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“Climate	
  is	
  now	
  recognized	
  as	
  being	
  
con+nuously	
  variable,	
  on	
  all	
  scales	
  of	
  +me”	
  
	
  
J.	
  Murray	
  Mitchell	
  Jr.,	
  Quaternary	
  Research,	
  1976	
  



Bartlein,	
  Encyclopedia	
  of	
  Quaternary	
  Science,	
  
2006	
  



Example	
  1:	
  Global	
  temperature	
  

NEWSWEEK	
  published	
  an	
  
ar2cle	
  in	
  1975	
  worried	
  
about	
  global	
  cooling	
  and	
  a	
  
new	
  ice	
  age!!	
  	
  
	
  
*this	
  was	
  not	
  the	
  scien&fic	
  
consensus	
  at	
  the	
  2me	
  
though	
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Decadal	
  variability	
  
alternately	
  disguises	
  and	
  
accentuates	
  the	
  secular	
  
warming	
  trend	
  



Example	
  2:	
  The	
  US	
  Dust	
  Bowl	
  

Drought	
  is	
  a	
  example	
  of	
  decadal	
  climate	
  variability	
  that	
  the	
  public	
  
understand.	
  Mul2ple	
  years	
  of	
  low	
  rainfall	
  reduce	
  the	
  amount	
  of	
  
available	
  water	
  in	
  the	
  earth	
  system	
  (water	
  table,	
  rivers,	
  soil	
  etc.)	
  

McCrary	
  and	
  Randall,	
  J.	
  Climate,	
  2010	
  

Rainfall	
  

During	
  1930s,	
  US	
  experienced	
  one	
  of	
  the	
  most	
  devasta2ng	
  droughts	
  
of	
  the	
  past	
  century.	
  Affected	
  ~2/3	
  of	
  US,	
  parts	
  of	
  Mexico	
  and	
  Canada	
  	
  



Example	
  3:	
  Sahel	
  Drought	
  

Wet	
  condi2ons	
  in	
  50s	
  and	
  60s	
  

Drought	
  in	
  70s	
  and	
  80s:	
  
	
  
*	
  Affected	
  20	
  countries,	
  150	
  million	
  people	
  
*30	
  million	
  were	
  in	
  urgent	
  need	
  of	
  food	
  aid	
  
*10	
  million	
  refugees	
  seeking	
  food	
  and	
  water	
  
*100,000	
  to	
  250,00	
  deaths	
  
	
  
	
  



“An	
  improved	
  understanding	
  of	
  decadal	
  
climate	
  variability	
  is	
  very	
  important	
  because	
  
stakeholders	
  and	
  policymakers	
  want	
  to	
  know	
  
the	
  likely	
  climate	
  trajectory	
  for	
  the	
  coming	
  
decades	
  for	
  applica+ons	
  to	
  water	
  resources,	
  
agriculture,	
  energy,	
  and	
  infrastructure	
  
development.”	
  
	
  
Mehta	
  et	
  al.,	
  BAMS,	
  2011	
  



2)	
  The	
  AMO:	
  
	
  
	
  
	
  

Atlan+c	
  Mul+decadal	
  Oscilla+on	
  
	
  

	
  



AMO	
  Spa2al	
  Signature	
  
Wang,	
  State	
  of	
  the	
  Climate	
  2010,	
  BAMS,	
  2011	
  

Posi2ve	
  signal	
  over	
  whole	
  North	
  Atlan2c	
  –	
  horseshoe	
  padern	
  
Weak	
  SST	
  signal	
  across	
  over	
  global	
  ocean	
  regions	
  



The	
  AMO	
  Index	
  

Wang,	
  State	
  of	
  the	
  Climate	
  2010,	
  BAMS,	
  2011	
  

The	
  AMO	
  index	
  is	
  the	
  
detrended	
  SST	
  
anomalies	
  in	
  the	
  
North	
  Atlan2c	
  
	
  
Removing	
  basic	
  
global	
  warming	
  signal	
  
–	
  we	
  want	
  the	
  
decadal	
  climate	
  
variability	
  



The	
  AMO	
  index:	
  SST	
  anomalies	
  averaged	
  over	
  0°	
  -­‐	
  70°N,	
  75°	
  -­‐	
  10°W	
  
	
   	
   	
   	
  detrended	
  
	
   	
   	
   	
  low-­‐pass-­‐filtered	
  (extracts	
  the	
  decadal	
  varia2ons)	
  

WARM	
  

COLD	
  

???
???	
  

???
???	
  

???
???	
  



Did	
  the	
  AMO	
  exist	
  before	
  1900?	
  

Gray	
  et	
  al.,	
  Geophys.	
  Res.	
  Led.,	
  2004	
  

12	
  tree	
  ring	
  sites	
  
(1567-­‐1990),	
  detrended	
  
	
  
Calibra2on	
  period	
  (1922-­‐1990)	
  
	
  
Verifica2on	
  period	
  (1856-­‐1921)	
  
	
  
Reconstruct	
  a	
  2me	
  series	
  of	
  the	
  
AMO	
  index	
  that	
  agrees	
  with	
  SST	
  
instrument	
  measurements	
  but	
  
can	
  be	
  extended	
  back	
  in	
  to	
  the	
  
past	
  



AMO	
  Reconstruc2on	
  from	
  Tree	
  Ring	
  
Data	
  

SST	
  observa2ons	
  (in-­‐
situ/satellite)	
  

AMO	
  Index	
  from	
  tree	
  
rings	
  

Warm/Cold	
  AMO	
  
periods	
  



The	
  Thermohaline	
  Circula2on	
  (THC)	
  

Meridional	
  Overturning	
  

In	
  order	
  to	
  balance	
  the	
  excess	
  hea2ng	
  in	
  the	
  Tropics,	
  the	
  oceans	
  transports	
  
heat	
  (in	
  the	
  from	
  of	
  warm,	
  salty	
  water)	
  from	
  low	
  to	
  high	
  la2tudes	
  



Current	
  mode:	
  
	
  
