEeB9VU12b28IfKuqbU7wnGHAMID4+PiOY8eO9XjO8tp1pJh/\n/XyUutWCeKhLBGHBFRt+mpOTQ1RUYJ6rOZDbBtY+f1fR9v2wpYD3V+UzMDmUgcm+2y3aq1evRara\nqTzPCfFUmNJU9aCIzAa6ArEiEuLeW0gETnhiVFV9C3gLIDU1VXv27OmNqGV2NL+Iy16bS1hoKB/d\neg4Na1Wr8GvNnj0bX2tfZQnktoG1z99VtH3nqpL9xXK+XLyVC7q1pV+rwFkS35Ojj+LdewiISCRw\nHrAGmAUMcj9sCDDBUxk8pdi9rtHaXYd56ar2p1UQjDH+R0R46rLWtEuswd2fLyV9Z7bTkSqNJ/sU\nEoBZIrIc+BWYrqqTgAeAe0VkPRAHvOvBDB7x0ox1TF6xgxED0uiVVsfpOMYYB0SEBvPWnzoRHRHC\n0DEL2RcgHc+eHH20XFU7qGpbVW2tqo+7t2eqamdVTVbVwarqV/+SXy/Zxujv1zO4YyLDeiQ5HccY\n46C6MRG8dUMn9hw+xm2fLCa/sNjpSKfNZjSXw6JN+xk+bjmdm9biqctsXSNjDLRrGMuzg9qyYON+\nHvpqBd4YvONJXuloDgQb9x5h2IeLSIiN4M3rOxIWYvXUGONyafsGbNx7hJdmZFAnOpzhA9KcjlRh\nVhTKYMeho1z/zi8o8N6NZ1Kzuu8OQTPGOOOuPs3ZffgYr83eQO2ocP58TlOnI1WIFYVT2H8knxve\nXcChowV8NqwrzeIDd8y2MabiRIQnLm3N/px8Hp+0mtrR4VzSrr7TscrNjoGcRM6xQm58fwFb9ufy\nzpBOtG5Qw+lIxhgfFhwkvHR1ezo3rcV9Y5fyffoupyOVmxWFP3DkWCE3f/Arq7Zn859rz6BrUpzT\nkYwxfiAiNJi3/9SJtHox/OWjRcxY7V+FwYrCCRzOK2DIewv4NWs//76yHee1rOt0JGOMH6kRGcrH\nN3ehRUIMt32yiOl+VBisKPxGdl4Bf3pvAUu2HOSVa87g0vZ+vV6fMcYhNaqF8tHNXWhZvwa3f7KI\nqav843SeVhRK2ZWdx1VvzmfltkP859ozuLBtgtORjDF+rEZkKB/d3JlW9Wtw+yeL+WLhFqcjnZIV\nBbeMXYe5/LV5bN53hHeHnMmA1oGzwJUxxjkxEaF8PLQLZzWL4/5xyxk9M8OnJ7hZUQDmbdjLoDd+\n5lhhMZ//pRs97PzKxphKFBUewrtDzuTyDg349/R1jPhyhc8uiVGl5ymoKu/NzeLpb9fQtHZ13r/x\nTFvx1BjjEWEhQbxwZTvqx0by6qz1rN+Tw+vXnUGdmAino/2PKrunkJtfyH1jl/HEpNX0SavDV7ef\nZQXBGONRIsLf+6fy6rUdWL09m4te+YmFWb51vucqWRSWbz3IRaN/4qul27i3bwpvXN+R6IhQp2MZ\nY6qIi9rW56u/nkVEaDBXvvkzL05fR2GRbxxOqlJFoaComP/MWs/lr83jaEER/x3alb/1aU5QkK12\naozxrrR6MUz+2zkMbN+Al2dmcOWbP5O5J8fpWFWnKCzM2s9Fo3/iualr6d+6HlPu6kG3ZjZL2Rjj\nnOiIUP59VXtGX9OBjN05DHhpDi9OX0deQZFjmQK+o3nbwaO8OH0d4xZtpX6NCN7+Uyf62gxlY4wP\nuaRdfbom1eLJSWt4eWYGE5dtZ3j/VAa0ruf187YEbFHYfTiPN2Zn8vH8TQAM65HEXX2aUz08YJts\njPFjdaIjGH1NBwZ1TOSxb1Zx2yeLaZtYg/v6pdKjeW2vFYeA+4Rcue0Q7/20kW+Wb6eoWBnUMZG7\nzkuhQWyk09GMMeaUeqTEM/XuHoxfso2XZ2Qw5L0FpNaN5qazmzCwQwMiQoM9+vv9viioKln7cvl2\nxQ6+Wbad9J2HqRYWzLWdG3Hj2U1pWru60xGNMaZcQoKDuLJTQy5tX58JS7fz/twsRoxfwZOT19Cv\nZV0ublefs5LjCA+p/ALhV0VBVdl3JJ8Nu3NYvyeHRZsO8EvmfrYdPApAp8Y1eeySVgzs0IAakTbE\n1Bjj38JDgrmyU0MGd0zkl437Gb94K1NW7mT8km2EhwTRsXFNujSNIy0hmmbxUTSOq0Zo8OmNH/KL\norAtp5hOT04n+2gh+aXG8taqHkbXpFoM65HEeS3r2iEiY0xAEhG6JsXRNSmOJwa2Zu76vcxdv4/5\nmft4aeY6Si+lFB0eQkxkKPVjKzZT2i+KQliQ0L9VPWIiQ6kdFU5ynSiSalcnsWak13vmjTHGSeEh\nwfROq0vvNNcoysN5BWTuOcKGPTls3p9L9tFCDh0tIDS4Yp+NflEU4qsJT13WxukYxhjjc6IjQmnX\nMJZ2DWN/97NRFXi9KjN5zRhjzKlZUTDGGFPCioIxxpgSVhSMMcaUsKJgjDGmhBUFY4wxJawoGGOM\nKWFFwRhjTAnR0vOjfZSIHAbWOp3Dg2oDe50O4SGB3Daw9vm7QG9fqqpGl+cJfjGjGVirqp2cDuEp\nIrIwUNsXyG0Da5+/qwrtK+9z7PCRMcaYElYUjDHGlPCXovCW0wE8LJDbF8htA2ufv7P2/YZfdDQb\nY4zxDn/ZUzDGGOMFPlsURKSdiPwsIitE5BsRiSn1swdFZL2IrBWR/k7mPB0icqe7DatE5NlS2/2+\nfSLyhIgsF5GlIjJNROq7t4uIjHa3b7mInOF01ooSkQHu92i9iIxwOs/pEpEIEVkgIsvcf5OPubc3\nFZFfRCRDRD4XkTCns1aEiMSKyDgRSReRNSLSTURqich0d9umi0hNp3NWlIjcJSIr3e/d3e5t5W+f\nqvrkBfgVONd9+8/AE+7bLYFlQDjQFNgABDudtwLt6wXMAMLd9+sEWPtiSt3+G/CG+/YFwHeAAF2B\nX5zOWsH2BbvfmyQgzP2etXQ612m2SYAo9+1Q4Bf3ezQWuNq9/Q3gNqezVrB9Y4Ch7tthQCzwLDDC\nvW0EMMrpnBVsW2tgJVAN11SDGUDzirTPZ/cUgFTgR/ft6cAV7tuXAp+p6jFV3QisBzo7kO903QaM\nVNVjAKq62709INqnqtml7lYHjndeXQp8qC7zgVgRSfB6wNPXGVivqpmqmg98hqttfsv9nuS474a6\nLwr0Bsa5t48BBjoQ77S4jzT0AN4FUNV8VT2I6z0b436YX7bNrQUwX1VzVbUQ+AG4jAq0z5eLwkrg\nEvftwUBD9+0GwJZSj9vq3uZvUoDu7t3yH0TkTPf2QGkfIvKUiGwBrgMecW8OlPYFSjv+h4gEi8hS\nYDeuL2MbgIPuDxrw33YmAXuA90VkiYi8IyLVgbqqugPAfV3HyZCnYSXQQ0TiRKQarj3yhlSgfY4W\nBRGZ4T4G9tvLpbgOGf1VRBYB0UD+8aed4KV8cgjVKdoXAtTEtXt+PzBWRITAaR+q+g9VbQh8Atxx\n/GkneCmfbN8pBEo7/oeqFqlqeyAR195QixM9zLupKkUIcAbwuqp2AI7gOpwSEFR1Da5TMk8HpuA6\nnFl40if9AUeXuVDV807xkH4AIpICXOjetpX/32sA1x/v9spPd/pO1j4RuQ0Yr66DfQtEpBjXOiwB\n0b7f+C8wGXgUP2rfKQRKO05IVQ+KyGxcX1piRSTEvbfgr+3cCmxV1V/c98fhKgq7RCRBVXe4D2Pu\n/sNX8HGq+i7uw2Mi8jSuNpe7fT57+EhE6rivg4CHcXVwAUwErhaRcBFpiqszZYEzKU/L17iO1R4v\nemG4FuYKiPaJSPNSdy8B0t23JwJ/co9C6gocOr5762d+BZq7R+aEAVfjapvfEpF4EYl1344EzgPW\nALOAQe6HDQEmOJOw4lR1J7BFRFLdm/oAq3G9Z0Pc2/yybceV+sxsBFwOfEoF2ufLC+JdIyJ/dd8e\nD7wPoKqrRGQsrje0EPirqhY5lPF0vAe8JyIrcR0aG+LeawiU9o10/wcsBjYBt7q3f4vreOd6IBe4\nyZl4p0dVC0XkDmAqrpFI76nqKodjna4EYIyIBOP6wjhWVSeJyGrgMxF5EliC+9uoH7oT+MRdxDNx\n/e0F4Tp0ezOwGVf/pb/6UkTigAJcnxsHRGQk5WyfzWg2xhhTwmcPHxljjPE+KwrGGGNKWFEwxhhT\nwoqCMcaYElYUjDHGlLCiYKocEck59aNKHttTRM4qdf9WEfmT+/aN4l79tZy/P0tEapf3ecZ4gy/P\nUzDGF/QEcoB5AKr6Rqmf3YhrzRl/nOFrzAlZUTAGEJGLcc2cDwP24VrELxLXpLsiEbke1+SnPriK\nRBbQCddkqKNAN1yzfzup6l4R6QQ8r6o93ROKPgXicc1Ol1K/93pcS4uH4Vqq+nY/naxoAoQdPjLG\n5Segq3uxtM+A4aqahWt5lRdVtb2qzjn+YFUdBywErnP/7OhJXvtR4Cf3a08EGgGISAvgKuBs9yJ0\nRbiKkTGOsT0FY1wSgc/di4aFARsr8bV74FqLBlWdLCIH3Nv7AB2BX10L5BKJHy/IZgKDFQVjXF4B\n/q2qE0WkJ/CvCrxGIf+/9x3xm5+daD0ZAcao6oMV+F3GeIQdPjLGpQawzX17SKnth3Gdz+NEfvuz\nLFzf/OH/zxQIrjMIXgcgIufjOo8GwExgUKnVLWuJSOMK5jemUlhRMFVRNRHZWupyL649gy9EZA6u\nJcyP+wa4TESWikj337zOB8Ab7p9FAo8BL7tfo3Rn8WO4zoq1GNc5QjYDqOpqXJ3b00RkOa4TpPjj\nqUlNALFVUo0xxpSwPQVjjDElrCgYY4wpYUXBGGNMCSsKxhhjSlhRMMYYU8KKgjHGmBJWFIwxxpSw\nomCMMabE/wGVg58qKRNx+gAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"model4.subprocess['insolation'].S0 = 1840.\n",
"model4.integrate_years(10)\n",
"plt.plot(model4.lat, model4.Ts)\n",
"plt.xlim(-90,90); plt.ylabel('Temperature'); plt.xlabel('Latitude')\n",
"plt.grid(); plt.xticks(my_ticks);"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Suddenly the climate looks very very different again! The global mean temperature is"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(57.73355447082798)"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model4.global_mean_temperature()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A roasty 58ºC, and the poles are above 20ºC. A tiny increase in $S_0$ has led to a very drastic change in the climate."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we will complete the plot of ice edge versus solar constant."
