
The Geostrophic Wind 

• On Monday, after we derived the component expressions 

    for the momentum equation, we performed a scale 

    analysis on the horizontal equations choosing to look at 
    the synoptic scale of  motion at 45° N, as summarized in 

    the following table: 



• From the table, it is apparent that for typical synoptic 

    scale, midlatitude motions, the pressure gradient and 

    Coriolis (associated with horizontal flow) forces are 
    of  the same order and approximately balance each 

    other; i.e.,  

• These two expressions represent geostrophic (“geo” 

    for Earth and “strophic” for turning) balance relating 
    the horizontal pressure and wind fields. 

• Letting                   and defining ug and vg as the zonal and 

    meridional components of  the geostrophic wind such 

    that                     , we may write 
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• We can simplify this further by switching from height to 

    geopotential height coordinates.  Recall  = gz, the 

    hydrostatic equation                    and the height to 
    pressure transform: 

    we may rewrite the geostrophic wind components as 

    and see the true beauty of  the geopotential height in 

    that the density does not appear in the equations!  

• Thus, in vector form we may write 
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• As seen in the figure below, the geostrophic wind blows 

    parallel to the geopotential height contours on a     

    constant pressure 
    surface (most weather 

    maps) with lower 

    values of  height 

    to the left of  the 

    wind in the 
    Northern Hemisphere, 

    and the speed of  the wind is 

    inversely proportional to the spacing 

    of  the contours. 



• How well does this work in the atmosphere?   

• Let’s look at some weather maps! 







• We see that geostrophic balance approximates the wind 

    pretty darn well away from the surface of  the Earth 

    (where we have friction; we’ll cover this in a little bit) 
    and not at the equator where   = 0. 

• Thus, the geostrophic wind is frequently used in place of  

    the real wind for midlatitude applications and is accurate 

    for most situations to within 10-15 %. 

• Alas, making the assumption of  geostrophy does have 

    some unfortunate consequences that we shall now 

    examine. 

• The first consequence is that there is no reference to time 

    in the geostrophic wind equation; i.e., the equation is 

    diagnostic, not prognostic. 

• This means that with knowledge of  the height field, we 

    can diagnose the wind field, but we can not predict how 

    it will evolve in time because there is no D / Dt term. 
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• To obtain predictive equations for the wind field we must 

    retain the (D / Dt) terms.  If  we do this, the resulting 

    momentum equations are 

• Substituting in for the height gradients using the 

    definition of  the geostrophic wind components we have 

    which says that the acceleration of  the horizontal wind is 

    proportional to the difference between the actual wind 
    and the geostrophic wind times the Coriolis parameter. 

• This confirms that the acceleration of  the wind is an order 

    of  magnitude smaller than the Coriolis force 

    (e.g., f  (u - ug) < f  u, with u = 10 m s-1 and ug = 9 m s-1).  
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• A convenient measure of  how geostrophically the flow is 

    behaving is the Rossby number, defined as the ratio of  

    the acceleration to the Coriolis force: 

• Following the argument from the previous slide, when Ro 

    is small, V ~ Vg and the flow is approximately 

    geostrophic.  

• Going back to our 250 hPa geopotential height map, 

    where might Ro not be small and the flow deviating 

    significantly from geostrophy? 
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• A more serious issue with using the geostrophic 

    approximation is that there is no w equation, and if  the 

    atmosphere were indeed purely geostrophic, there 
    would be no vertical motion. 

• Let’s prove it! 

• Last lecture, we derived the continuity equation: 

• If  the atmosphere were in geostrophic balance: 

• Substituting in the expressions for ug and vg we have: 
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• Interchanging the order of  differentiation we see 

• So the geostrophic wind is non-divergent and if  w = 0 

    at the ground and tropopause, w = 0 everywhere in 

    between! 

• Therefore, the small (but significant in some areas) 

    difference between the true and geostrophic winds 

    is intimately tied to both the acceleration of  the 

    horizontal wind and the synoptic scale vertical 

    motion. 
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• Finally, we have seen that away from jet streaks, the 

    equator and the surface of  the Earth, the geostrophic 

    wind is a good approximation for the real wind.  

• Well, what about at the surface? 

• If  there was no friction, the flow around a high pressure 

    system would look like the 

    figure to the right. 

• Air would flow in a clockwise 

    direction around high 
    pressure systems and  

    counterclockwise around 

    low pressure systems in the 

    Northern Hemisphere. 

• The real weather map on the 

    next slide reveals a slightly 

    different picture.  





• Examining the surface weather map, we see that instead 

    of  blowing parallel to the isobars, the real surface winds 

    cross the isobars directed out from the area of  high 
    pressure and in towards the area of  low pressure. 

• This cross isobaric flow is the result of  the frictional force 

    slowing down the wind, making the flow subgeostrophic.  

• This reduces the strength of  the Coriolis force (which is 

    directly proportional to the wind speed).  

• Thus, the Coriolis force 

    isn’t quite strong enough 

    to balance the pressure 

    gradient force and the 

    wind crosses the isobars 

    in the direction of  the 
    pressure gradient force 

    from higher to lower pressure. 



~ Cross isobaric flow ~ 



• Mathematically, ignoring the acceleration (DV / Dt = 0), 

    we have a three way balance at the surface between 

    the pressure gradient, Coriolis and frictional forces: 

• Written this way, we can see that the pressure gradient 

    force (directed 
    perpendicular to the 

    isobars), must balance 

    both the Coriolis 

    (perpendicular to the 

    wind), and frictional 
    (directed opposite to 

    the velocity) forces, as 

    indicated on the figure. 
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• The wind speed is determined by the requirement that 

    the Coriolis force be just large enough to balance the 

    component of  the pressure gradient force in the 
    direction perpendicular to the velocity.   

• The angle between V and Vg (  on the figure)  is 

    determined by the requirement that the component of  

    the pressure gradient force in the direction of  the 

    velocity be equal and opposite to the frictional force. 
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