1)	
  warm	
  water	
  (red)	
  flows	
  northward	
  n	
  the	
  upper	
  ocean	
  along	
  the	
  East	
  Coast	
  of	
  the	
  
U.S.	
  toward	
  Iceland	
  

2)	
  Warm	
  water	
  exchanges	
  heat	
  with	
  the	
  cooler	
  air,	
  becoming	
  cooler	
  and	
  sal2er	
  

3)	
  Near	
  Iceland,	
  water	
  becomes	
  more	
  dense	
  (cool	
  and	
  salty)	
  than	
  the	
  water	
  below	
  
and	
  sinks,	
  flowing	
  southward	
  along	
  the	
  floor	
  of	
  the	
  Atlan2c	
  =	
  North	
  Atlan2c	
  Deep	
  
Water	
  Forma2on	
  



Warm	
  N.	
  Atlan2c	
  

Sinking	
  in	
  N.	
  Atlan2c	
  



What	
  can	
  General	
  Circula2on	
  Models	
  
models	
  tell	
  us?	
  

Long	
  (~1400	
  year)	
  model	
  integra2ons	
  with	
  HadCM3	
  able	
  to	
  
simulate	
  the	
  observed	
  padern	
  and	
  amplitude	
  of	
  the	
  AMO	
  
(Knight	
  et	
  al.,	
  2005)	
  
	
  
Model	
  did	
  not	
  include	
  any	
  fluctua2ons	
  in	
  external	
  forcing	
  
(greenhouses	
  gases,	
  aerosols,	
  etc.)	
  
	
  
→	
  suggests	
  AMO	
  is	
  a	
  genuine	
  quasi-­‐periodic	
  cycle	
  of	
  internal	
  
climate	
  variability	
  persis2ng	
  for	
  many	
  centuries	
  
	
  
→	
  Model	
  hints	
  that	
  AMO	
  results	
  from	
  variability	
  in	
  the	
  oceanic	
  
THC	
  



Is	
  it	
  all	
  natural?	
  
LETTER

doi:10.1038/nature10946

Aerosols implicated as a prime driver of
twentieth-century North Atlantic climate variability
Ben B. B. Booth1, Nick J. Dunstone1*, Paul R. Halloran1*, Timothy Andrews1 & Nicolas Bellouin1

Systematic climate shifts have been linked to multidecadal variability
in observed sea surface temperatures in the North Atlantic Ocean1.
These links are extensive, influencinga rangeof climateprocesses such
as hurricane activity2 andAfrican Sahel3–5 and Amazonian5 droughts.
The variability is distinct from historical global-mean temperature
changes and is commonly attributed to natural ocean oscilla-
tions6–10. A number of studies have provided evidence that aerosols
can influence long-term changes in sea surface temperatures11,12,
but climate models have so far failed to reproduce these inter-
actions6,9 and the role of aerosols in decadal variability remains
unclear. Here we use a state-of-the-art Earth system climate model
to show that aerosol emissions and periods of volcanic activity
explain 76 per cent of the simulated multidecadal variance in
detrended 1860–2005 North Atlantic sea surface temperatures.
After 1950, simulated variability is within observational estimates;
our estimates for 1910–1940 capture twice the warming of previous
generation models but do not explain the entire observed trend.
Otherprocesses, such as ocean circulation,may also have contributed
to variability in the early twentieth century.Mechanistically, we find
that inclusion of aerosol–cloud microphysical effects, which were
included in few previous multimodel ensembles, dominates the
magnitude (80 per cent) and the spatial pattern of the total surface
aerosol forcing in the North Atlantic. Our findings suggest that
anthropogenic aerosol emissions influenced a range of societally
important historical climate events such as peaks in hurricane
activity and Sahel drought. Decadal-scale model predictions of
regional Atlantic climate will probably be improved by incorporat-
ing aerosol–cloud microphysical interactions and estimates of
future concentrations of aerosols, emissions of which are directly
addressable by policy actions.
An understanding of North Atlantic sea surface temperature

(NASST) variability is critical to society because historical Atlantic
temperature changes are strongly linked to the climate, and its impacts,
in neighbouring continental regions. For example, strong links
between NASST variability and periods of African Sahel drought are
found in observations4,13 and physical climate models3,5,14. Similar
covariation between NASSTs and rainfall in eastern South America
has been found5, as have links to changes in both mean rainfall15 and
rainfall extremes16, Atlantic hurricane activity2,10,14 and European
summer climate8. These changes are not solely limited to the regions
bordering theAtlantic, but also have links to Indianmonsoon rainfall14,
Arctic and Antarctic temperatures17, Hadley circulation1, El Niño/
Southern Oscillation18 and relationships between El Niño/Southern
Oscillation and the Asian monsoon19.
A link between multidecadal variability in NASST and circulation

changes internal to the ocean was first proposed in 1964 (ref. 20) and
later named the Atlantic Multidecadal Oscillation21. This variability is
often characterized as the detrended NASST between the equator and
latitude 60uN (longitude 7.5–75uW; ref. 8). Although it has recently
been questioned22, the present consensus remains that most of the
observed Atlantic temperature variations occur in response to the

ocean’s internal variability. This picture emerged from general circula-
tion models, a number of which inherently produce multidecadal
Atlantic variability in the absence of external climate forcing7 and,
when considered together as a multimodel mean, have shown
little evidence of forced changes projecting onto the NASSTs6,9.
Observationally, this interpretation has been accepted because the
Atlantic temperature changes seem to be oscillatory, both around
any secular long-term trend and when calculated as anomalies from
the global-mean change.
Motivated by the recent identification of the importance of aerosol

process complexity in interhemispheric Atlantic temperature
changes23, apparent aerosol correlation1,11 and volcanic modulation
of Atlantic variability22, we use new general circulation model simula-
tions to questionwhether theCMIP3 (ClimateModel Intercomparison
Project phase 3) models contained the complexity necessary to repres-
ent a forcedAtlanticMultidecadalOscillation7,9.WeuseHadGEM2-ES
(the Hadley Centre Global Environmental Model version 2 Earth
System configuration24), a next-generation CMIP5 (Climate Model
Intercomparison Project phase 5) model, which represents a wider
range of Earth system processes (in particular aerosol interactions25)
than do CMIP3 models.
To separate internal variability from forced changes, we present