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"S0array_snowballmelt = np.linspace(1400., 1900., 50)\n",
"icelat_snowballmelt = np.empty_like(S0array_snowballmelt)\n",
"icelat_snowballmelt_cooling = np.empty_like(S0array_snowballmelt)\n",
"\n",
"for n in range(S0array_snowballmelt.size):\n",
" model2.subprocess['insolation'].S0 = S0array_snowballmelt[n]\n",
" model2.integrate_years(10, verbose=False)\n",
" icelat_snowballmelt[n] = np.max(model2.icelat)\n",
" \n",
"for n in range(S0array_snowballmelt.size):\n",
" model2.subprocess['insolation'].S0 = np.flipud(S0array_snowballmelt)[n]\n",
" model2.integrate_years(10, verbose=False)\n",
" icelat_snowballmelt_cooling[n] = np.max(model2.icelat)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABCUAAAGQCAYAAACZN9rzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8VNX9//HXhzVsRQFFEDSoKAqGsBRlNYBatS4VQVRA\nEBeKVio/a+taELdWwSIq4o6oVXHfAFEhIkL9AoIUELEoCi6o4DIhrOH8/jh3YJhMkgkkuUnm/Xw8\n8piZe8/c+5k7Z25mPvcs5pxDRERERERERKSsVQk7ABERERERERFJTUpKiIiIiIiIiEgolJQQERER\nERERkVAoKSEiIiIiIiIioVBSQkRERERERERCoaSEiIiIiIiIiIRCSQkRwcz+YGZzzOx7M9tsZl+a\n2StmdspebGuyma0phTDLPTPLMrPRZlaq51Yz2y/YT/vS3E9FU9Hqnpllm1l2CPt1ZjZ6L543xMyG\nFrDcmVl6zLLRZtZrnwJNHEOJvcdmlh7EPaSEtpcZvO4GCdY5M7u1JPZTyP4nB/tJ9PdKTLnRcet2\nBOf8R83s4LhtRstuNrP6CfY5JGY7R5TCaxptZi7mcYHnvuDzNLekYygsnmBZWby3JV1Xq5jZeDP7\n1sx2xtaP0hb/GY55bZeUYQxZwT5PLKt9ikjhlJQQSXFmNgJ4GfgMuBj4PRD9glXiPyoquSxgFKV/\nbt0v2I+SEnu6BTg77CAqsSFAvqQE8CbQGfg2Ztkoyv/541t83G+W0PYy8a87X1KiDP2Af03xf39N\nULZbsK4ncDv+3P9mAUnV7UDfBMsvBCL7HnaBHsHHGKVzX8noC/wZuAvoSuL6ISJSZqqFHYCIhO4v\nwCvOuYtjls0CHi7tK/5FMbOazrmtYcYgRSsv75NzbnXYMaQi59wP+B/DFUpQZ/8TdhwlbJtzLtnX\n9KFzbkdw/30zywMeBo4CPokr+xIwCHg0usDMmgMnAFPwCasS55xbB6wrjW2nuKOD2/HOuZ2hRiIi\nglpKiIi/qvddohXxX1bMrJOZvWNmOWa2yczeNbNORe3AzG42s4/M7Bcz+9HMZpnZ8XFlos0p+5jZ\nw2b2A7C+iO22MLMnzew7M9tqZp+b2T1xZQaa2cdmtiXY95Nm1iSuzBoze8rMzjOzT4LXttDMusWV\n+62ZvW1mG8wsN9jfxGDdaPwVPIDt0SbNe3kMzjSz+4JyPwSx7ReUSQe+CJ7ycEzT6SEFHKO/mtk2\nM2uYYN2KuGbdtc3sn2b2RfCcL8zshtjkVGHvk5kdaWYvm+8GtMXMvjKz582sWrA+XzP/6LFL0CT6\nz8F7sdnMfgrej0JbQcQ3Cw6W1TGzf5jZ6qCOfGdmL5pZ45gyLczs6eBYbzWzJUXtq7jPDerWyqDM\n8oK2b2btzez94PitNbPrg7oTf3yqmdl1Mdv8xszGmVlaMnHHbeuI4HPxRXC8PzezB8xs/5gy2fgf\noF1j6lx2sG6P9zUm1htiyo6ObscSdFkx/xmcHLesd/CZ2RK8f8MKiL/IelvA8/I1iQ/q0Dozaxe8\nD7lm9pmZ/bGIbQ0BHg8efhbzutPjyo0I4ouY2Xtm1jrBtvqY2X+Cff8cfIYOKWz/JeTX4LZ6gnVT\ngB5mdmjMskHAV8CcojZsZn2D49EsZtk4i2u2b2YnBcuOCR7vOjdYkuc+MzsxqDe5ZrbMzP6QRHwH\nmNmDZrYqeN5aM/u3xXVnKXwTdkNQdzab7w6ZmaBQke9tUJ8nmv8/k2NmrwHN4rcVlC3y/1uC56wB\nRgcP82KPYbKfJTNrFJwjvg7OPyvN7LIE+0rqMxyoYWZ3m///kWtmbyT4/Jxn/n/nD8GxWWxmgxPs\nt5qZ/c38/7gtQfkZZtaqkONyWPBZ/8Bizn0iUjbUUkJE/g8YbGafA68651YlKmRmGcB7wAr8VTEH\nXAu8Z2bHO+c+LmQfBwP/wl/xqgMMBOaYWUfn3NK4svcC0/FfeAv8gWVmLYLYc/HJgM+A5sDJMWUu\nAx4EngOuA5rimykfZ2btnXM5MZvsjr9CeBOwBd8V4A0zS3fO/WxmdYG3gn0OwTdZTge6BM9/BP/F\n8WJ8s+i8fTgG9wBvABcEMd0ZbG8wvsl5H/yVyzuA14LnFNRK4KmgXH9gYsyx6YC/WnZT8Lha8PqO\nCV77f4Hjg/UNgKvjtpvofXoD+BkYDvwYvObTKGYC3MwGAOOAMcD7QC0gg2I2izezGsDb+Gb1d+Cv\nitcHfgfsD6w3f7X3Q+B7YCT+in9/4EUz+4Nz7rVE2w62n9Rzzfdb/je+m8DVwAH497g68GnM9hoB\n7wLf4JvFbwu2m55g908BZwD/BObh38tbgrLnJH2QvKb4enkV8BNwGHA9MI3dTecvD/ZZFYj+sPiV\nxDoD84HJ+M8fFPNqt5kdHex/IXAeUBP/Q6ouMZ+tvai3yfgN/v0aj6+DFwEPmNmnzrnZBTznTXy3\ntxuBfux+vbFdWgbi3+8/AzXwTedfNbNW0RYL5pMfD+ATHGOAesHrfs/MMpxzRXaVCI5JvDznnItb\nVtXMwNfDY/Dv+XJgWYLnvw+sAQbgz6HgP/tP4f8XFGV2UK4XPsFBcH9zcPtIzLLvnXMrEmwjmXPf\n4fjP1h34c9DVwAvBMf5fIfE1wJ/3r8N/jpsGz/0geO6WIl7fhfgEzZ/wdXUM8K6ZtXTObYRivbcP\n4s8jNwMLgJPw9XEPxfz/FutsYAT+/1j087062c+Smf0G+AB/Xh6NTxT9Dv8Zqemcuzcol9RnOMZ1\nwBL85+3A4LXMNLPWzrntQZnDgBeAfwA7gR7AI2ZWyzk3KWZbzwJ/wH+G38H/j+oBNAFWJjiW7fD/\nz/4P6O+c21zAsROR0uKc05/+9JfCf8CRwFL8F0aH/yL3DHByXLkX8D8494tZ9htgI/BSzLLJwJpC\n9lcVnxD9FLgnZnlWsP+Xk4x7CpADNC1kP+uB2XHLuwX7GRGzbA3+x9j+Mcs6BuUuiHucUUhMo4My\n1YqIvahj8ERc+fvwX5gteJwelLskyWP1NjA/btn44L2rGTweFGyzR1y5G/A/jg8s7H0CGgXLzywk\njiFBmfRExy3u9X60F3V5j7qHH/+gqJgexf8IaZjgmC0pYn9JPRf/BX4FUCVm2XFBbNkxy24PjnWz\nmGW1gnoce3y6B8+9MG6/A4LlmUXE7YDRhayvFvM5aRezPBuYm8z7Gjy+NUHZ7NjXHLN8DTA55vHT\n+HNRnZhlzYPjE/seJ1VvC3id6cFzh8TVIQf0jFlWM4jloSKOa/Q4HFHAMf8MqB6zrG+wvEvwuC7w\nC/BYgji3AVclUf9dAX9/if+8Jfj7BDg80WczqBNjgE+C5Z2C5S0Le91x2/oYeDy43wD/w3Qc8G1M\nmf8Az8bvP8F7lu/cF9St7UDLmGUHBvu5vrDYEmyralDfHHB2QfHEvLfxdTU9iOWW4ry3+CR0HnBt\nXLkHiKmrFOP/WwGv79YEryPZ/wHRxH3LuHIPB8ehWjE/w9H3NP4c2TVYfnEBr6FKUC8fBj6OWd6r\nqGPA7v9jJwK98QnWR4Gqxakn+tOf/kruT903RFKc8y0j2uGbZt+Gv1JxNvCWmd0YU7QH8IZz7ueY\n5/6Kv1p1QmH7CJrTzjazDcAO/Je1I/FfwOK9nGToJwfxfFPA+qPwX0ifjl3onJsLfJkg5vnOuZ9i\nHv83uI02rf0Mn5R5MGgy2zzJOIFiH4P4gff+i/9h1DhB2WQ8CRxvZi2DWKrhr1xNdbvHgjgFf1zm\nBU1fqwXlZuKvpB4ft83492kD8DnwDzO7NLqvvbQAyDSze4PjVnsvt3My8J0rpLUD/nVPA36Je91v\nAW2Dq4J7/Vwzqwr8FnjBxXSHcs59iP8hHut4fD1cF1NuM/nrwyn4L/YvJnivwH9Wk2ZmNcx3E1lp\nZpvxdfP9YHWi+lkWOgPTnHObogucc2vxCZ5Yxa23ych1MS0igs/IZ+w+F+ytt93uK76Q/xzTGZ/o\nfTrutazDX91N5n39Hl/f4v+eTFD2+GDdccC5wCb8lemCzjNTgFZm9lt8y4D/OOc+SyKmqNnsHvw0\nC/8j/W7gIDM72szqAR3wYxrtrc9iY3LOfY8/JkW+d2Y23HxXiBz8OfqrYFUyn4H4uroGn2CJtkRI\n9r09Dv9je2rc9p+Ne1zc/2/JSPazdAq+hdgXCc57DfEtLaKvOZnPcFT8OfID/PHZNdCpmbU0s2fM\n7Gv8eWo7cAl7vkcn4xMODyfxmvvhz+H3O+cuds4lasEhImVASQkRwTmX55yb45y70Tl3Ir6J5H+B\nUTF9KxuwZ1PkqO/wTeETMj912zR8q4aL2f1F+GMSd89ItI9EGlJ4k/BoU/+CYo7vCrAx9kHMj/W0\n4PEv+FHqv8F3g/jKfH/lIpvK78Ux2Bj3eI9Y9sKL+B8cA4PHJ+MTHLE/VA4EDmX3F73o3/8F6+PH\npNjjuDrnHL6Z8UJ80+lV5scmGL4X8U7BdwE5Dv9Fd6OZvWRx/YuT0BD4uogyB+J/YMW/7rtitrEv\nz22E/0KfaHyU+GVN8D+giip3IL75f07cfqPPLSzmRO7AXwF+Cj8DQyd8M3nY+zq3r5qQ3DErbr1N\nxk8Jlm1l349FUZ/rA4Pbd8j/eo4ludey3Tm3MMFfomO5KFj3f8655/HvfQvg/yXasPPdH+bjz2Hn\nsbsbRrJmAYeY2WH4c+l7zrmv8S3GeuJ/mFfDJy/2VvwxhiTeOzO7En9efwdf9zux+0d4Mu97QXU1\nOiZFsu9tk5jnFrb94v5/S0ayn6UD8e9VfLnn48ol+xkubPmuYxh0oXwbaIvvOtod/3/0MXzSPqoh\nsNEl1wXjHHwXoseTKCsipUhjSohIPs65b8zsEXzf3Jb4LyUbgYMSFD+IxF8Eo87BX3XqE3uVMEh2\n/JygvEsyzOiYBQWJxlRQzAuT3M8uzrklwDnBVaGO+D6wU82srXMuUT/sqOIegxLlnNtkZi/jm/eP\nwicnPg+uREVtwPcNPreAzayJ32yC/XwOXGi+o3pbfP/qiWa2xjk3Hd/kF/wP6lh7/NgKEhwP4lul\n7I9PoozD950+rpCXGu9HoE0RZTbgWwX8s4D1BbXESfa50VYxia4+N8ZfmYz6lt0/XuLLxe93C/5L\neUH7LY7zgCnOuehUwNEfAKVhC/6Kcbz4H1HfUvAxi1XceluebQhuh+DHdohXmlNv4pxbb2Y/4sdv\nKcgU4H58vX6umLt4Dz8OQK/gLzoGwKzg8ZfA18VsfVFSzgPedc7tGoMkGLcoWQXV1WhSNNn3Nppk\naIxveVbQ9kv8/xvJf5Y24BOgfy6gXHScnGQ/w4Utb4xvvQm+xcShQPegRQiQcAyVH4EGwTgTRSUm\nLsPPQJZtZr2cc/nGmxCRsqGWEiIprpBuCNFRqqMzc7wH/D5oYht9bj38YHvvFbKL2vg+srt+xJpZ\nL/a9KfRM4HQreKTxT/FXWc6LXWhmXfBfbAqLuVDOuR3OT7t3E/48Gp1eLXrls1bcU0r6GBS0n8I8\nCRxuZr8DziJ/c+4Z+P6+OQVcaf0x2R05bwm7r7hGEwNfxj2OfqE8mQI4535yzj2Hb85cVIIh3kx8\n0/AzCikzA/8jbHkBr7uwqU6LfG7QHHgB0Nf2nMXkOPIPYPkfoLPtOUNBLfwV7Pj9pgH1C9hvcZMS\ntfGJk1gXJSi3leTr3LYCyn4JHGl+EFIAzKwHftC/WPOB08ysTky55vh+5rFKrN6WgL35XMaah/9x\nekQBr+XTojawL4JzaSMKn971OXyXvX+4YADHZAWtzRbjz8nHsLubxix8d47eFN11Y1+PcUGS/QwU\nJL6uphN0xwoWJfvefohP3MQnBs6Le1wa/9+S/SzNwH8/+KqActEES7Kf4aj4c2RX/ODR0WMY7cYX\nn9g/K247MwHDd+soyq/4QTo/B2YHg3OKSAjUUkJElpnZbPwYAV/gr2KeBvwRP+ZAtF/tLcDp+BHF\n/4n/gf03/BeFMYVsfwZ+VP/JZvY4fhyFmyi6WX1RRuF/rM0zs9uB/+FbTpzinBvonMszs7/jr7Y/\nhW+afjB+3IzPKGZzTTM7HX9V5RX8caqDH8E8wu4vTdER4682s+n4Ee8XUvLHYD3+atV5ZrYU3zXj\nC+fchkKe8w7+Cvqj+Pfsqbj1T+O/hL9rZuPwXUtq4EezPxP4g3Mut6CNm5+d5R78j5b/4QdiG4K/\nohr9obEAP1L+XcGXz634WR1qxm3rIXYf1+/xx2sQu8dMSNZTwKXAM2Z2B/4Lfz38l9DxwVWxv+Nb\nAs0xs/vwVwP3xydADnPODS1k+8k+d1QQ+ytm9iB+9o2byT8V7934bitvmdnN+OPz/4LbXQkt51y2\nmT2Dn1Xg7iCGnfgkx2nA31wBs+gUYAZ+Bp7/4t+7PuyeVSbWCuByM+uPfx8jhfxQXoFPYs7Ad4f4\nJkiWPIv/HD1mfgrQaHeBX+Kefyu+v/dMM7sLXxdvJn8T732qtyUs+vm/wsyewP94Wuqc25bMk51z\nv5rZNcD9ZnYAfjaAX/DnrRPwA4Tmm4UhTg2Lm2o4kOvyz/JznJnl4ROrhwLX4JOnk+KfHBPjT/gx\nh/bWrGA/3zvnoi0GsvEtZRrizyGF2ZtzXzJmAH8zs+vxn6de+IFIk7WZ3XW1Jr6u/oqfcSnp99Y5\n96mZ/RsYE5wjo7NvnBa7s5L+/xZI9rP0L/zsIO+b2b/wCZI6+ERFd+dcNEmQ7Gc4qh57niPvCF5L\ntJvQPPwxvd/MRgX7vBHfMqJ+zLGZbWYvAncHSZBZ+C50PYA3nXPZsTt1zkXM7BT82D2zzax3TN0U\nkbLiysFom/rTn/7C+8MnH17DX8Hcgv+Stxj4K1Ajruxx+B+3OUG5d4FOcWUmEzf7BnAl/of8ZvyX\nrBOJG4WfmNGwixH74fiZQn7E/3D7HPhXXJmB+C9XW/FfZp8EmsSVWQM8lWD7jmCWAvxAWs8Fr2ML\n/mriNOC4mPJV8U2bv8f/SHQlcQxIPLvBH/A/grYTN4NAIcfrrqDsvALWp+HHFlgZHK+NQayj2T2i\nekExHgg8AazCT9O6EX+17ndx5VoHrzsHP5Dc/yP/CPuDgzLfB3F8gf8i/JsiXl+iulc3eN1f4q/e\nf4ufSebAmDLN8FMSfh1T5m1gYBLHNKnnAufjv7xvxTffPjv+/Q/KtQfmBnXsa3zy6h7gp7hyVfDN\npz8Oyv4S3L8T34KisJh31evgcSN8suCn4O9pfF/tPeoVvln4NHzCyEVjJ3H97AosCmKL398w/I+N\nzfgfGh2Im30jKHci/lwU/WwPK+A9LrLeFnAc0hO8xsnAugRl871XBWxzVPC+RVtGpccc81uL2n+w\n/DT8uAq/Bsfof/h+88ckUf9dAX/LYsqNjlu3E5+wfJ385/No2cKOY/T9L3T2jaDsqUHZZ+OWfxxf\nh2L3H7cs4bmPgmeHyVe3EpSphZ/h4gd8/X4DnzCLr7uJ4nH4ZMD1+HGOtuC7deWbBSeZ9xafNH4g\nqMc5+P/P0Zko4utKkf/fCni9+WbfKM5nCZ98/Rf+3LwNf65+n7gZYkjiM8zuz8Hl+MTsD/j/IW8C\nLeK21yvY3mZ8YnREAe9JNfysIauC+KL/r48K1mcR938Mn+SYhU+atCnqGOpPf/or2b/o9HIiIiJS\nzpifveMj4EfnXO+w4xEREREpaeq+ISIiUk6Y2S34q6df4puzX4Ift+K0wp4nIiIiUlEpKSEiIlJ+\nOPxYFU2D+0vxfbmnhxqViIiISClR9w0RERERERERCYWmBBURERERERGRUCgpISIiIiIiIiKhqLBj\nSjRq1Milp6eHHUaxbdq0iTp16oQdhoRM9aBk7dy5E4AqVSpWnlX1QKJUFwRUD2Q31QUB1QPZrSLW\nhUWLFv3onDsgmbIVNimRnp7OwoULww6j2LKzs8nKygo7DAmZ6oGA6oHsprogoHogu6kuCKgeyG4V\nsS6Y2ZfJlq1YlxVFRBKYOHEiEydODDsMEREREREpJiUlRKTCmzp1KlOnTg07DBERERERKSYlJURE\nREREREQkFBV2TIlEtm/fzrp169iyZUvYoRSofv36fPLJJ2GHUeLS0tJo1qwZ1atXDzsUERERERER\nqSAqVVJi3bp11KtXj/T0dMws7HASikQi1KtXL+wwSpRzjg0bNrBu3TpatGgRdjgiIiIiIiJSQVSq\n7htbtmyhYcOG5TYhUVmZGQ0bNizXLVRERERERESk/KlULSUAJSRCouMuYcrOzg47BBERERER2QuV\nqqVEZTB69GjGjh0LwN///nfeeeedkCMSERERERERKR2VrqVEZTJmzJiwQxCpEKKJvL/85S8hRyIi\nIiIiIsWhlhIlbMqUKWRkZNC2bVsGDRrEl19+Se/evcnIyKB3796sXbsWIN/yr776Kt+2hgwZwgsv\nvABAeno6o0aNon379hx77LGsXLkSgB9++IGTTjqJ9u3bM2zYMA499FB+/PHHsnvBIuXAG2+8wRtv\nvBF2GCIiIiIiUkyVt6XEVVfBkiUlu83MTBg/vsDVy5cv57bbbuODDz6gUaNGbNy4kcGDB3PhhRcy\nePBgHnvsMf7617/yxhtv8Kc//WmP5SNGjOCVV14pdPeNGjXio48+YuLEiYwdO5ZHHnmEm2++mV69\nenHdddcxY8YMHnrooZJ9zSIiIiIiIiKlRC0lStCsWbPo27cvjRo1AqBBgwbMnz+fCy64AIBBgwYx\nf/58gHzL586dW+T2+/TpA0CHDh1Ys2YNAHPnzuW8884D4JRTTmH//fcv0dckIiIiIiIiUloqb0uJ\nQlo0lBbnXJGzUBS0PpnZK2rWrAlA1apV2bFjx659ioiIiIiIiFREailRgnr37s3UqVPZsGEDABs3\nbqRLly48++yzADz99NN07twZIN/ybt267dU+u3XrxtSpUwGYOXMmP/30076+DJEKp1atWtSqVSvs\nMEREREREpJgqb0uJELRu3ZobbriBE044gapVq9KuXTsmTJjA0KFDueuuuzjggAO49957AfItf/zx\nx/dqn6NGjeL888/nueee44QTTqBJkybUq1evJF+WSLk3ffr0sEMQEREREZG9oKRECRs8eDCDBw/e\nY9msWbN23Y9EIoCfTSN2edTo0aN33Z88efKu+9ExJAA6duxIdnY2APXr1+ett96iWrVqzJ8/n9mz\nZ+/q5iEiIiIiIiJSnikpUcF99dVXnHvuuezcuZMaNWrw8MMPhx2SSJm75ZZbALjppptCjkRERERE\nRIpDSYkKrmXLlixevDjsMERC9e677wJKSoiIiIiIVDQa6FJEREREREREQqGkhIiIiIiIiIiEQkkJ\nEREREREREQmFxpQQkQqvYcOGYYcgIiIiIiJ7QUmJCqxLly7Mmzcv7DBEQvfiiy+GHYKIiIiIiOwF\ndd8oZ/Ly8pIuq4SEiIiIiIiIVGRlnpQwsz+b2TIzW25mVwXLGpjZ22b2WXC7f1nHVRLuvPNOJkyY\nAMDIkSPp1asX4KcrHDhwIMOHD+eEE06gdevWjBo1atfz0tPTGTNmDN26deP5558nKyuLkSNH0qNH\nD44++mgWLFhAnz59aNmyJTfeeOOu59WtWxeA7OxssrKy6Nu3L61atWLAgAE45wCYNm0arVq1olu3\nbowYMYLTTz+9rA6HSJm57rrruO6668IOQ0REREREiqlMu2+YWRvgUqATsA2YYWZvBsvedc79w8yu\nBa4F/rYv+7rqKliyZF8j3lNmJowfX/D6Hj16MG7cOEaMGMHChQvZunUr27dvZ+7cuXTv3p1+/fpR\nvXp1ateuTe/evVm6dCkZGRkApKWlMXfuXAAmTZpEjRo1mDNnDvfccw9nnXUWixYtokGDBhx++OGM\nHDkyXx/6xYsXs3z5cpo2bUrXrl354IMP6NixI8OGDWPOnDm0aNGC888/v2QPiEg5MX/+/LBDEBER\nERGRvVDWY0ocDfzHOZcLYGbvAWcDZwFZQZkngGz2MSkRhg4dOrBo0SIikQg1a9akffv2LFy4kPff\nf58JEyYwdepUJk2axM6dO/n2229ZsWLFrqRE//7999jWmWeeCcCxxx5L69atadKkCQCHHXYYa9eu\nzZeU6NSpE82aNQMgMzOTNWvWULduXQ477DBatGgBwPnnn89DDz1UqsdApFxYtw4ikSKLfZ27nl93\n5JRBQImt/+y/5LZrQ+36jUKLQURERKS82bED/vc/CBp/p7xffqncQ0GW9atbBtxmZg2BzcBpwEKg\nsXPuWwDn3LdmduC+7qiwFg2lpXr16qSnp/P444/TpUsXMjIymD17NqtXr6ZWrVqMHTuWWbNmccgh\nhzBkyBC2bNmy67l16tTZY1s1a9YEoEqVKrvuRx/v2LEj375jy1StWpUdO3bs6sIhklJWrYKjjiqy\n2GcN4MgRZRBPAf41HTK/g20THqN2w4PDC0TKhcyff4b99gs7DAmZ6oFEqS4IpHY9+PJz+G5t2FGU\nH/WOTYezuoUdRqkp06SEc+4TM/sn8DaQA3wM5P+FXQAzuwy4DKBx48ZkZ2fvsb5+/fpEkrg6WpqO\nO+447rrrLu6//35at27NyJEjyczM5Ntvv6VWrVrUrVuX1atXM23aNI4//ngikQjOOXJycnYlFvLy\n8ti0aRORSITc3Fx27Nix63XFrgMSltm2bRtbtmzh4IMPZvXq1SxbtoxDDz2Up556ao9yJW3Lli35\n3hNJLCcnR8eqBP3888+AH1+l/scf0w5YM2gQm9LTC3zOAr4EpvDHnd05nAPKJM5Y3fmYRu5n8nZW\n3RW/pK68vDzVA1E9kF1UFwRSux5EInWoXq0qTQ/eHHYo5UKkUaRS/3Yo83YgzrlHgUcBzOx2YB2w\n3syaBK0kmgDfF/Dch4CHADp27OiysrL2WP/JJ59Qr169Uoy+aCeeeCJjx46ld+/e1KlTh1q1atGz\nZ0+6dOlChw4d6Ny5M0cccQTdunUjLS2NevXqYWbUrVt3V+xVq1alTp061KtXj9q1a1OtWrWE64CE\nZWrUqEFaWhoHHnggDzzwAH379qVRo0Z06tSJ9evXl9oxSktLo127dqWy7comOjiplIw2bdoA+GO6\nfTsA6ZfblCOJAAAgAElEQVRdBt0Kziiv/d8MeHoKF17yTzo371wWYe7pZtUD2U11QUD1QHZTXRBI\n7Xpww+9h/XpYuDDsSMqHyl4XyjwpYWYHOue+N7NDgD5AZ6AFMBj4R3D7alnHVVJ69+7N9uBHEcCq\nVat23Z88eTKRSCRfUmDNmjV7PI7NgmVlZe1RAWPX5eTkJCxz33337brfs2dPVq5ciXOOK664go4d\nO+7FqxIp35566qndD7Zu9bcxXZoS2bzdZ95rVa9VWmGJiIiIyF7IyYGQrzVLGSrzKUGBF81sBfA6\ncIVz7id8MuIkM/sMOCl4LCXg4YcfJjMzk9atW/PLL78wbNiwsEMSKV3JJiV2BEmJakpKiIiIiJQn\nkQjUrRt2FFJWwui+0T3Bsg1A77KOJRWMHDmSkSNHhh2GSKm66qqrABg/frxaSoiIiIhUcJGIWkqk\nkso9t4iIpIQlS5bsfhBNStSoUehzoi0lalevXVphiYiIiMheUFIitYTRfUNEpPRs2+Zvi2gpkbs9\nF1D3DREREZHyRkmJ1KKkhIhULuq+ISIiIlJh5eVBbq6SEqlESQkRqVyKMdBljao1qGI6DYqIiIiU\nF5s2+VsNdJk69G28AuvSpUvYIYiUC0ceeSRHHnmkf1CMlhLquiEiIiJSvkQi/lYtJVKHBrosZ/Ly\n8qhatWpSZefNm1fK0YhUDA899NDuB1u3ghlUK/z0tnnHZnXdEBERESlnlJRIPWopUYLuvPNOJkyY\nAPipOHv16gXAu+++y8CBAxk+fDgnnHACrVu3ZtSoUbuel56ezpgxY+jWrRvPP/88WVlZjBw5kh49\nenD00UezYMEC+vTpQ8uWLbnxxht3Pa9u0KYpOzubrKws+vbtS6tWrRgwYADOOQCmTZtGq1at6Nat\nGyNGjOD0008vq8MhEo6tW/3MG2aFFsvdnquZN0RERETKmZwcf6ukROqotC0lrppxFUu+W1J0wWLI\nPCiT8aeML3B9jx49GDduHCNGjGDhwoVs3bqV7du3M3fuXLp3706/fv2oXr06tWvXpnfv3ixdupSM\njAwA0tLSmDt3LgCTJk2iRo0azJkzh3vuuYezzjqLRYsW0aBBAw4//HBGjhxJw4YN99j34sWLWb58\nOU2bNqVr16588MEHdOzYkWHDhjFnzhxatGjB+eefX6LHQ6S8uOyyy4CgxcS2bUV23YCgpYS6b4iI\niIiUK9GWEhpTInWopUQJ6tChA4sWLSISiVCzZk06d+7MwoULef/99+nevTtTp06le/futGvXjuXL\nl7NixYpdz+3fv/8e2zrzzDMBOPbYY2ndujVNmjShZs2aHHbYYaxduzbfvjt16kSzZs2oUqUKmZmZ\nrFmzhpUrV3LYYYfRokULACUlpNJatWoVq1at8g+2bk0uKbFd3TdEREREyht130g9lbalRGEtGkpL\n9erVSU9P5/HHH6dLly5kZGQwe/ZsVq9eTa1atRg7diyzZs3ikEMOYciQIWzZsmXXc+vUqbPHtmoG\nP6qqVKmy63708Y4dO/LtO7ZM1apV2bFjx64uHCIpJdmkhFpKiIiIiJQ7SkqkHrWUKGE9evRg7Nix\n9OjRg+7duzNp0iQyMzP59ddfqVOnDvXr12f9+vVMnz691GNp1aoVn3/+OWvWrAHgueeeK/V9ioRO\nLSVEREREKiyNKZF6lJQoYd27d+fbb7+lc+fONG7cmLS0NLp3707btm1p164dnTp1YujQoXTt2rXU\nY6lVqxYTJ07klFNOoVu3bjRu3Jj69euX+n5FQlWMlhIa6FJERESkfNGYEqmn0nbfCEvv3r3Zvn37\nrse7+rkDkydPJhKJUC8u7RdtyRCVnZ29635WVhZZWVkJ1+UEacT4Mvfdd9+u+z179mTlypU457ji\niivo2LHjXrwqkfItMzNz94MkkxK523PVfUNERESknIkmJeJ6t0slpqREJffwww/zxBNPsG3bNtq1\na8ewYcPCDkmkxI0fHzOGzLZtfkrQImzerjElRERERMqbSMS3kqiiNv0pQ0mJSm7kyJGMHDky7DBE\nyk5xBrrUmBIiIiIi5UokovEkUo3yTyJS4Q0cOJCBAwf6B8UZ6FItJURERETKlZwcJSVSjVpKiEiF\nt27dut0Ptm6FRo0KLe+c00CXIiIiIuVQtPuGpA61lBCRyiWJlhJbdmwBUPcNERERkXJG3TdSj5IS\nIlK5JJGU2LxjM4C6b4iIiIiUM0pKpB4lJSqp8ePHk5ubm1TZrKwsFi5cWMoRiZSRZJIS24OkhFpK\niIiIiJQrGlMi9SgpEYK8vLxS30dxkhIiFV3nzp3p3Lmzf5DElKBqKSEiIiJSPmlMidSjpEQJW7Nm\nDa1atWLw4MFkZGTQt29fcnNzSU9PZ8yYMZx88sk8//zzrF69mlNOOYUOHTrQvXt3Vq5cCcDzzz9P\nmzZtaNu2LT169AB8EuOaa67ht7/9LRkZGTz44IMAZGdnk5WVRd++fWnVqhUDBgzAOceECRP45ptv\n6NmzJz179swX4+bNmznvvPPIyMigf//+bN68ede64cOH07FjR1q3bs2oUaMAePfddzn77LN3lXn7\n7bfp06dPqR1DkeK64447uOOOO/yDYrSU0ECXIiIiIuWLum+knko9+0ZWVla+Zeeeey6XX345ubm5\nnHbaafnWDxkyhCFDhvDjjz/St2/fPdZlZ2cntd9PP/2URx99lK5duzJ06FAmTpwIQFpaGjNnzqRe\nvXr07t2bSZMm0bJlSz788EMuv/xyZs2axZgxY3jrrbc4+OCD+fnnnwF49NFHqV+/PgsWLGDr1q10\n7dqVk08+GYDFixezfPlymjZtSteuXfnggw8YMWIEd999N7Nnz6ZRglkIHnjgAWrXrs3SpUtZunQp\n7du337Xutttuo0GDBuTl5dG7d2+WLl1Kr169uOKKK/jhhx844IADePzxx7nooouSOhYiZa44Y0qo\n+4aIiIhIubFzJ2zapKREqlFLiVLQvHlzunbtCsDAgQOZO3cuAP379wcgJyeHefPm0a9fPzIzMxk2\nbBjffvstAF27dmXIkCE8/PDDu7p5zJw5kylTppCZmclxxx3Hhg0b+OyzzwDo1KkTzZo1o0qVKmRm\nZrJmzZoi45szZw4DBw4EICMjg4yMjF3rpk6dSvv27WnXrh3Lly9nxYoVmBmDBg3iqaee4ueff2b+\n/PmceuqpJXOwRErAOeecwznnnAPOJZWUyN3uuzap+4aIiIhI+bFpk79VUiK1VOqWEoW1bKhdu3ah\n6xs1apR0y4h4ZpbwcZ06dQDYuXMn++23H0uWLMn33EmTJvHhhx/y5ptvkpmZyZIlS3DOce+99/K7\n3/1uj7LZ2dnUjPnxVbVqVXbs2JFvmy+//DI333wzAI888kjCGAG++OILxo4dy4IFC9h///0ZMmQI\nW7b4qRMvuugizjjjDNLS0ujXrx/VqlXqqiMVzIYNG/ydHTt8YkIDXYqIiIhUOJGIv9WYEqlFLSVK\nwVdffcX8+fMBeOaZZ+jWrdse63/zm9/QokULnn/+eQCcc3z88ccArF69muOOO44xY8bQqFEj1q5d\ny+9+9zseeOABtm/fDsCqVavYFE0jFqBevXpEgk/12WefzZIlS1iyZAkdO3akR48ePP300wAsW7aM\npUuXAvDrr79Sp04d6tevz/r165k+ffqu7TVt2pSmTZty6623MmTIkH08QiKlZOtWf6spQUVEREQq\nnGhSQi0lUouSEqXg6KOP5oknniAjI4ONGzcyfPjwfGWefvppHn30Udq2bUvr1q159dVXAbjmmms4\n9thjadOmDT169KBt27ZccsklHHPMMbRv3542bdowbNiwhC0iYl122WWceuqpCQe6HD58ODk5OWRk\nZHDnnXfSqVMnANq2bUu7du1o3bo1Q4cO3dUFJWrAgAE0b96cY445Zm8PjUjp2rbN3xY1+4ZaSoiI\niIiUO0pKpCa1wS8FVapUYdKkSXssi471EG290KJFC2bMmJHvuS+99FK+ZWbG7bffzu23377H8qys\nrD0G87zvvvt23b/yyiu58sorE8ZXq1Ytnn322YTrJk+enHA5wNy5c7n00ksLXC8SumK2lNDsGyIi\nIiLlh5ISqUlJCUlKhw4dqFOnDuPGjQs7FJF8evfu7e8kmZTQQJciIiIi5U9Ojr/VmBKpRUmJEpae\nns6yZcvCDqPELVq0KOwQRAp00003+TuffupvNdCliIiISIWjlhKpSWNKiEjlUczuG2nV0ko7IhER\nERFJkpISqanSJSWcc2GHkJJ03CVMp556KqeeemrSSYn1OeupXb02VazSnQJFREREKiwlJVJTpfpG\nnpaWxoYNG/QDuYw559iwYQNpabrqLOHYvHkzmzdvTiop8evWX/n3sn9z5lFnllF0IiIiIpKM6JgS\ndeqEG4eUrUo1pkSzZs1Yt24dP/zwQ9ihFGjLli2V8sd7WloazZo1CzsMSXVJTAn66EeP8uvWX7m6\n89VlFJSIiIiIJCMS8QmJKpXq0rkUpVIlJapXr06LFi3CDqNQ2dnZtGvXLuwwRCqnIlpK7Ni5g/Ef\njqf7Id3p2LRjGQYmIiIiIkWJRNR1IxWVaVLCzI4CnotZdBjwd2A/4FIg2sTheufctLKMTUQqgSKS\nEi+ueJGvfvmKCadMKMOgRERERCQZSkqkpjJNSjjnPgUyAcysKvA18DJwEfAv59zYsoxHRCqH008/\n3d8pJCnhnGPc/HG0bNCSM446owyjExEREZFk5OQoKZGKwuy+0RtY7Zz70sxCDENEKrq//OUv/s6U\nKf42QVJi7ldzWfDNAiaeNlGzboiIiIiUQ5EI1K