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ABSTRACT

The newly developed Expendable Digital Dropsondes (XDDs) allow for high spatial and temporal reso-

lution observations of the kinematic and thermodynamic structures in tropical cyclones (TCs). It is important

to evaluate both the temporal and spatial autocorrelations within the recorded data to address concerns about

spatial interpolation, statistical significance of individual data points, and launch-rate spatial requirements for

future dropsonde studies in TCs. Data from 437 XDDs launched into Hurricanes Marty (27–28 September),

Joaquin (2–5 October), and Patricia (20–23 October) during the 2015 Tropical Cyclone Intensity (TCI)

experiment are used to compute temporal and spatial autocorrelations for vertical velocity, temperature,

horizontal wind speed, and equivalent potential temperature. All of the examined variables had temporal au-

tocorrelation scales between approximately 10 and 40 s, with most between 20 and 30 s. Most of the spatial

autocorrelation scales were estimated to be 3–10 km. The temporal autocorrelation scales for vertical velocity,

horizontal wind speed, and equivalent potential temperature were correlated with updraft depth. Vertical ve-

locity usually had the smallest mean, and median, temporal and estimated spatial autocorrelation scales of

approximately 20 s and 3–6 km, respectively. The estimated horizontal scales are below the median sounding

spacing and suggest that an increase in the launch rate of theXDDs by a factor of 3–4 from theTCI sampling rate

is needed to adequately depict TC kinematics and structure in transects of soundings. The results also indicate

that current temporal sampling rates are adequate to depict TC kinematics and structure in a single sounding.

1. Introduction

The Office of Naval Research conducted the Tropical

Cyclone Intensity (TCI) experiment in 2015 (Doyle et al.

2017). Three of the tropical cyclones (TCs) that were

sampledduringTCI areMarty (27–28September), Joaquin

(2–5 October), and Patricia (20–23 October). A total of

725 global positioning system (GPS) dropwindsondes

(hereinafter referred to as ‘‘dropsondes’’) were launched

into these three TCs. The dropsondes used were the

Expendable Digital Dropsondes (XDDs) manufactured

by Yankee Environmental Systems, Inc., deployed using

theHigh-Definition Sounding System (HDSS) on board a

National Aeronautics and Space Administration WB-57

aircraft. The HDSS can launch one dropsonde every 10 s

(Black et al. 2017), but during the 2015 TCI experiment,

the quickest launch rate was 20 s at 4-km horizontal

spacing (Doyle et al. 2017). The XDDs recorded atmo-

spheric pressure p, temperature T, and relative humidity

RH at 2Hz and dropsonde horizontal motion compo-

nents and GPS fall speed at a rate of 4Hz (Black et al.

2017). The zonal (u) andmeridional (y) wind components

were computed directly from the dropsonde horizontal

motion components. Vertical velocityw can be computed

from the GPS fall speed or a calculated differential

pressure fall speed (Nelson et al. 2019).

TheHDSS and its capability to launch a large number of

XDDs in quick succession provided unprecedented, high-

temporal-and-spatial-resolution dropsonde observations
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during TCI. Because of the high sampling rate of the

XDDs, it is possible that successive data points in a

sounding, or data points from adjacent soundings,

were appreciably correlated (i.e., correlation values

greater than 0.5; Brooks and Carruthers 1978), and

likely represented the same atmospheric phenomena,

such as an updraft or small-scale vorticity maximum.

To the best of the authors’ knowledge, no study has

considered the temporal and spatial autocorrelations

(Brett and Tuller 1991; Griffith 2003; Khalili et al.

2007) of dropsondes in TCs. Only one study, Black

et al. (1996), has directly examined the spatial auto-

correlations of radar data in TCs. Analysis of the tem-

poral and spatial autocorrelations of the TCI soundings

are important to 1) aid targeted dropsonde or dropsonde

deniability studies (studies examining the impact of re-

moving observational data to be assimilated into a

model; e.g., Mu et al. 2009; Torn and Hakim 2009; Wu

et al. 2009; Romine et al. 2016), 2) evaluate what co-

herent features are resolvable by the dropsondes, 3)

perform accurate spatial interpolation of any recorded

variable, and 4) provide guidance as to what horizontal

spacing is required to resolve various aspects of TC

structure within transects of soundings.