climate model ensemble-mean NASSTs, averaged over parallel model
simulations started from different initial conditions26. If external
forcing dominates the NASST evolution then ensemble members will
evolve in phase and thus combine to produce a robust ensemble-mean
response. If internal ocean dynamics dominate then each member will
evolve separately and the resulting ensemble mean will show little
residual variation around the underlying warming trend. This
approach allows identification of physical mechanisms linking forced
changes to Atlantic temperatures and was used in previous CMIP3
studies6,9.
In Fig. 1a, we reproduce the multimodel-mean NASST response of

the six CMIP3 models used in ref. 9 (ENS1, blue) and the eleven
models used in ref. 6 (ENS2, green) (Supplementary Table 2). The
observations (Fig. 1) show marked multidecadal variations. The
multimodel-mean responses in both ENS1 and ENS2 do capture the
underlying trend through the century; they capture only weak multi-
decadal variability. For example, the ensembles’ 1950–1975 cooling is
only a small fraction of the observed value (Fig. 1a and Supplementary
Fig. 4). Therefore, the unexplained multidecadal signal was previously
attributed to internal ocean variability6,9.
By contrast, HadGEM2-ES (Fig. 1b) reproduces much more of the

observed NASST variability (correlation, 0.65; 75% of detrended
standard deviation (smoothed over 10-yr intervals to highlight multi-
decadal component)). The post-1950s cooling and subsequent warm-
ing now falls within the observed trends (Supplementary Table 1).
Observed warming in the earlier period (1910–1940) is larger than
simulated by HadGEM2-ES (Fig. 1b and Supplementary Table 1);
however, these new simulations capture roughly twice the early-
twentieth-century warming of previous CMIP3 generation models.

1Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK.
*These authors contributed equally to this work.
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AMO	
  Impacts	
  

•  Warm	
  SSTs	
  over	
  N.	
  Atlan2c	
  
	
  
•  What	
  poten2al	
  impacts	
  are	
  there	
  on	
  
surrounding	
  regions?	
  



	
  One	
  method	
  of	
  looking	
  at	
  impacts	
  is	
  to	
  make	
  composite	
  (or	
  averages)	
  of	
  
warm	
  and	
  cold	
  period	
  and	
  take	
  the	
  difference	
  (e.g.	
  1931/60	
  –	
  1961/90)	
  

Sudon	
  and	
  Hodson,	
  Science,	
  2005	
  

	
  SLP	
  (Pa)	
   Precip	
  (mm/day)	
   Surf.	
  temp.	
  (°C)	
  

Low	
  SLP	
  across	
  Atlan2c	
  
and	
  N.	
  America	
  

Wet	
  in	
  West	
  Africa,	
  
Europe,	
  dry	
  in	
  central	
  US	
  

Warm	
  in	
  East	
  US	
  

So,	
  when	
  the	
  AMO	
  is	
  in	
  a	
  warm	
  period:	
  



AMO	
  Impacts	
  
Globally	
  

rainfall is highly correlated with All India Summer
Rainfall [Parthasarathy et al., 1994]. Over west central
India, the multidecadal wet period is in phase with the
positive AMO phase (warm North Atlantic) during the
middle of the 20th century (!1926–1965); the dry
periods are in phase with the negative AMO phase during
both the early (!1901–1926) and the late 20th century
(!1965–1995) (Figures 1a and 1c). The time series of
west central India summer rainfall is in phase with Sahel
summer rainfall (Figures 1b and 1c). The leading spatial
pattern (EOF 1, from Empirical Orthogonal Function
analysis, Figure 2a) of observed 20th century summer
rainfall anomalies over the region covering both Africa
and India also suggests an in-phase relationship between
India and Sahel summer rainfall. The time series of this
spatial pattern is in phase with the observed AMO index
(Figures 1a and 1d).
[5] The observed AMO Index is also in phase with the

observed time series of the number of major Atlantic
hurricanes and the Hurricane Shear Index (Figures 1a
and 1e), consistent with previous studies [Gray, 1990;
Landsea et al., 1999; Goldenberg et al., 2001]. Here the
Hurricane Shear Index is defined as the anomalous 200-hPa–
850-hPa vertical shear of the zonal wind multiplied by "1,
computed during Hurricane season, August to October-

Figure 1. Observed and modeled variability. The color
shading is the low-pass filtered (LF) data and the green
dash line is the unfiltered data. (a) Observed AMO
Index(K), derived from HADISST [Rayner et al., 2003].
(b) Observed JJAS Sahel rainfall anomalies (averaged over
20!W-40!E, 10–20!N). All observed rainfall data is from
Climate Research Unit (CRU), University of East Anglia,
United Kingdom (CRU-TS_2.1). (c) Observed JJAS west
central India rainfall anomalies (averaged over 65–80!E,
15–25!N). (d) Observed time series of the dominant
pattern (PC 1) of LF JJAS rainfall anomalies. (e) Observed
anomalous Atlantic major Hurricane number (axis on the
left, original data from the Atlantic basin hurricane
database- HURDAT, with no bias-type corrections from
1944–1969 as recently recommended by Landsea [2005],
there is no reliable data before 1944), and observed
Hurricane Shear Index (1958–2000), derived from ERA-40
[Simmons and Gibson, 2000] (m/s, brown solid line for LF
data, brown dash line for unfiltered data, axis on the right).
(f) Modeled AMO Index(K). (g) Modeled JJAS Sahel
rainfall anomalies. (h) Modeled JJAS west central India
rainfall anomalies. (i) Modeled PC 1 of LF JJAS rainfall
anomalies. (j) Modeled Hurricane Shear Index(m/s). All LF
data in this paper were filtered using the Matlab function
’filtfilt’, with a Hamming window based low-pass filter and
a frequency response that drops to 50% at the 10-year
cutoff period. All rainfall time series are normalized by the
SD of the corresponding LF data, i.e. 9.1 and 5.5 mm/
month for Figures 1b and 1g; 12.5 and 7.1 mm/month for
Figures 1c and 1h, 371 and 261 mm/month for Figures 1d
and 1i. Light blue lines mark the phase-switch of AMO.