0bdhRS1sL8Zn4e8EzM4z+Z2VIze8zM9g8rKBGp\nwAppKTFu/jga1mrI4MzBZRyUiIiIiCRD3TdSk4UxfaaZ1QC+AVo759abWWPgR8ABtwBNnHNDEzzv\nMuAygMaNG3d49tlnyzDqkpGTk0Ndpf9SnupBybrqqqsAmHrCCRw5YQIfvPQS2/ffndtcl7uOCxdc\nyMBDBjK0Rb5TS2hUDyRKdUFA9UB2U10QSM16MGhQJ448MsJNN30SdijlSkWsCz179lzknEtqZPmw\num+cCnzknFsPEL0FMLOHgTcSPck59xDwEEDHjh1dVlZW6UdawrKzs6mIcUvJUj0oWfvttx8ARx56\nKABde/WC+vUB2Ja3jd//+/fUqFqDO/vdyUF1DwotzniqBxKluiCgeiC7qS4IpGY9yMuDww+vTVZW\n47BDKVcqe10Iq/vG+cR03TCzJjHrzgaWlXlEIlLxxXXf2Ol2MvTVobzz+TtMOn1SuUpIiIiIiMie\nNKZEairzlhJmVhs4CRgWs/hOM8vEd99YE7dORCQ50aREjRoAXPvOtTz936e5rddtDMkcEl5cIiIi\nIlKonTs1+0aqKvOkhHMuF2gYt2xQWcchIpWMc/Duu77bRpUqzPpiFnfNu4srfnsF13W7LuzoRERE\nRKQQmzb5WyUlUo/mxRORCu/cfv04NzcX5s6Fe+8FYOy8sTSu05hxJ49D0w6LiIiIlG+RiL9VUiL1\nhDXQpYhIibl87VpYuBBuvx0GDWLFDyuY/r/pjMkaQ81q+acHFREREZHyJSfH3yopkXrUUkJEKrb7\n7yf3n/8k95JL4Npr2bx9M5e+fim1qtVi+G+Hhx2diIiIiCQh2lJCA12mHrWUEJGK6+WX4corOa1h\nQ1i1indcHue/eD7z185nar+pNKrdKOwIRURERCQJ6r6RupSUEJGKaf58uOAC6NTJz7ZhxhVvXsGr\nn77KvafeS99j+oYdoYiIiIgkSUmJ1KXuGyJS8axaBWecAc2aweuvQ5UqrPl5DQ999BDXdbuOP3X6\nU9gRioiIiEgxaEyJ1KWWEiJSsaxfD6ecAlWqsH3a61w+/3oWfLOA3G25DMkcwm29bgs7QhEREREp\nJo0pkbqUlBCRiiMnB37/e1i/Hjd7Npcu/wdPfPwEDao1oGGthjx0+kOa/lNERESkAlL3jdSlpISI\nVAw7dkD//rB4Mbz6KjdEXuGJj59g9AmjOfTQQwGoXrV6yEGKiIiIyN5QS4nUpaSEiJRvGzbA+efD\nihXw9dfw4IPcd+Aa7ph+B5e1v4y/n/B3LEutI0REREQqspwcqFMHqmjUw5SjpISIlF+bN/sBLT/6\nCPr0gV69eLHL/ox4vh9nHnUm9//+fsyMH3/8EYBGjTQFqIiIiEhFFImolUSqUlJCRMqnvDwYMAD+\n8x94/nk45xzeW/MeFzx1Mp2bd+bZc56lWhV/Cuvb10//mZ2dHWLAIiIiIrK3IhGNJ5GqlJQQkfLH\nObjqKnj5ZRg/ngcO+Z5/jD+U9TnrOXz/w3n9/NepVb1W2FGKiIiISAlRUiJ1KSkhIuXHtm2+VcSH\nH8J998HVV/NMrwO5/KUL6NK8C2cddRbXdLmGBrUahB2piIiIiJQgJSVSl5ISIlI+7NwJQ4bAM8/4\nxwMG8M4fT2bwM6dzwqEnMGPgDNKqpYUaooiIiIiUjpwcOOigsKOQMCgpISLlw3XX+YTErbfCZZex\neMc6zp7cg1aNWvHKea8oISEiIiJSiUUicMQRYUchYVBSQkTCs307PP20n13j3nvh8suZO7AHH342\nhbvm3UWDWg2YPmA6+6XtV+hmhg8fXkYBi4iIiEhpUPeN1KWkhIiEwzn44x/hscf84379mD7iVM54\noid5Lo+D6h7EjAEzOPg3Bxe5qf79+5dysCIiIiJSmpSUSF1JJyXMrA5wMdADaAhc5pz7zMzOA5Y4\n51aWUowiUpls3gx9+kB2NmzZAjfeCNdcw/9FVtL3iZ5kNM5g2oBpNKzVkOpVqye1ybVr1wLQvHnz\nUgxcRERERErDzp2waZOSEqkqqaSEmTUHsoFmwEqgDRCtMj2BE4FLSiE+EalM8vLgggvgrbdg+HDI\nyGDWSUcwb8kE7vnwHhrXacy0AdM4qG7xRjkaNGgQANnZ2aUQtIiIiIiUptxc34i2bt2wI5EwJNtS\nYhywFWgJfANsi1n3HjC6ZMMSkUrHOfjzn+GVV2DCBLjySl779DXOfupkdrqdNP9Nc94a+FaxExIi\nIiIiUrFFIv5WLSVSU7JJiZPw3TW+MrOqceu+Boru9C0iqWnrVjjnHHjzTf/4L3+BK69k/tr5nPfC\neXRo0oG3B71NvZr1qGJVwo1VRERERMqckhKpLdmkRA0gUsC6+sD2kglHRCqN77+Hhx6COXPg7bfh\nyivh2GPh4ov55IdPOP2Z0zn4Nwfz5gVvUj+tftjRioiIiEhIcnL8rZISqSnZpMRS4BxgRoJ1pwKL\nSiwiEan4IhE45RRYvBjS0uDuu2HkyF2rX175MtWrVOetgW9xQJ0DQgxURERERMIWbSmhMSVSU7JJ\nibuAF8wM4N/BsmPM7Cz8jBxnlkJsIlIRbd8O/frB0qUwbRqcemq+Itd3v55L2l/CgXUOLJFdXn31\n1SWyHREREREpe+q+kdqSSko4514ys8uBfwBDg8VT8F06/uScS9SCQkRSyY8/+gEsP/wQZs6ERx5J\nmJCIKqmEBMAZZ5xRYtsSERERkbKlpERqS7alBM65SWb2JNAZOBDYAMxzzhU01oSIpILt22HjRjjr\nLFiwwP83ueMOuPjiMgvh008/BeCoo44qs32KiIiISMlQUiK1JZ2UAHDObQLeKaVYRKSi+eorOOEE\nWLMGzOCll+APfyjzMIYNGwZAdnZ2me9bRERERPZNdKBLjSmRmgpMSphZj+JsyDk3Z9/DEZEKYdEi\nePxx303jp5/grrugY0fIygo7MhERERGpYDTQZWorrKVENuCC+xZzvyBVSyIgESnnVqyAE0+ErVuh\nSRN4+WXo2TPsqERERESkgopEoHZtqKpflCmpsKRE7K+M/YB7gWXAs8B6oDFwPtAauKK0AhSRcuSb\nb/zglWlpfrrP9PSwIxIRERGRCi4S0XgSqazApIRz7r3ofTObDMx0zl0SV2yKmT0K9AFeL5UIRSR8\nS5bAxIkwZw5s2OBvlZAQERERkRKQk6OkRCpLdqDLs4BzC1j3HL71hIhUNhs3wqpVcMYZsGULNG3q\nB7Ns3z7syPZw4403hh2CiIiIiOylSETjSaSyZJMSVYAjgLcTrGuJxpMQqXxmzvTJiG3boGFDP7jl\nkUeGHVVCJ554YtghiIiIiMheUveN1FYlyXJvAneYWT8zqwpgZlXN7FzgVuCN0gpQRMrYv/8N558P\n55wDrVrBlCmwcGG5TUgALFmyhCVLloQdhoiIiIjsBSUlUluyLSVGAM3xXTV2mNlPwP7B8+cG60Wk\nIlu9GmbPhksv9d00OnaEp56Cgw8OO7IiXXXVVQBkZ2eHG4iIiIiIFFtODhxxRNhRSFiSSko4534E\nupvZScDxQBPgW2C+c+6d4uzQzPYDHgHa4KcZHQp8ik94pANrgHOdcz8VZ7sisg9uuAFuv93f797d\nd91ISws3JhERERFJCRpTIrUl21ICAOfc2yQeV6I47gFmOOf6mlkNoDZwPfCuc+4fZnYtcC3wt33c\nj4gUZscOn4xYssQnIQYNgj594KSTlJAQERERkTKj7huprVhJiX1lZr8BegBDAJxz24BtZnYWkBUU\newLIRkkJkdKxbRssXeqn+Hz8cWjTBv74R7j3XqhWpqcEEREREUlxzmlK0FSX1C8QM9uJ72pRIOdc\nMjNwHAb8ADxuZm2BRcCfgcbOuW+D7XxrZgcmE5eIFNPmzXDiiTBvnn98ww1w663hxiQiIiIiKSs3\n1ycmlJRIXeZcobkGX8hsNPmTEg2Bk4GawGTn3M1JbKcj8B+gq3PuQzO7B/gVuNI5t19MuZ+cc/sn\neP5lwGUAjRs37vDss88WGXt5k5OTQ111mEp5ZV0Pav7wA4dPnEjtL7+kzpo1rL78ciJHHcUvbdqA\nWZnFUVqWLVsGQJs2bUKOpHh0PpAo1QUB1QPZTXVBIHXqwcaNNTjnnC5cddUqzjrrm7DDKZcqYl3o\n2bPnIudcx2TKJpWUKPDJfnrQ14GZzrnxSZQ/CPiPcy49eNwdP37EEUBW0EqiCZDtnDuqsG117NjR\nLVy4cK9jD0t2djZZWVlhhyEhK7N68P33sGIFXHklfPEFZGT42TUuuqj09y1F0vlAolQXBFQPZDfV\nBYHUqQeffeZnnn/ySRg4MOxoyqeKWBfMLOmkxD51IHfO5ZnZROA+oMikhHPuOzNba2ZHOec+BXoD\nK4K/wcA/gttX9yUuEQE+/RS6dIGNG6F6dZg+HXr3DjuqUjEv6I7SpUuXkCMRERERkeKIRPytum+k\nrpIY1a4m0KAY5a8Eng5m3vgcuAioAkw1s4uBr4B+JRCXSOr67js45RQ/cOXrr8PRR8Phh4cdVam5\n/vrrAZ9FFhEREZGKQ0kJSXagy0MSLK4BtMG3bki6H4VzbgmQqBlH5byEK1KW1q+HxYv9AJbffw/v\nvQcdk2o1JSIiIiJS5nJy/K2SEqkr2ZYSa0g8+4YBq4ErSiogEdlLn38OnTv7ZETVqvDaa0pIiIiI\niEi5Fm0pUcHGcZQSlGxSYij5kxJbgC+BBc65vBKNSkSS9957vmXEqlWQlwfTpvnuGunpYUcmIiIi\nIlIodd+QpJISzrnJpRyHiBTXkiWwbBlccQXsvz907QrXXQedOoUdmYiIiIhIUpSUkGTHlPgcONs5\n93GCdW2A15xzh5V0cCJSgBdfhH79wDk4+GB4/31o3jzsqEIzfnyRk/+IiIiISDkUHVNC3TdSV7Ld\nN9Lxs2wkkgYcWiLRiEjh7r4bHnvMT+h8/PFw//1wxBEpn1rOzMwMOwQRERER2QuRCNSq5YdEk9RU\nnClBEw10CX4mjZ9LIBYRSSQvD2bMgA8/hFtu8cmIwYPh9tuhUaOwoysX3nnnHQBOPPHEkCMRERER\nkeKIRFL++lrKKzApYWYjgZHBQwe8bmbb4orVAhoAz5ZOeCIpzjk/ZsSDD/rHp50Gr7wC1auHG1c5\nc+uttwJKSoiIiIhUNEpKSGEtJT4H3g3uDwYWAj/EldkKrAAeKfnQRFLYli0wZAjMnw9ffQVXXw3D\nhsHhh0OVKmFHJyIiIiJSInJylJRIdQUmJZxzrwKvApgZwBjn3BdlFJdIatq4EV5/HV56CV57zQ9m\nOXw4/PWvSkaIiIiISKUTiWiQy1SX7JSgF5V2ICIp79dfoVcv+DiY5GbsWN9CQkRERESkkopE4IAD\nwo5CwlTYmBJ/Bx5xzn0T3C+Mc87dUrKhiaSI//3Pt4j44gvYtMm3kujWTWdnEREREan0IhE47LCw\no5AwFdZSYjQwA/gmuF8YBygpIVIcy5bBe+/Bv/4FP/8M554Lf/iDH8xSiuXB6ECgIiIiIlKhaKBL\nKWxMiSqJ7ovIvqv72Wdwxhm7R/aZOdNP9Sl75aijjgo7BBERERHZCzk5GlMi1SWVbDCzQ8ws4RyE\nZlbNzA4p2bBEKqkXXoAmTWh/+eWw//7wySfw3XdKSOyj119/nddffz3sMERERESkGJzT7BuSZFIC\n+AJoV8C6tsF6ESlMdjYMGABNm/J1nz4waxa0agW1a4cdWYU3btw4xo0bF3YYIiIiIlIMubmwc6eS\nEqkuqdk3ACtkXXVgZwnEIlJ5LV/ux4s4/HB4+21WL11K8yOOCDsqEREREZHQRCL+VkmJ1FbY7Bv7\nAQ1iFh1sZvHjotYCBgPflUJsIhXfa6/BRRf5gSwbN4bp06FBg6KfJyIiIiJSyeXk+FslJVJbYS0l\n/gyMws+s4YAXCihnQTkRiXr1VVi0CO66y3fR+OMf4cIL4dBDw45MRERERKRciLaU0ECXqa2wpMQr\nwBp80uEx4FZgdVyZrcAK59zSUolOpKJxDiZPhqFD/eNjj/UzaxxwQKhhiYiIiIiUN+q+IVD4lKAf\nAx8DmJkD3nDObSirwEQqFOfgb3+DsWP9/ZNPhldegbQ0sMKGZJGS8OSTT4YdgoiIiIgUk5ISAkkO\ndCgn0YUAACAASURBVOmce6K0AxGpkLZuhYkTYckSmDIF+vXz03teeinUqhV2dCmjefPmYYcgIiIi\nIsWkMSUEkp99AzNrA1wMHAWkxa12zrneJRmYSLm3c6cfxPKZZ6BaNd9l4+GHoUqyM+1KSXnuuecA\n6N+/f8iRiIiIiEiyNKaEQJJJCTM7DngPP8ZES2ApsD9wCLAO+F8pxSdSfl13nU9I3HEHXHtt2NGk\ntAceeABQUkJERESkIlH3DQFI9pLu7cBLQGv8wJcXO+fSgROBqvhBMEUqv+3b/YwaF14Id94Jw4f7\nsSRERERERKRY1FJCIPnuGxnAYPzUoOATETjnZpnZrcAdwHElH55IOeEcbNwIf/0rPPaYT+cOGgT3\n3quBLEVERERE9kIk4odhq5b0oAJSGSX79lcHNjnndprZRqBJzLpPgTYlHplIeZGbC6eeCnPm+Md/\n/zvcfHO4MYmIiIiIVHA5OWolIcknJVYDBwf3lwJDzeyN4PFFwHclHZhIuZCXBwMGwPvvw003wbHH\nQt++YUclIiIiIlLhRSIaT0KST0q8DmQB/8aPL/Em8CuQB9QFRpRGcCKh2bkTvvnGD2L5yiswYQJc\neWXYUUkBXnjhhbBDEBEREZFiUlJCIMmkhHNudMz9d8zseOAcoDYwwzk3s3TCEwnB1q3w+9/Du+/6\nx9dco4REOdeoUaOwQxARERGRYlJSQiD5lhJ7cM4tBhaXcCwi4fruO7jtNvjoI5g3z48dkZkJZ50V\ndmRShMmTJwMwZMiQUOMQERERkeTl5ICuLYnGORUBn6Y97TRYvhwOPtjPqvGnP4UdlSRJSQkRERGR\niicSgfT0sKOQsBWYlDCzL9g9BWhRnHPu8JIJSaSMbd8O/f5/e3cfb2k9Ln78c6lmUp1MSlMqSkro\nMDQn4chQHkqSp9ShU/EzpBDiqFNHJB0ROY4Q0knUDOEoJSW7okJp9HBoSqFBpfSw9pkezMz1++O+\n19mr3Vp7rz374bv3Wp/367Vea+37vtda11r7eq2972td3+/39XDNNXD22dVKG5IkSZImlcM3BCN3\nSlxM90UJaeb5y1+qFTWuuQYuvxy+8hULEpIkSdIUsSghGKEokZkHTGEc0tRavhxe+Uq4+mrYemv4\n1KfgzW8uHZUkSZLUFzKrOSUsSsg5JdR/Vq6EffeFn/8cvv1t2Guv0hFJkiRJfeX++2HVKlhvvdKR\nqLQiRYmIWAO4EvhjZu4REacCLwTurQ85IDOXlIhNPezuu6vlPa+7Dn72M/jP/7Qg0SPOPffc0iFI\nkiRpDBqN6tpOCZXqlHg38Gtg/ZZt78/MbxWKR73ugQeqAsTll8P228Pxx8PBB5eOShNknXXWKR2C\nJEmSxsCihJqmvCgREZsDrwCOBd471c+vPrRqFey/P1xyCZxxBuyzT+mINMFOOukkAN7xjncUjkSS\nJEndGBysri1K6FEFnvNE4APAqmHbj42IayLi0xExu0Bc6jX33QcHHgjPeQ4sXgyf+IQFiR61ePFi\nFi9eXDoMSZIkdanZKeGcEprSTomI2AO4IzOviogFLbsOB24DZgEnA/8CfKTN/RcCCwHmzp3LwMDA\nZIc84QYHB2dk3DNN/O1v/P0RRzDn6qtpbLcdd/2//8cfdtgBpsl7bx5MrHvuuQdgxr2n5oGazAWB\neaAh5oKg9/PgiiseCzyDpUuvYs01G6XDmdZ6PRe6LkpExGbA+4CdgccCe2bmdRFxKHB5Zv6si4d5\nPrBnROwOrA2sHxGnZ+ab6v0PRsRXgcPa3TkzT6YqWjB//vxcsGBBt+FPGwMDA8zEuGeUTDjgALjy\nSvjqV3nMAQfwGOBJpeNqYR5MrDlz5gDMuPfUPFCTuSAwDzTEXBD0fh7cfnt1vWDBDjztaWVjme56\nPRe6Gr4REU8HrgX2A/4EPJGqq4H69ru7eZzMPDwzN8/MLYF9gIsy800RsWn9PAHsBVw3lhchPcxR\nR8Fpp8FHPlIVJyRJkiRNK050qaZuOyVOoFot42XAA8BDLfsuAz4+zji+HhGPAwJYArx9nI+nfvXF\nL8Kxx8Jb3wpHHlk6GkmSJEltONGlmrotSvwjsG9mDkbEGsP23Q5sMtYnzswBYKC+/eKx3l96hHPO\ngXe8A3bfHU46CSJKR6Qp0stj7CRJknqRE12qqdvVN4avlNFqI+D+CYhFWj0nnQQ77ACvfz08+9mw\naBGsOeWr3UqSJEnqUqMBa6/tv+3qvijxc+DADvv2Bn46MeFIY3TaaXDwwdXtvfeuuiUst/adT37y\nk3zyk58sHYYkSZK61Gg4dEOVbutSxwAXRsQPgW8ACewaEe8GXk21Ioc0tS64AN7yFthlFzj3XJg1\na/T7qCedc845ABx2WNuFeyRJkjTNDA5alFClq06JzLyYalWMrYBTqCak/HfgBcBeXS4HKk2cJUvg\nta+Fpz0NzjrLgoQkSZI0gzQaNjir0vUInsz8PvD9iHgysDFwV2beMGmRSZ38/vfVZJZz5lQdEo95\nTOmIJEmSJI2BwzfUNOZpRTLzJuCmSYhFGt3dd8Nuu8Hy5fDTn8Jmm5WOSJIkSdIYNRqw4Yalo9B0\n0FVRIiL+eYTdq4B7gaszc9mERCW188ADsNde8Nvfwvnnw9OfXjoiTROPfvSjS4cgSZKkMRgchC23\nLB2FpoNuOyVOpZrcEqr5JJpat62KiEXAgZn50MSEJ9VWrYL994dLLoEzzoAFC0pHpGnkvPPOKx2C\nJEmSxsA5JdTU7ZKgzwd+D/wn8EJgu/r6JOAPwCuAw6lW4jh6wqOU3v9+WLwYPvEJ2Gef0tFIkiRJ\nGgfnlFBTt50ShwFnZuYRLduWApdGRANYmJmvjoj1gTcCR7R7EGm1nHgifOpT8K53wfveVzoaTUPH\nHHMMAEcddVThSCRJkjSaTIsSGtJtp8RLgB912HcRsEt9+xLAmQc1cc46C977XnjNa6rCRMTo91Hf\n+dGPfsSPftTpI0qSJEnTyf33V6OzLUoIui9KPATs0GHfDvX+5uP973iDkoDq0+rtb4d/+Ac4/XRY\nY43SEUmSJEkap8HB6to5JQTdD9/4JvDhiFgJfAu4A9gYeD3VHBKn1MfNA26Y4BjVr77+dbjzzmou\nCVdXkCRJknpCo1Fd2ykh6L4o8V7g74Dj60urbwDNgf7XAZdPTGjqa6tWVXNJPPOZrrQhSZIk9RCL\nEmrVVVEiM+8H3hQRHwGeA2wK/Bn4WWYubTnu+5MSpfrPBz4A119fdUs4j4RGseGGG5YOQZIkSV2y\nKKFW3XZKAFAXIJaOeqA0HosWwQknwCGHwL77lo5GM8BZZ51VOgRJkiR1qTmnhEUJwQhFiYh4wlge\nKDP/MP5w1Pcy4bjj4OlPr4Zv2CUhSZIk9ZRmp4QTXQpG7pT4HZBjeCyXRtD4DQzAr34FX/6yq22o\na4cffjgAxx13XOFIJEmSNBqHb6jVSEWJNzNUlJgNHAncBywGbgc2AfammgDzmEmMUf3k05+Gxz0O\n3vjG0pFoBrn8cufXlSRJmiksSqhVx6JEZp7avB0RJwK/BF6dmdmy/SPAd4GnTWKM6hdLl8LZZ8OH\nPgRrr106GkmSJEmToDmnhMM3BPCoLo/bF/hia0ECoP75C8A/TXRg6kOf+QzMmgUHHVQ6EkmSJEmT\npNGA2bNhrbVKR6LpoNuixHrA4zrs2xhYd2LCUd964AE49dRq2MbcuaWjkSRJkjRJGg2HbmhIt0uC\nDgAfi4hfZ+YvmhsjYkfg2Hq/tPpuugmWL4eXvKR0JJqBNt9889IhSJIkqUsWJdSq26LEIcCFwBUR\ncSvVRJdzgS2AW+r90uq78cbqettty8ahGen0008vHYIkSZK6ZFFCrboqSmTmLRGxHXAAsBOwKXAd\ncDnwX5n5t0mLUP1h6dLqepttysYhSZIkaVINDjrJpYZ02ylBXXj4Un2RJtbSpbDJJrD++qUj0Qx0\n6KGHAnDiiScWjkSSJEmjaTRggw1KR6HpouuiBEBEPAPYGdiQajWO2yLiycDtmdmYjADVJ2680S4J\nrbYlS5aUDkGSJEldajTgCU8oHYWmi66KEhExGzgdeA0QQAJnA7cBxwNLgQ9OUozqB0uXwh57lI5C\nkiRJ0iRzTgm16nZJ0GOBXYH9qCa4jJZ95wEvm+C41E/uuw9uv91JLiVJkqQ+MDhoUUJDuh2+sS9w\nZGZ+IyLWGLbvFmDLCY1K/cWVNyRJkqS+kFl1SjjRpZq6LUpsCPy6w75HAbMnJhz1pZtvrq633rps\nHJqxtrWgJUmSNCM88ACsXGmnhIZ0W5S4BXgucFGbfTsCN0xYROo/999fXa+7btk4NGOdfPLJpUOQ\nJElSFxr18ggWJdTU7ZwSpwEfjIg3ArPqbRkRLwLeA5wyGcGpT6xcWV2vOabFYCRJkiTNMIOD1bVF\nCTV1W5Q4Hvg+8DXgr/W2nwAXAj/IzM9OQmzqFytWVNdrDJ+uROrOwoULWbhwYekwJEmSNIpmp4Rz\nSqipq6+mM3MlsE9EfI5qpY2NgbuoChIXT2J86gfNTgmLElpNS5cuLR2CJEmSuuDwDQ03pn75zLwU\nuHSSYlG/anZKOHxDkiRJ6mkWJTRct8M3JkRErB0RP4+IX0XE9RHx4Xr7VhHxs4i4MSIWRcSs0R5L\nPcROCUmSJKkvOKeEhpvSogTwIPDizHwmMA94eUTsBHwc+HRmbgPcDbxliuNSSU50KUmSJPUF55TQ\ncFNalMhKXRtjrfqSwIuBb9Xb/wvYayrjUmFOdKlxmjdvHvPmzSsdhiRJkkbh8A0NF5k5tU8YsQZw\nFfBk4HPAJ4ArMvPJ9f4tgPMyc/s2910ILASYO3fuDmeeeeaUxT1RBgcHWc+y4MM84etf50lf/jIX\nn38+Oas/Ru6YBwLzQEPMBYF5oCHmgqB38+BrX3sip5yyFRdccDFrrjm156Iz1UzMhRe96EVXZeb8\nbo6d8n75eiWPeRExB/gO8NR2h3W478nAyQDz58/PBQsWTFaYk2ZgYICZGPekurSaO/WFu+zSN90S\n5oHAPNAQc0FgHmiIuSDo3Tw47zyYPRt23fWFpUOZMXo1F5rGVJSIiGcAOwMbAl/MzNsi4snA7ZnZ\nGMtjZeY9ETEA7ATMiYg1M3MFsDnwp7E8lma45pwSj5rqKU7UK970pjcBcPrppxeORJIkSSMZHHTo\nhh6uq7PAiJgdEd8Ergb+A/g34PH17uOBf+3ycR5Xd0gQEY8GdgV+DfwYeF192P7Af3f7AtQDVqyo\nOiQiSkeiGWrZsmUsW7asdBiSJEkaRaPhJJd6uG6/mj6WqoCwHzAXaD17PA94WZePsynw44i4BvgF\ncEFmngP8C/DeiLiJqgvjK10+nnrBypV9M2xDkiRJ6meNhp0Serhuh2/sCxyZmd+oJ6psdQuwZTcP\nkpnXAM9qs/1mYMcuY1GvWbnS5UAlSZKkPmBRQsN12ymxIdUwi06PMXtiwlFfag7fkCRJktTTnFNC\nw3X79fQtwHOBi9rs2xG4YcIiUv9x+IbG6bnPfW7pECRJktSFRgM237x0FJpOui1KnAYcERG/A75d\nb8uIeBHwHuDoiQ9NfWPFCodvaFyOO+640iFIkiSpCw7f0HDdDt84Hvg+8DXgr/W2nwAXAj/IzM9O\nQmzqF3ZKSJIkSX3BooSG6+rr6cxcCewTEZ+jWmljY+AuqoLExZMYn/qBnRIap9e+9rUAnHXWWYUj\nkSRJUieZzimhRxrTmWBmXgpcOkmxqF/ZKaFxuuuuu0qHIEmSpFE8+GD1feR665WORNNJV8M3ImKP\niDikw76DI2L3iQ1LfcUlQSVJkqSe12hU13ZKqFW3c0ocBazbYd+j6/3S6nFJUEmSJKnnWZRQO90W\nJbYDftlh3xLgqRMTjvqSwzckSZKknmdRQu102zP/KKDTyJ+/A9aamHDUl5zoUuO0yy67lA5BkiRJ\noxgcrK6dU0Ktuj0T/BXwRuA7bfa9EbhmwiJS/7FTQuN01FGOIJMkSZru7JRQO90WJU4AzoqIbwJf\nApYBmwELgVcDr5+c8NQX7JSQJEmSep5FCbXT1ZlgZn4nIt4NHAu8pt4cwCDwrsz89iTFp35gp4TG\nabfddgPgvPPOKxyJJEmSOrEooXa6/no6Mz8bEacCzwM2BO4ELsvMwUmKTf3CJUE1Tvfff3/pECRJ\nkjSK5pwSFiXUakxngpnZAM6fpFjUr1wSVJIkSep5zU4JJ7pUq45FiYh40lgeKDNvHn846ksO35Ak\nSZJ6XqMBs2ZVF6lppE6Jm4Acw2N5VqnVs2IFrLNO6SgkSZIkTaJGw6EbeqSRihIHTlkU6m92Smic\n9thjj9IhSJIkaRSDgxYl9EgdixKZ+V9TGYj6mEuCapwOO+yw0iFIkiRpFI2G80nokR5VOgDJTglJ\nkiSp9zl8Q+1YlFB5LgmqcVqwYAELFiwoHYYkSZJGYFFC7ViUUHkuCSpJkiT1PIsSaseihMpz+IYk\nSZLU8wYHnVNCj2RRQuU50aUkSZLU8+yUUDsWJVSenRKSJElST8u0KKH2/Hpa5dkpoXHae++9S4cg\nSZKkETz4YPVvv0UJDeeZoMqzU0Lj9I53vKN0CJIkSRrB4GB1bVFCwzl8Q+XZKaFxWr58OcuXLy8d\nhiRJkjpoNKprJ7rUcJ4Jqjw7JTROu+++OwADAwNlA5EkSVJbzaKEnRIazk4JlWdRQpIkSeppFiXU\niUUJlefwDUmSJKmnOaeEOrEoofLslJAkSZJ6mnNKqBOLEirPTglJkiSppzl8Q514JqiyMu2U0Lgd\ncMABpUOQJEnSCCxKqBOLEipr1arq2k4JjYNFCUmSpOnNooQ6mdLhGxFxSkTcERHXtWw7OiL+GBFL\n6svuUxmTClu5srq2U0LjcOedd3LnnXeWDkOSJEkdDA7CWmvBrFmlI9F0M9VzSpwKvLzN9k9n5rz6\ncu4Ux6SSLEpoArzuda/jda97XekwJEmS1EGjYZeE2pvSokRmXgL8dSqfU9PcihXVtcM3JEmSpJ5l\nUUKdTJfVNw6JiGvq4R0blA5GU8hOCUmSJKnnWZRQJ9Ph6+nPA8cAWV+fALy53YERsRBYCDB37lwG\nBgamKMSJMzg4OCPjnixr3XsvzwduvOUW/thH74t5MLHuuecegBn3npoHajIXBOaBhpgLgt7Lg1tv\nfQaZazAwcHXpUGacXsuF4YoXJTLz9ubtiPgScM4Ix54MnAwwf/78XLBgwaTHN9EGBgaYiXFPmtur\nX/82223HNn30vpgHE2vOnDkAM+49NQ/UZC4IzAMNMRcEvZcHa64Jj3/8zPt/bTrotVwYrnhRIiI2\nzcw/1z++GrhupOPVY5pzSjh8Q+Nw0EEHlQ5BkiRJI2g0qqKENNyUFiUi4gxgAbBRRCwDPgQsiIh5\nVMM3fge8bSpjUmHNOSWc6FLj8IY3vKF0CJIkSRqBc0qokyk9E8zMfdts/spUxqBpxokuNQFuvfVW\nALbYYovCkUiSJKmdwUGLEmrPr6dVlkuCagLst99+wMyb6FKSJKlfNBqw3nqlo9B0NF2WBFW/slNC\nkiRJ6mkPPgh/+5udEmrPooTKslNCkiRJ6mmNRnVtUULtWJRQWXZKSJIkST1tcLC6tiihdixKqCyX\nBJUkSZJ6WrNTwjkl1I498yrLJUE1Ad73vveVDkGSJEkdOHxDI/FMUGU5fEMT4JWvfGXpECRJktSB\nRQmNxOEbKsuJLjUBbrjhBm644YbSYUiSJKkNixIaiWeCKstOCU2At73tbQAMDAyUDUSSJEmP0Jzo\n0jkl1I6dEirLTglJkiSpp9kpoZFYlFBZdkpIkiRJPc2ihEZiUUJluSSoJEmS1NMaDVhrLZg9u3Qk\nmo4sSqgslwSVJEmSetrgoF0S6swzQZXl8A1NgCOPPLJ0CJIkSeqg0XCSS3VmUUJlOdGlJsCuu+5a\nOgRJkiR10GjYKaHOHL6hsuyU0ARYsmQJS5YsKR2GJEmS2rAooZH49bTKslNCE+DQQw8FYGBgoGwg\nkiRJegTnlNBI7JRQWXZKSJIkST3NOSU0EosSKsslQSVJkqSe5vANjcSihMpySVBJkiSpp1mU0Egs\nSqgsh29IkiRJPc2ihEbi19Mqy4kuNQE+9rGPlQ5BkiRJbTz0EPztb84poc48E1RZdkpoAjzvec8r\nHYIkSZLaaDSqazsl1InDN1SWnRKaAJdddhmXXXZZ6TAkSZI0jEUJjcYzQZVlp4QmwBFHHAHAwMBA\n2UAkSZL0MBYlNBo7JVSWS4JKkiRJPWtwsLq2KKFOLEqoLJcElSRJknpWs1PCiS7ViUUJldUsSjzK\nVJQkSZJ6jcM3NBrPBFXWihV2SUiSJEk9yqKERuPZoMpaudL5JDRuJ554YukQJEmS1IZzSmg0FiVU\nlp0SmgDz5s0rHYIkSZLacE4JjcbhGyrLTglNgAsvvJALL7ywdBiSJEkaptGovoOcPbt0JJqu/Ipa\nZa1YYVFC4/bRj34UgF133bVwJJIkSWrVaFRDNyJKR6Lpyk4JlbVypcM3JEmSpB7VLEpInViUUFkO\n35AkSZJ61uCg80loZBYlVJYTXUqSJEk9y04JjWbaFCUi4uURcUNE3BQRHywdj6aInRKSJElSz7Io\nodFMi6+oI2IN4HPAS4BlwC8i4nuZ+T9lI9Okc6JLTYAvfvGLpUOQJElSG40GbLJJ6Sg0nU2LogSw\nI3BTZt4MEBFnAq8CeqcoMTjIof90Bz+9bivWXffO0tFMH7e+Dx56CBaUDmRq3XPPPObMKR1FL3lK\n6QDG7KGHALbn8MNLR6Lp4NprN/y/ddzVv8wDNZkLgt7Jg7/8BZ71rNJRaDqbLkWJzYBbW35eBjxn\n+EERsRBYCDB37lwGBgamJLiJ8Ohly+DsO1mXeaVDmXZWrLMOg/fcUzqMKbVy5Uru6bPXPJnuvfc8\nAB7zmN0KR9K9RmNNbr55I/bcs3Qkmh7+vnQAmhbMAzWZC4JeyoMVK/7AwMDNpcOYsQYHB2fUue9Y\nTZeiRLtVa/MRGzJPBk4GmD9/fi5YsGCSw5pADzzAc556PVdeeSXz588vHc308qQnwQb91TYwMDDA\njMrfaW7Bgmr4xsDAvoUj6d5998EZZ/h5oIp/GwTmgYaYC4LeyYMI2H77JzBr1hNKhzJj9fq5w3Qp\nSiwDtmj5eXPgT4VimRxrrw077MBgowE77FA6GkmFrb8+POUpg34cCIBGw1yQeaAh5oLAPFD/mC6r\nb/wC2CYitoqIWcA+wPcKxyRJkiRJkibRtOiUyMwVEXEIcD6wBnBKZl5fOCxJkiRJkjSJpkVRAiAz\nzwXOLR2HJEmSJEmaGtOmKCFJq+trX/ta6RAkSZIkrQaLEpJmvC222GL0gyRJkiRNO9NloktJWm2L\nFi1i0aJFpcOQJEmSNEZ2Skia8T7/+c8D8IY3vKFwJJIkSZLGwk4JSZIkSZJUhEUJSZIkSZJUhEUJ\nSZIkSZJUhEUJSZIkSZJUhBNdSprxvvWtb5UOQZIkSdJqsCghacbbaKONSocgSZIkaTU4fEPSjHfq\nqady6qmnlg5DkiRJ0hhZlJA041mUkCRJkmYmixKSJEmSJKkIixKSJEmSJKkIixKSJEmSJKkIixKS\nJEmSJKkIlwSVNOOde+65pUOQJEmStBosSkia8dZZZ53SIUiSJElaDQ7fkDTjnXTSSZx00kmlw5Ak\nSZI0RhYlJM14ixcvZvHixaXDkCRJkjRGFiUkSZIkSVIRFiUkSZIkSVIRFiUkSZIkSVIRFiUkSZIk\nSVIRkZmlY1gtEfEX4Pel41gNGwF3lg5CxZkHAvNAQ8wFgXmgIeaCwDzQkJmYC0/MzMd1c+CMLUrM\nVBFxZWbOLx2HyjIPBOaBhpgLAvNAQ8wFgXmgIb2eCw7fkCRJkiRJRViUkCRJkiRJRViUmHonlw5A\n04J5IDAPNMRcEJgHGmIuCMwDDenpXHBOCUmSJEmSVISdEpIkSZIkqQiLEuMUEadExB0RcV3Ltk9E\nxG8i4pqI+E5EzGnZd3hE3BQRN0TEy1q2v7zedlNEfHCqX4fGr0MuHFPnwZKI+GFEPL7eHhHxH/Xv\n+5qIeHbLffaPiBvry/4lXotWX7s8aNl3WERkRGxU/2we9KgOnwdHR8Qf68+DJRGxe8s+/zb0qE6f\nCRHxzvp3e31EHN+y3VzoQR0+Exa1fB78LiKWtOwzD3pUh1yYFxFX1LlwZUTsWG/3/4Qe1SEPnhkR\nl0fEtRFxdkSs37Kvtz8TMtPLOC7AzsCzgetatr0UWLO+/XHg4/XtpwG/AmYDWwG/BdaoL78FngTM\nqo95WunX5mVCcmH9ltvvAr5Q394dOA8IYCfgZ/X2xwI319cb1Lc3KP3avIwvD+rtWwDnA78HNjIP\nevvS4fPgaOCwNsf6t6GHLx1y4UXAhcDs+ueNzYXevnT629Cy/wTg38yD3r90+Ez4IbBbfXt3YKDl\ntv8n9OClQx78AnhhffvNwDH17Z7/TLBTYpwy8xLgr8O2/TAzV9Q/XgFsXt9+FXBmZj6YmbcANwE7\n1pebMvPmzHwIOLM+VjNIh1y4r+XHdYHmJC6vAk7LyhXAnIjYFHgZcEFm/jUz7wYuAF4++dFrorTL\ng9qngQ8wlANgHvSsEfKgHf829LAOuXAQ8O+Z+WB9zB31dnOhR430mRARAewNnFFvMg96WIdcSKD5\nrfhjgD/Vt/0/oUd1yIOnAJfUty8AXlvf7vnPBIsSk+/NVBVOgM2AW1v2Lau3ddquHhARx0bErcAb\ngX+rN5sLfSQi9gT+mJm/GrbLPOg/h9QtuKdExAb1NvOg/2wLvCAifhYRF0fEP9TbzYX+9ALg9sy8\nsf7ZPOg/hwKfqP9f/CRweL3dXOgv1wF71rdfT9VlC32QBxYlJlFE/CuwAvh6c1Obw3KE7eoBmfmv\nmbkFVR4cUm82F/pERKwD/CtDBamH7W6zzTzoXZ8HtgbmAX+matcG86AfrUnVcr0T8H5gcf1t7wE3\nMwAACqBJREFUubnQn/ZlqEsCzIN+dBDwnvr/xfcAX6m3mwv95c3AwRFxFfB3wEP19p7PA4sSk6Se\ncGYP4I1ZDwaiql5t0XLY5lTtWZ22q7d8g6E2LHOhf2xNNf7vVxHxO6rf6S8jYhPMg76Smbdn5srM\nXAV8iartEsyDfrQM+Hbdkv1zYBWwEeZC34mINYHXAItaNpsH/Wd/4Nv17W/i34e+lJm/ycyXZuYO\nVIXK39a7ej4PLEpMgoh4OfAvwJ6Zubxl1/eAfSJidkRsBWwD/JxqUpNtImKriJgF7FMfqxkuIrZp\n+XFP4Df17e8B/1zPqrwTcG9m/plqIsSXRsQGdWv3S+ttmqEy89rM3Dgzt8zMLan+gDw7M2/DPOgr\n9TjgpldTtWmCfxv60XeBFwNExLZUE5TdibnQj3YFfpOZy1q2mQf950/AC+vbLwaaQ3n8P6GPRMTG\n9fWjgCOBL9S7ev4zYc3SAcx0EXEGsADYKCKWAR+iGgc2G7ig6sbkisx8e2ZeHxGLgf+hGtZxcGau\nrB/nEKoPkzWAUzLz+il/MRqXDrmwe0Q8hepbsN8Db68PP5dqRuWbgOXAgQCZ+deIOIbqQwbgI5nZ\n7WR5mgba5UFmfqXD4eZBj+rwebAgIuZRtVb+DngbgH8beluHXDgFOKVeCu4hYP+6q9Jc6FEj/G3Y\nh4cP3fAzocd1+Ex4K/CZunPmAWBhfbj/J/SoDnmwXkQcXB/ybeCr0B+fCTE0skCSJEmSJGnqOHxD\nkiRJkiQVYVFCkiRJkiQVYVFCkiRJkiQVYVFCkiRJkiQVYVFCkiRJkiQVYVFCkiRJkiQVYVFCkiRJ\nkiQVYVFCkiRphouItSPiuxHx64hYEhHnR8STSsclSdJoLEpIkiT1hs9n5lMzcx5wNvDl0gFJkjQa\nixKSJI0gIvaKiEsi4o6IuD8ifl9/I/3yMT7O0RGRkxXndFa/h++drs8VEZ+NiLPr2/tGREbEzsOO\nmVtvv73N/Q+u920/vuhXX2Y+kJnnt2y6AnhYp0REvCcirokI//+TJE0b/lGSJKmDiHgX8B3gRuAt\nwCuAj9a7X1wqrhloL2BKihJjfa6I2Bp4G/DhetPF9fXOww7dGVgObBwR27XZdxdw/ZijnTzvBP57\n2LYvABsD+099OJIktbdm6QAkSZrGDgO+m5lvadl2EfCl0t82R8TszHywZAw94lDgV5l5JUBm/iki\nbqZ9UeIi4Kn17d+07HsBcGlmTlonTET8EnhCh93PysxbW449HNgW2KX1oMy8PyJOo8rrr05WrJIk\njYWdEpIkdfZY4LZ2OzJzVevPEfHyiLi8HuJxbz3E4ykjPXhEPDkivhYRt9T3uzkiPh8RGww77ujm\n8IB6AsNBYPEIj/vMiPhORNxVP+4N9YnqmOJted5tIuL7ETFYD1/5t9aiTERsWz/fHRHxQET8ISK+\nGRFrRsSpVN/Mb1Y/VkbE78bxHnSMZbTnavM+zQbeBHxj2K6LgedGROuXNzsDlwI/oaVgERHbAJsC\nl3R6nmHxb1f/Dv+3fp8OrPfvFxG/qV/Xj+sOjv+Tmc/OzI06XFoLEocBrwV2y8zlbUI5E3haRDxv\npHglSZoqFiUkSers58D+EfH+iNi200H1/BLfBwaBNwAHAdsDP4mIzUZ4/McDy6i+rX8Z8BGqb7fP\n7XD8f1OdMO8JfLpDLDsClwNbA++hGnLyKWDzccT7Haougb2A71INdWgdAnAOsFn9OC8DPgg8SPV/\nxjH16/kL8Nz68upxvAcjxTLacw23EzCHqtjQ6hJgPeDZABExh+r9ubS+tHZR7Nxyn258k+q93wu4\nCjglIj5G9d59EDgQeAqPLJSMqp5LY1/gJZl5T4fDlgD3AWOaE0WSpMni8A1Jkjp7O/At4Hjg+Ii4\nC7gA+Gpm/rDluI8CN1N9O70CICIuB5YC76PDHAeZeQktJ7MRcRlwE3BpRDwrM68edpf/yMzPjBLz\nJ6nmN9ip5Zvyi4YdM9Z4T8jMZrv/hRHxYqqT369GxEbANsCrMvN7LfdpnlT/NiL+AjyUmVcMD3Y1\n3oOOsWTmiM/Vxk5AAtcM296MZ2eqwtQLqIosV1G9t1tExJaZ+bv6mPuoTva78YnMPK1+rVcCr6Sa\n02KrzLyv3r4p8JmIeGJm/r6bB42IzYETqH6vP44IgBWZOb/1uMxcFRHX1K9dkqTi7JSQJKmDzFwK\nPAt4IXAs1Ynnq4HzI+JIgIhYl+ob9UXNE/z6vrcAP63v21ZEzIqII+q2/fuBvzH0rX27oR/fGSne\niFgHeD7w9Q6t+6sb7/eH/XwdQ/Mb3EV1IvzvEfHWejhD11bjPRgplrF6PHBfZj7UujEzb6bq3mh2\nQewM/CwzH6pz4o5h+36amSu7fM7zWp7n7vqxrmgWJGrN+Sq26PaFZOayzIzM3Doz59WX+R0O/wvV\na5ckqTiLEpIkjSAzV2bmJZl5ZGbuSrXM4rXAh+p5DzYAAvhzm7vfRjUvRSfHAUcDp1MNs9gReE29\nb+02x7d7jlYbUP1tXzbKMWON96/Dfn6wGV89ueNLgCupXs/Sel6Ig0aJtWms70HHWFbD2vX927kE\n+MeoWg6a80k0/QTYue5O2JLuh24A3D3s54c6bGvGNxnuBx49SY8tSdKYWJSQJGkMMvNPwJephkBu\nQ3VCmcAmbQ7fhKqToJN9gNMy86OZeVFm/gLoNBcA9fOM5G5gFdX8DiMds7rxtg8q8+bM/GfgcVSd\nJRcBJ0XEbl3cfazvwUS6i6pI084l9b6dqDpLWosSzXklml0lFzOzPBa4s3QQkiSBRQlJkjqKiE7t\n89vV17dl5v9SzTXw+ohYo+W+TwSex8gnrOtQDVdodeBqhks9ZOMnwJsiou034eOMd7Tnz8xcwtCc\nFNvX1w/S+Zv5CX0PRnmu4X4DrFV3PAzXfB8+SNVZcnnLvp9QFaT2BpZTdYnMJFsBN5QOQpIkcKJL\nSZJGcl1E/JhqLodbgPWB3akmwFycmX+ojzuKaq6DcyLiJKqVGz4M3Es1+WAnP6Ba3eNaqskdX0NV\nGBiPw6hOqC+PiBOohnI8CZiXme8cZ7yPEBHPAD4DLKpfwxrAAcAKhibY/B/gsfWQjiuBBzLz2nrf\nRL8HIz3XcM1hFzsybMhLZv4mIu6gmojyqswcbNl9NdXKJa8EfpyZw4sq01a9ksi2VBOiSpJUnJ0S\nkiR19i9Ufys/AvyQ6sT7uVTfnu/XPCgzf0A1H8IcYDHwBeDXwD/Wwz06eSfwPapJNBcBf0e1ksRq\nq4c/PB+4Ffgs1RKZ76flpHsc8bZzG/AHqu6I7wFnUE2iuEdmXlUf82XgTOBjVKtZnN1y/4l+D0Z6\nroepV8/4OVVxoZ1LqLokHrZkaD2p5eX1vrHMJzEdvIJqzooRJ02VJGmqRDU/lSRJUv+JiAOoOj02\n7bRiSS+JiPOAOzNzv1EPliRpCliUkCRJfaueV+Na4JTM7OkhDRExD7gC2D4zbyodjyRJ4PANSZLU\nx+qhGG+mmrCy120CHGhBQpI0ndgpIUmSJEmSirBTQpIkSZIkFWFRQpIkSZIkFWFRQpIkSZIkFWFR\nQpIkSZIkFWFRQpIkSZIkFWFRQpIkSZIkFWFRQpIkSZIkFWFRQpIkSZIkFfH/AUkhimolpNIxAAAA\nAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure( figsize=(18,6) )\n",
"ax = fig.add_subplot(111)\n",
"ax.plot(S0array, icelat_cooling, 'r-', label='cooling' )\n",
"ax.plot(S0array, icelat_warming, 'b-', label='warming' )\n",
"ax.plot(S0array3, icelat3, 'g-', label='warming' )\n",
"ax.plot(S0array_snowballmelt, icelat_snowballmelt, 'b-' )\n",
"ax.plot(S0array_snowballmelt, icelat_snowballmelt_cooling, 'r-' )\n",
"ax.set_ylim(-10,100)\n",
"ax.set_yticks((0,15,30,45,60,75,90))\n",
"ax.grid()\n",
"ax.set_ylabel('Ice edge latitude', fontsize=16)\n",
"ax.set_xlabel('Solar constant (W m$^{-2}$)', fontsize=16)\n",
"ax.plot( [const.S0, const.S0], [-10, 100], 'k--', label='present-day' )\n",
"ax.legend(loc='upper left')\n",
"ax.set_title('Solar constant versus ice edge latitude in the EBM with albedo feedback', fontsize=16);"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The upshot:\n",
"\n",
"- For extremely large $S_0$, the only possible climate is a hot Earth with no ice.\n",
"- For extremely small $S_0$, the only possible climate is a cold Earth completely covered in ice.\n",
"- For a large range of $S_0$ including the present-day value, more than one climate is possible!\n",
"- Once we get into a Snowball Earth state, getting out again is rather difficult!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.2"
}
},
"nbformat": 4,
"nbformat_minor": 1
}