The autocorrelations of data from nearby soundings

is important in TC track and intensity modeling studies,

and is especially important for studies examining the

impact of targeted dropsonde observations and drop-

sonde data deniability (Langland 2005; Mu et al. 2009;

Torn and Hakim 2009; Wu et al. 2009; Irvine et al. 2011;

Romine et al. 2016), the crux of which is to examine the

influence of data from a dropsonde, or set of drop-

sondes, at a specific location to the model forecast. The

current approach for targeted dropsonde studies is to

launch 10–50 dropsondes, with high-quality observa-

tions, intermittently in a predetermined sensitive area

and assimilate the data into the model to improve the

forecast (e.g., Langland 2005; Romine et al. 2016).

Sensitive areas are determined by examining the effect

of perturbing the initial conditions in a model, or by

examining total energy singular vectors or ensemble

transforms (Langland 2005; Mu et al. 2009). The goal is

to assimilate numerous observations with small indi-

vidual influence rather than one or two highly influential

observations (Langland 2005). Increasing the number of

observations and the observational horizontal resolution

improves model forecasts if the observational errors are

uncorrelated (Liu and Rabier 2003). If the observational

errors are correlated, then increasing the number of ob-

servations beyond a set threshold does not improve the

forecast (Liu and Rabier 2003).

Other studies have found that the resolution of the

model and the correlation scale of the background model

errors are important to determine the observational

spacing required for targeted studies (e.g., Leutbecher

et al. 2002; Liu and Rabier 2002, 2003; Aberson 2008;

Torn and Hakim 2009). Leutbecher et al. (2002) state

that soundings assimilated into models should be spaced

1–2 times the horizontal correlation length scale of the

background model error. The length scale of the back-

ground model error varies from approximately 90 to

350km depending on the model, resolution of the model,

and the variable considered (Andersson et al. 1993; Irvine

et al. 2011; Rizvi et al. 2012; Wang et al. 2014). Liu and

Rabier (2002) found that the optimal observation spacing

is approximately equal to the product of the analysismesh

size and the ratio of the number of grid points to the

number of observations.

Knowledge of the temporal and spatial autocorrela-

tions of dropsondes is also required in order to accu-

rately depict TC structure from transects of dropsondes

or aircraft. Some studies indicate that, to resolve features

on the scale of the radius of maximum wind (RMW),

grid spacing of approximately 14 km or less is required

(Gentry and Lackmann 2010). The results of Gentry and

Lackmann (2010), however, show that increased model

resolution down to 2-km grid spacing or less is required

to understand TC eyewall kinematics and physics. These

results suggest that observations should also be taken at

high resolution. The likelihood of highly correlated data

points increases, however, with the increase in hori-

zontal or vertical resolution and should approach unity

(Brett and Tuller 1991; Khalili et al. 2007). Conversely,

if dropsondes are launched too far apart, the thermo-

dynamic and kinematic structure of a TCwill not be well

resolved or represented. Similarly, if data in a single

sounding are recorded at low frequency, the thermo-

dynamic and kinematic structure of a TCwill not be well

resolved or represented.

Examination of the temporal and spatial autocorre-

lations in the XDDs is critical to accurately perform any

objective spatial interpolation. One interpolation scheme,

called kriging, is a geostatistical interpolation method that

uses covariance information to interpolate data fields (e.g.,

Biau et al. 1999). If adjacent data points in space or time

are appreciably correlated, well modeled, or vary slowly

in time and space, interpolation can easily be conducted

between the data points (Gorman 2009). If adjacent data

points are not appreciably correlated, however, then

interpolation cannot be as easily conducted and could

create unrealistic and uncharacteristic TCs by smooth-

ing or smearing small-scale phenomena or sharp gradi-

ents in time and space (Privé and Errico 2016). One of

the important distinctions between statistical interpo-

lation methods like kriging and observational data as-

similation methods (discussed previously) is that kriging
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is based completely on observations (Biau et al. 1999).

Data assimilation is dependent on observations, andmodel

physics, resolution, and domain size (e.g., Aberson 2008).

Temporal and spatial (both horizontal and vertical)

variability of observations in various atmospheric phe-

nomena suggest a complex relationship between the auto-

correlation, observational density, observation method,

and location of the observations. Table 1 summarizes the

findings of studies that examined the temporal or spatial

autocorrelations for horizontal wind speed jVhj, T, water
vapor, precipitation, and w. It is important to note that

most of the studies presented in Table 1 did not analyze

observations from TCs, evaluated various physical pa-

rameters and observations, used different instrumenta-

tion, studied a range of length scales, and used a range of

critical correlation coefficients to determine autocorre-

lation scales. Nevertheless, they are included because of

the lack of studies that have examined autocorrelations

in TCs and they provide some context to the autocorre-

lations observed from the TCI dataset.