Figure 2. Leading spatial pattern of the 20th century low
frequency JJAS rainfall anomalies over Africa and India.
(a) EOF 1 (31%) of observed LF JJAS rainfall anomalies.
(b) EOF 1 (67%) of modeled LF JJAS rainfall anomalies.
(c) Regression of observed LF JJAS rainfall anomalies on
observed AMO Index. (d) Regression of modeled LF
JJAS rainfall anomalies on modeled AMO Index. The
observed rainfall is from CRU-TS_2.1. The original
regressions correspond to 1 SD of the AMO index,
Figures 2a and 2c are normalized by the SD of observed
time series of the dominant pattern, i.e. PC1 (371 mm/
month), and Figures 2b and 2d are normalized by the SD
of modeled PC1 (261 mm/month). The modeled EOF1
explains much higher percentage of variance due to
ensemble average.
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Zhang	
  and	
  Delworth,	
  Geophys.	
  Res.	
  Led.,	
  2006	
  

You	
  can	
  also	
  look	
  at	
  
correla2ons	
  between	
  2me	
  
series….	
  

•  Sahel	
  rainfall	
  
•  Indian	
  monsoon	
  rainfall	
  
•  Hurricane	
  numbers?	
  

Observa2ons	
   Model	
  



Nigam	
  et.	
  al.,	
  Geophys.	
  Res.	
  Led.,	
  2011	
  

•  Dry	
  condi2ons	
  in	
  Central	
  US,	
  especially	
  in	
  Fall	
  
•  Wet	
  condi2ons	
  in	
  Central	
  America	
  and	
  Florida	
  
•  Changes	
  in	
  wind	
  accompany	
  rainfall	
  changes	
  

AMO	
  Impacts	
  in	
  the	
  US	
  
So,	
  when	
  the	
  AMO	
  is	
  in	
  a	
  warm	
  period:	
  



Schubert	
  et	
  al.,	
  2004	
  

The	
  AMO	
  and	
  the	
  The Dust Bowl	
  

Warm	
  N.	
  Atlan2c	
  

Nigam	
  et.	
  al.,	
  Geophys.	
  Res.	
  Led.,	
  2011	
  

Dust	
  Bowl	
  



The	
  AMO	
  and	
  Hurricanes	
  

clone activity, the differences between the
warm and cold phases of the mode are statisti-
cally significant (34, 44). The single exception
is the number of U.S. Gulf Coast landfalling
major hurricanes. This is because the Gulf of
Mexico activity does not have a significant
relationship with !Vz! fluctuations in the MDR
(11, 12, 15) or to the multidecadal North At-
lantic SST fluctuations (Fig. 2A). The greatest
differences (ratios) are for major hurricanes,
hurricane days, U.S. East Coast major hurricane
landfalls, and especially Caribbean hurricanes
and U.S. damage. The Caribbean Sea has
shown dramatic changes in hurricane activity—
averaging 1.7 occurrences per year during the
warm periods compared with only 0.5 per year
during the cold period (34). The current warm
period has produced an average of 2.5 occur-
rences per year with an unprecedented (since
1944) six hurricanes in the region during 1996.
These multidecadal changes are illustrated in
Fig. 4, which clearly shows the enhancement of
overall Caribbean hurricane activity during
warmer periods. Not only is the entire Caribbe-
an region much less active during the colder
period (Fig. 4A), but the only hurricanes that

developed during that period in the Caribbean
Sea east of "73°W formed during the two
intermittent short warming periods (1979–1981
and 1987–1990) discussed earlier. Large multi-
decadal fluctuations of major hurricane land-
falls are especially evident for the U.S. East
Coast from the Florida peninsula to New En-
gland and are illustrated in Fig. 5. No major
hurricanes made landfall from 1966–1983.
This relatively quiet period was similar to, but
more extreme than, the low activity period dur-
ing the first two decades of the 20th century. In
contrast, during 1947–1965, 14 major hurri-
canes struck the East Coast (13). Overall, the
United States has experienced about five times
as much in median damages from tropical
storms and hurricanes during the warm (high
activity) than during the cold (low activity)
phases of the Atlantic multidecadal mode (44).
The Atlantic tropical cyclone record, which

(except for U.S. landfall data) is not considered
reliable before 1944 (33), shows less than one
complete cycle of the multidecadal signal. The
record for the SST signal represented by the
Atlantic multidecadal mode (Fig. 2B), however,
which has demonstrated a robust relation to the

observed activity, shows about two complete
cycles-—with some proxy records extending
back several additional cycles (42). In addition,
U.S. landfall data are able to show almost two
periods of the signal (13, 44). Because of the
multidecadal scale of the Atlantic SST variabil-
ity portrayed here, the shift since 1995 to an
environment generally conducive to hurricane
formation—warmer North Atlantic SSTs and
reduced vertical wind shear—is not likely to
change back soon (45). This means that during
the next 10 to 40 years or so, most of the
Atlantic hurricane seasons are likely to have
above average activity, with many hyperactive,
some around average, and only a few below
average. Furthermore, consistent with experi-
ence since the active phase began in 1995, there
would be a continuation of significantly in-
creased numbers of hurricanes (and major hur-
ricanes) affecting the Caribbean Sea and basin-
wide numbers of major hurricanes. The Gulf of
Mexico, however, is expected to see only minor
differences. Tragic impacts of the heightened
activity have already been felt, especially in the
Caribbean [e.g., Hurricanes Georges and Mitch
(46)]. In addition, an increase in major hurri-
cane landfalls affecting the U.S. East Coast is
anticipated, but has not yet materialized (47).
One may ask whether the increase in activity

since 1995 is due to anthropogenic global
warming. The historical multidecadal-scale
variability in Atlantic hurricane activity is much
greater than what would be “expected” from a
gradual temperature increase attributed to global
warming (5). There have been various studies
investigating the potential effect of long-term
global warming on the number and strength of
Atlantic-basin hurricanes. The results are incon-
clusive (48). Some studies document an increase
in activity while others suggest a decrease (49).
Tropical North Atlantic SST has exhibited a
warming trend of "0.3°C over the last 100
years (38); whereas Atlantic hurricane activity

Fig. 3. Percentage of
south-central portion
(10°–14°N, 20°– 70°W)
of the main develop-
ment region (see Fig.
2A) where !Vz! # 6 m
s$1 (values extremely
conducive for tropical
cyclone development)
for ASO. Dashed curved
line is 5-year running
mean. Higher and lower
percentages indicate
conditions that aremore
or less conducive to de-
velopment, respectively.