There are large variations in the autocorrelation

horizontal distances for the non-TC variables con-

sidered in Table 1, with lengths ranging from 200m

(w; Lothon et al. 2006) to 1000 km (T; Gunst 1995).

The vertical autocorrelation length scales for w and

water vapor given in Table 1 are comparable and less

than 1km (Lothon et al. 2006; Fisher et al. 2013). The 0.5

autocorrelation temporal scales for T and horizontal

wind speed (Table 1) are comparable, between 4 and

12 h, and are a function of altitude (Brett and Tuller

1991; Raymond et al. 2003; Pérez et al. 2004). Horizontal

autocorrelation spatial scales for T are greater than, or

comparable to, the horizontal autocorrelation spatial

scales for horizontal wind (Table 1). Convection, and

variables related to convection (e.g., precipitation rate),

should have smaller correlation length scales horizon-

tally due to higher small-scale variance (Fisher et al.

2013). Spatial autocorrelations in precipitation and rain

rate drop below 0.5 from 1.5 to 10km, with convective

precipitation primarily at 4 km and stratiform precipi-

tation generally at larger distances (Table 1). Lothon

et al. (2006) examined the autocorrelation of w in the

daytime, convective, planetary boundary layer (PBL)

using Doppler lidar data and found small 0.5 auto-

correlation distances between 200 and 300m both

horizontally and vertically (Table 1).

Black et al. (1996) examined the spatial autocorrela-

tions of w in TCs from flight-level and Doppler radar

data. They found that w autocorrelations of approxi-

mately 0.2 were statistically significant, horizontal and

vertical autocorrelation distances were between 1 and

6km, and updrafts were more spatially correlated than

downdrafts, especially within the eyewall. The 0.2 au-

tocorrelation threshold noted in Black et al. (1996) in-

dicates statistically significant relationships, but does not

indicate that the autocorrelation is strong. The use of

TABLE 1. Summary of spatial (horizontal and vertical) and temporal autocorrelation scales referenced in the text based upon corre-

lation thresholds of 0.5, 0.37, or 0.2 for horizontal wind jVhj, temperature T, water vapor, rainfall, rain rate, and vertical velocity w.

Correlation length scales that were specifically for convective regions are denoted as ‘‘C,’’ and nonconvective regions are denoted as ‘‘NC.’’

Observation types (obs type) are listed, and the locations of the observations are noted for each referenced study. Observation types include

surface (sfc stations), boat (boat stations), radio acoustic sounding system (RASS), satellite, lidar, S-band radar, or X-band radar.

Variable Correlation Vertical distance

Horizontal

distance Time Obs type Location Reference

jVhj 0.5 — 0–100 km — Sfc stations Land Wylie et al. (1985)

jVhj 0.5 — 400 km — Boat stations Ocean Wylie et al. (1985)

jVhj 0.5 — — 4–6 h Sfc stations Land Brett and Tuller (1991)

jVhj 0.37 — — 11 h (at 40m) RASS Land Pérez et al. (2004)
jVhj 0.37 — — 5 h (at 300m) RASS Land Pérez et al. (2004)
T 0.5 — 800–1000 km — Sfc stations Land Gunst (1995)

T 0.5 — 200–600 km — Satellite Upper air Nichol and Wong (2008)

T 0.37 — — 7 h (at 40m) RASS Land Pérez et al. (2004)
T 0.37 — — 8 h (at 140m) RASS Land Pérez et al. (2004)
T 0.5 — — 12 h Satellite Over ITCZ Raymond et al. (2003)

Water vapor 0.37 0.45 km (C) — — Lidar Airborne Fisher et al. (2013)

Water vapor 0.37 0.2–0.3 km (NC) — — Lidar Airborne Fisher et al. (2013)

Rainfall 0.5 — 4 km — Rain gauge Land Habib et al. (2001)

Rain rate 0.5 — 10 km (NC) — S-band radar Land Bringi et al. (2015)

Rain rate 0.5 — 4 km (C) — S-band radar Land Bringi et al. (2015)

Rainfall 0.5 — 1.5–4 km — Reports/radar Land Jameson (2017)

w 0.5 0.2–0.3 km 0.2–0.3 km — Lidar Land Lothon et al. (2006)

w 0.2 4–7 km 4–6 km — X-band radar TC eyewall Black et al. (1996)

w 0.2 2–4 km 1–4 km — X-band radar TC rainband Black et al. (1996)
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a higher autocorrelation threshold, like 0.5, would

indicate a stronger relationship and decrease the hori-

zontal, and vertical, autocorrelation distances in Black

et al. (1996) by approximately 50%.