Fig. 4. Contrast of Caribbean hurricanes between colder (A) and warmer
(B) values of the Atlantic multidecadal mode. The solid green (thin) and
red (thick) lines indicate where the hurricanes were at nonmajor and
major hurricanes intensities, respectively. Tropical storm intensity is
indicated by dotted lines in cases where a hurricane weakened to tropical

storm strength and then re-intensified to hurricane status. The years are
similar to (34) except that the first nine warmer years (1944–1952) are
not included to make the number of colder and warmer years equal. The
colder years (24 years) include 1971–1994. The warmer years (24 years)
include 1953–1970 and 1995–2000.
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Cold	
  AMO	
  period	
   Warm	
  AMO	
  period	
  

1971	
  –	
  1994	
  
Cold	
  N.	
  Atlan2c	
  and	
  small	
  Atlan2c	
  
warm	
  pool	
  
15	
  major	
  hurricanes,	
  few	
  hit	
  US	
  
Cheap	
  insurance	
  
Lidle	
  public	
  and	
  industry	
  awareness	
  
of	
  climate	
  risk	
  shits	
  

1953	
  –	
  1970	
  &	
  1995	
  -­‐	
  2000	
  
Warm	
  N.	
  Atlan2c	
  and	
  large	
  Atlan2c	
  
warm	
  pool	
  
33	
  major	
  hurricanes,	
  lots	
  hit	
  US	
  
Expensive	
  insurance	
  
More	
  public	
  and	
  industry	
  awareness	
  
of	
  climate	
  risk	
  shits	
  

**	
  Essen+al	
  to	
  consider	
  decadal	
  changes	
  in	
  hurricanes	
  when	
  assessing	
  impact	
  
of	
  climate	
  change	
  **	
  



	
  
•  AMO	
  plays	
  an	
  important	
  role	
  in	
  modula2ng	
  climate	
  on	
  mul2decadal	
  2me	
  scales	
  

in	
  US	
  and	
  Europe,	
  especially	
  during	
  boreal	
  summer	
  and	
  fall	
  

•  Low	
  pressure	
  centers	
  over	
  SE	
  US	
  and	
  UK	
  
•  Enhanced	
  rain	
  in	
  western	
  Europe,	
  Florida,	
  Sahel	
  and	
  N.	
  Africa	
  
•  Reduced	
  rain	
  central	
  US	
  and	
  Mexico	
  
•  Warm	
  surface	
  temperature	
  anomalies	
  over	
  US	
  and	
  central	
  Europe	
  

	
  
•  May	
  affect	
  not	
  only	
  mean	
  climate	
  but	
  also	
  frequency	
  of	
  extreme	
  events	
  (US	
  

droughts,	
  hurricanes,	
  heat	
  waves)	
  
	
  
•  Phase	
  change	
  of	
  AMO	
  around	
  1960	
  may	
  have	
  caused	
  summer2me	
  cooling	
  in	
  US	
  

and	
  Europe	
  
	
  
•  Most	
  recent	
  phase	
  change	
  (around	
  1990)	
  may	
  have	
  contributed	
  to	
  rapid	
  

warming	
  

MUST	
  CONSIDER	
  THESE	
  DECADAL	
  CHANGES	
  WHEN	
  ASSESSING	
  CLIMATE	
  CHANGE	
  

Summary:	
  AMO	
  Impacts	
  on	
  Climate	
  



3)	
  The	
  PDO:	
  
	
  
Pacific	
  Decadal	
  Oscilla+on	
  
	
  

•  The	
  PDO	
  is	
  a	
  long-­‐lived	
  El	
  Niño-­‐like	
  padern	
  of	
  Pacific	
  climate	
  
variability.	
  	
  

•  The	
  term	
  PDO	
  was	
  first	
  used	
  in	
  1996	
  by	
  a	
  fisheries	
  scien2st	
  
researching	
  connec2ons	
  between	
  Alaska	
  salmon	
  produc2on	
  cycles	
  
and	
  Pacific	
  climate.	
  

	
  
•  When	
  considering	
  the	
  padern	
  for	
  the	
  whole	
  Pacific	
  ocean	
  it	
  is	
  oten	
  

called	
  the	
  IPO:	
  Inter-­‐decadal	
  Pacific	
  Oscilla2on	
  

•  There	
  is	
  no	
  scien2fic	
  consensus	
  for	
  the	
  cause	
  and	
  dynamics	
  of	
  the	
  
PDO	
  



Pacific Decadal Oscillation: SST Pattern 

Warm phase       Cold Phase 

See http://jisao.washington.edu/pdo 

ENSO-­‐like	
  padern	
  but	
  strongest	
  SST	
  	
  changes	
  in	
  extratropics	
  



Pacific Decadal Oscillation: Timeseries 

PDO	
  and	
  ENSO	
  are	
  on	
  different	
  
2me	
  scales	
  
	
  
Time	
  series	
  have	
  similari2es	
  but	
  
are	
  not	
  iden2cal	
  



Note	
  that	
  the	
  PDO	
  and	
  AMO	
  operate	
  on	
  different	
  2me	
  scales	
  too!	
  

McCabe	
  et	
  al.,	
  PNAS,	
  2004	
  



PDO	
  Impacts	
  in	
  US	
  

Warm	
  PDO:	
  
	
  
•  Wet	
  S,	
  SW	
  US	
  
•  Dry	
  in	
  NW,	
  Great	
  Lakes	
  

•  Warm	
  in	
  E.	
  Canada,	
  Alaska	
  
•  Cold	
  in	
  E	
  US	
  

•  Snow	
  pack	
  and	
  streamflow	
  in	
  NW	
  
US	
  is	
  reduced	
  

•  Winter	
  and	
  spring	
  flood	
  risk	
  in	
  NW	
  
US	
  is	
  reduced	
  

	
  

Mantua	
  and	
  Hare,	
  J.	
  Oceanog.,	
  2002	
  



Combined	
  Impacts	
  
•  PDO,	
  AMO	
  and	
  ENSO	
  all	
  impact	
  US	
  climate	
  on	
  different	
  

2mescales	
  

•  Need	
  to	
  consider	
  phase	
  of	
  each	
  to	
  make	
  a	
  forecast	
  or	
  decadal	
  
predic2on	
  

e.g.	
  Will	
  they	
  act	
  together	
  to	
  cause	
  a	
  mega	
  drought	
  or	
  cancel	
  
each	
  other	
  to	
  make	
  average	
  condi2ons?	
  



The	
  PDO	
  and	
  AMO	
  combined:	
  Drought	
  
Frequency	
  

McCabe	
  et	
  al.,	
  PNAS,	
  2004	
  



McCabe	
  et	
  al.,	
  2004	
  

More	
  than	
  half	
  (52%)	
  of	
  spa2otemporal	
  variance	
  in	
  mul2decadal	
  drought	
  
frequency	
  over	
  US	
  adributable	
  to	
  combined	
  PDO	
  /	
  AMO	
  influence	
  

Recent	
  US	
  droughts	
  (1996,	
  1999–2002)	
  associated	
  N.	
  Atlan2c	
  warming	
  (posi2ve	
  
AMO)	
  and	
  NE	
  and	
  tropical	
  Pacific	
  cooling	
  (nega2ve	
  PDO)	
  

→	
  Much	
  of	
  the	
  long-­‐term	
  predictability	
  of	
  drought	
  frequency	
  may	
  reside	
  in	
  
the	
  mul2-­‐decadal	
  behavior	
  of	
  the	
  N.	
  Atlan2c	
  

•  AMO+	
  (warm)	
  :	
  much	
  of	
  US	
  under	
  drought	
  condi2ons,	
  regardless	
  of	
  PDO	
  state	
  

PDO	
  vs.	
  AMO	
  impacts	
  in	
  the	
  US	
  



“The	
  decadal	
  +me	
  scale	
  offers	
  a	
  cri+cal	
  bridge	
  
for	
  informing	
  adap+on	
  strategies	
  as	
  climate	
  
varies	
  and	
  changes”	
  
	
  
Meehl	
  et	
  al.,	
  BAMS,	
  2009	
  



Decadal	
  Predic2on	
  
Now	
  we	
  know	
  about	
  ways	
  the	
  climate	
  varies	
  on	
  
decadal	
  2mescales	
  so	
  the	
  next	
  ques2ons	
  are:	
  
	
  

–  Is	
  it	
  predictable?	
  

–  Can	
  we	
  predict	
  it?	
  
	
  
The	
  decadal	
  2me	
  scale	
  is	
  widely	
  recognized	
  as	
  a	
  key	
  
planning	
  horizon	
  for	
  governments,	
  businesses,	
  and	
  
other	
  societal	
  en22es	
  
	
  



Decadal	
  Predictability	
  

days, seasons, or years. In contrast, daily weather 
forecasts and shorter-term SI climate predictions [e.g., 
El Niño–Southern Oscillation (ENSO) forecasts] can 
be thought of as “initial value problems,” for which 
detailed knowledge of the observed current condi-
tions are crucially needed to define the starting point 
(the initial conditions). Lorenz (1963) demonstrated 
how, even if one possessed a hypothetically perfect 
numerical model representing all of the physical 
processes completely and without error, unavoidable 
uncertainties in the initial conditions will invariably 
grow and contaminate the numerical simulation of 
transient weather systems. This sensitivity to initial 
conditions (sometimes referred to as the “butterfly 
effect”) limits to about 2 weeks the time period 
over which even a perfect model could yield skillful 
weather forecasts. When considering El Niño, a quasi-
oscillatory phenomenon that evolves more slowly than 
synoptic weather systems, skillful numerical forecasts 
of monthly mean or seasonal mean conditions (Shukla 
1984) can be made with a lead time of 6–12 months 
(Kirtman et al. 2002). For example, at 8 months 
multimodel correlation coefficients for Niño-3.4 are 

approximately 0.75, and 
then they drop to 0.6 at 10 
months, and then 0.5 at 12 
months. However, predict-
ability varies on decadal 
time scales (e.g., Tang et al. 
2008), and the ultimate pre-
dictability limits are not 
well established.

For many climate vari-
ables, decision makers are 
interested in the 10–30-yr 
time horizon (e.g., Pulwarty 

2003), a time period that is characterized by a forced 
climate change signal that is often weaker than or 
comparable to the magnitude of internally generated 
climate variations. If skillful decadal climate predic-
tions are to be realized, the time scale for which initial 
conditions are shown to impact the predictions will 
need to be extended by roughly an order of magnitude 
beyond today’s El Niño forecasts. That is, decadal 
prediction involves having some predictable signal in 
the initial state that has been ignored in traditional 
dec–cen climate change simulations.

In the decadal time range, at the confluence be-
tween dec–cen and SI, there may be a “sweet spot” for 
an enhanced signal-to-noise ratio of climate change 
information. The relative uncertainty in global-mean, 
decadal-mean surface air temperature predictions 
initially decreases with lead time as the predictions 
transition from initial state dependence to the forced 
response out to about 40 yr (Fig. 3). At longer lead 
times the emissions scenario uncertainty generally 
becomes dominant (Hawkins and Sutton 2009a).

Even if uncertainty is low in the decadal range 
relative to other periods, there remains the question of 
the signal-to-noise ratio, namely, the extent to which 
predictable regional variations could rise above noise 
from uncertainties in the forced response, and also 
from unpredictable aspects of internal variability, on 
those time and space scales (Barnett et al. 2008). On 
continental scales, the observed response to external 

FIG. 2. Schematic illustrating progression from initial value problems with daily 
weather forecasts at one end, and multidecadal to century projections as a 
forced boundary condition problem at the other, with seasonal and decadal 
prediction in between.

FIG. 3. The relative importance of different sources of 
uncertainty in IPCC GCM projections of decadal-mean 
global-mean surface air temperature in the twenty-
first century is shown by the fractional uncertainty 
(i.e., the prediction uncertainy divided by the expected 
mean change, relative to the 1971–2000 mean). Model 
uncertainty is the dominant source of uncertainty for 
lead times up to 50 yr, with internal variability being 
important for the first decade or so. Scenario uncer-
tainty becomes important at multidecadal lead times 
(from Hawkins and Sutton 2009a).
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days, seasons, or years. In contrast, daily weather 
forecasts and shorter-term SI climate predictions [e.g., 
El Niño–Southern Oscillation (ENSO) forecasts] can 
be thought of as “initial value problems,” for which 
detailed knowledge of the observed current condi-
tions are crucially needed to define the starting point 
(the initial conditions). Lorenz (1963) demonstrated 
how, even if one possessed a hypothetically perfect 
numerical model representing all of the physical 
processes completely and without error, unavoidable 
uncertainties in the initial conditions will invariably 
grow and contaminate the numerical simulation of 
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weather forecasts. When considering El Niño, a quasi-
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synoptic weather systems, skillful numerical forecasts 
of monthly mean or seasonal mean conditions (Shukla 
1984) can be made with a lead time of 6–12 months 
(Kirtman et al. 2002). For example, at 8 months 
multimodel correlation coefficients for Niño-3.4 are 

approximately 0.75, and 
then they drop to 0.6 at 10 
months, and then 0.5 at 12 
months. However, predict-
ability varies on decadal 
time scales (e.g., Tang et al. 
2008), and the ultimate pre-
dictability limits are not 
well established.

For many climate vari-
ables, decision makers are 
interested in the 10–30-yr 
time horizon (e.g., Pulwarty 

2003), a time period that is characterized by a forced 
climate change signal that is often weaker than or 
comparable to the magnitude of internally generated 
climate variations. If skillful decadal climate predic-
tions are to be realized, the time scale for which initial 
conditions are shown to impact the predictions will 
need to be extended by roughly an order of magnitude 
beyond today’s El Niño forecasts. That is, decadal 
prediction involves having some predictable signal in 
the initial state that has been ignored in traditional 
dec–cen climate change simulations.

In the decadal time range, at the confluence be-
tween dec–cen and SI, there may be a “sweet spot” for 
an enhanced signal-to-noise ratio of climate change 
information. The relative uncertainty in global-mean, 
decadal-mean surface air temperature predictions 
initially decreases with lead time as the predictions 
transition from initial state dependence to the forced 
response out to about 40 yr (Fig. 3). At longer lead 
times the emissions scenario uncertainty generally 
becomes dominant (Hawkins and Sutton 2009a).

Even if uncertainty is low in the decadal range 
relative to other periods, there remains the question of 
the signal-to-noise ratio, namely, the extent to which 
predictable regional variations could rise above noise 
from uncertainties in the forced response, and also 
from unpredictable aspects of internal variability, on 
those time and space scales (Barnett et al. 2008). On 
continental scales, the observed response to external 

FIG. 2. Schematic illustrating progression from initial value problems with daily 
weather forecasts at one end, and multidecadal to century projections as a 
forced boundary condition problem at the other, with seasonal and decadal 
prediction in between.

FIG. 3. The relative importance of different sources of 
uncertainty in IPCC GCM projections of decadal-mean 
global-mean surface air temperature in the twenty-
first century is shown by the fractional uncertainty 
(i.e., the prediction uncertainy divided by the expected 
mean change, relative to the 1971–2000 mean). Model 
uncertainty is the dominant source of uncertainty for 
lead times up to 50 yr, with internal variability being 
important for the first decade or so. Scenario uncer-
tainty becomes important at multidecadal lead times 
(from Hawkins and Sutton 2009a).
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Predictability	
  of	
  the	
  1st	
  kind	
   Predictability	
  of	
  the	
  2nd	
  kind	
  

Predictability	
  of	
  the	
  ??	
  kind	
  

Meehl	
  et	
  al.,	
  BAMS,	
  2009	
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ORANGE	
  
Internal	
  Variability:	
  Natural	
  
fluctua2ons	
  in	
  the	
  climate	
  
system.	
  AMO,	
  PDO,	
  ENSO	
  etc.	
  
	
  
BLUE	
  
Model	
  Uncertainty:	
  Different	
  
models	
  respond	
  differently	
  to	
  
the	
  same	
  forcing	
  
	
  
GREEN	
  
Scenario	
  Uncertainty:	
  Changes	
  
in	
  future	
  greenhouse	
  gas	
  
emission	
  

At	
  decadal	
  scales:	
  
Internal	
  variability	
  and	
  model	
  
uncertainty	
  have	
  more	
  
importance	
  than	
  scenario	
  

At	
  centennial	
  scales:	
  
Scenario	
  uncertainty	
  is	
  dominant	
  

Hawkins	
  and	
  Sudon,	
  BAMS,	
  2009	
  



Decadal	
  Hindcast	
  Example	
  AMOC hindcasts 

•  Only one member 
of the nudged 
ensemble (planned 
to apply to each) 

•  3-members 
ensemble of free 
run 

•  90’s max. missed 
(effect of persistent NAO?) 

!"#$%&'()%

Hindcast:	
  run	
  a	
  model	
  to	
  assess	
  how	
  well	
  it	
  predicts	
  what	
  has	
  already	
  
happened.	
  Compare	
  results	
  to	
  the	
  real	
  world	
  

10	
  year	
  hindcasts	
  of	
  the	
  
Atlan2c	
  meridional	
  
circula2on:	
  
	
  
Some	
  are	
  beder	
  than	
  others!	
  
	
  
Are	
  some	
  periods	
  more	
  
predictable	
  than	
  others?	
  
	
  

Mignot	
  et	
  al.,	
  2011	
  



Decadal	
  Hindcast	
  Example	
  ! " # $%# $&!%$%" '()*

+
Kirtman,	
  2011	
  



Decadal	
  Predic2on	
  and	
  the	
  IPCC	
  
(Intergovernmental	
  Panel	
  on	
  Climate	
  Change)	
  

of experiments, in each case the complete set of core 
simulations is expected to be completed. The intent is 
to generate a sufficiently large set of runs to enable a 
systematic model intercomparison within each type of 
experiment and thereby produce a credible multimodel 
dataset for analysis. The core experiments (located in 
the innermost circle and shaded pink in Figs. 2 and 3) 
are critical for evaluating the models, and they provide 
high-interest information about future climate change 
as well as help identify reasons for differences in the 
projections. The tier 1 integrations (surrounding the 
core and shaded yellow) examine specific aspects 
of climate model forcing, response, and processes, 
and tier 2 integrations (shaded green) go deeper into 
those aspects. Thus, proceeding from core to tier 1 to 
tier 2 can be seen as a progression from basic to more 
specialized simulations, exploring multiple aspects of 
climate system projections and responses. For each 
suite of experiments, the modeling groups will per-
form the core integrations first, followed by a selection 
of the tier 1 and tier 2 integrations, depending on their 
interests and available resources.

For detailed specifications of all the experiments, 
the reader is referred to the experiment design 

document (Taylor et al. 2009), which can be obtained 
from the CMIP5 website (http://cmip-pcmdi.llnl.gov 
/cmip5).

Long-term experiments. The core simulations within 
the suite of CMIP5 long-term experiments (Fig. 2) 
include an AMIP run, a coupled control run, and 
a “historical” run forced by observed atmospheric 
composition changes (reflecting both anthropogenic 
and natural sources) and, for the first time, including 
time-evolving land cover. The historical runs cover 
much of the industrial period (from the midnineteenth 
century to near present) and are sometimes referred to 
as “twentieth century” simulations. Within the core set 
of runs, there are also two future projection simula-
tions forced with specified concentrations [referred to 
as “representative concentration pathways” (RCPs)], 
consistent with a high emissions scenario (RCP8.5) and 
a midrange mitigation emissions scenario (RCP4.5). 
For AOGCMs and EMICs that have been coupled to 
a carbon cycle model (i.e., for ESMs), there are control 
and historical simulations, and the high emissions 
scenario (RCP8.5). For this set of ESM runs, the time-
evolving atmospheric concentration of CO2, rather 
than being specified, is calculated by the model.

The CMIP5 projections of climate change are 
driven by concentration or emission scenarios con-
sistent with the RCPs described in Moss et al. (2010). 
In contrast to the scenarios described in the IPCC 
“Special Report on Emissions Scenarios” (SRES) used 
for CMIP3, which did not include policy intervention, 

FIG. 2. Schematic summary of CMIP5 long-term experi-
ments with tier 1 and tier 2 experiments organized 
around a central core. Green font indicates simulations 
to be performed only by models with carbon cycle 
representations. Experiments in the upper hemisphere 
are suitable either for comparison with observations 
or provide projections, whereas those in the lower 
hemisphere are either idealized or diagnostic in nature 
and aim to provide better understanding of the climate 
system and model behavior.

FIG. 3. Schematic summary of CMIP5 decadal predic-
tion integrations.
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They	
  have	
  begun	
  exploring	
  decadal	
  predic2ons	
  with	
  lots	
  of	
  new	
  model	
  
experiments	
  in	
  the	
  newest	
  climate	
  change	
  models	
  (CMIP5).	
  However…	
  

“Users	
  of	
  CMIP5	
  model	
  output	
  
should	
  take	
  note	
  that	
  decadal	
  
predic+ons	
  with	
  climate	
  models	
  
are	
  in	
  an	
  exploratory	
  stage….	
  
The	
  experiments	
  aim	
  to	
  advance	
  
understanding	
  of	
  predictability”	
  

Taylor	
  et	
  al.,	
  BAMS,	
  2012	
  



Decadal	
  Predic2on	
  Challenges	
  
1)  Ini&alizing:	
  we	
  need	
  to	
  know	
  the	
  current	
  condi2ons	
  of	
  the	
  

atmosphere	
  and	
  ocean	
  

2)  Improved	
  climate	
  models:	
  Need	
  climate	
  models	
  to	
  be	
  more	
  
accurate,	
  especially	
  in	
  regions	
  with	
  high	
  decadal	
  variability	
  

3)  Ensembles	
  and	
  Uncertainty:	
  How	
  to	
  represent	
  errors	
  in	
  the	
  ini2al	
  
condi2ons	
  

4)  Hindcasts	
  and	
  Evalua&on:	
  How	
  to	
  measure	
  how	
  good	
  or	
  bad	
  a	
  
predic2on	
  is	
  

5)  Providing	
  regional	
  informa&on	
  to	
  users:	
  Even	
  if	
  we	
  can	
  make	
  a	
  
perfect	
  predic2on,	
  how	
  do	
  we	
  tell	
  the	
  people	
  who	
  need	
  to	
  know	
  
(governments,	
  water	
  managers,	
  businesses	
  etc.)	
  

Murphy	
  et	
  al.,	
  2012	
  



“An	
  improved	
  understanding	
  of	
  decadal	
  
climate	
  variability	
  is	
  very	
  important	
  because	
  
stakeholders	
  and	
  policymakers	
  want	
  to	
  know	
  
the	
  likely	
  climate	
  trajectory	
  for	
  the	
  coming	
  
decades	
  for	
  applica+ons	
  to	
  water	
  resources,	
  
agriculture,	
  energy,	
  and	
  infrastructure	
  
development.”	
  
	
  
Mehta	
  et	
  al.,	
  BAMS,	
  2011	
  