The definition of convection, updrafts, and down-

drafts is also important in discerning the autocorrelation

scales within updrafts and downdrafts. Jorgensen et al.

(1985) defined convective vertical motions in TC flight-

level data as continuous positive or negative vertical

velocities for at least 500m, with at least one data point

achieving a magnitude of 0.5m s21. Convective cores

were defined as continuous w magnitudes of at least

1m s21 for 500m or greater. These distances and

values were determined iteratively and subjectively in

LeMone and Zipser (1980) to more easily differenti-

ate turbulent motions from coherent vertical veloci-

ties without needing a complex statistical analysis.

This definition was also adopted by studies such as Black

et al. (1994); however, the spatial correlations of the w

data were not presented. Black et al. (1996) defined an

updraft or downdraft as continuous, X-band radar,

vertical velocities exceeding j1.5m s21j with at least one

data point exceeding j3m s21j.
Eastin et al. (2002a,b, 2005) examined the spatio-

temporal characteristics and statistics of instrument

wetting events (IWEs) in TCs, which are periods where

flight-level, probe-derived temperaturemeasurements were

significantly [using the 3s (std dev) level; or DT 5 0.58C]
colder than radiometer-derived temperatures. These

IWEs were primarily correlated with the presence of

updrafts and appreciable cloud water. The results from

Eastin et al. (2002a,b, 2005) are not included in Table 1,

because they did not directly report upon the auto-

correlation of the data nor present correlograms of the

data. Eastin et al. (2002a) showed that 90% of the

IWEs were less than 10 km in scale. Magnitudes of

moisture, w, and DT decrease and, therefore, decorre-

late rapidly within 3–6 km of the peak of the IWEs

(Eastin et al. 2002a). Equivalent potential temperature

ue and moisture values decreased rapidly (decorre-

lated) within 8 km radially outward of updraft maxima

(Eastin et al. 2002b). The mean IWE diameters were

also a function of altitude, where IWE diameters were

7 km below the freezing level and 14 km above (Eastin

et al. 2002a).

In this study, an analysis is conducted to evaluate the

temporal and spatial autocorrelations of the XDDs used

in TCI with the kriging spatial interpolation framework.

The autocorrelation of data points in individual sound-

ings, as well as the spatial correlation between adja-

cent soundings, are considered. In section 2, the data

and methods used are described. Section 3 shows the

results of the temporal and spatial autocorrelations.

Conclusions are drawn in section 4 and a discussion of

the results, and their implications for future drop-

sonde studies, is provided.

2. Data and methods

Three of the primary goals of TCI were to 1) docu-

ment the horizontal, and vertical, structure of the out-

flow layer and the inner core of TCs; 2) understand the

role of the TC outflow layer on intensity change and how

it couples with convection; and 3) examine the impact of

assimilating observations of the outflow layer and TC core

on track, and intensity, forecasts. A total of 140, 328, and

257 XDDs were launched into Marty (27–28 September),

Joaquin (2–5October), and Patricia (20–23October), with

most flights being transects over the TC centers or

figure-four patterns over a duration of 1–2 h. The mini-

mum, maximum, mean, and median sounding spacing

for each day are provided in Table 2. The temporal

and spatial autocorrelations were computed for w, jVhj,
T, and ue.

Adjacent data points in time and space with correla-

tions above 0.5 are considered highly correlated (Brooks

and Carruthers 1978). The statistical significance of the

autocorrelations is estimated by 95% confidence levels.

Autocorrelations above 0.5 are statistically significant

well above the 95% confidence level in both time and

space for all variables in the dataset (not shown) and,

therefore, indicate both strong and statistically sig-

nificant autocorrelations.

Autocorrelation distances and times below the spatial

and temporal resolution of the dataset are interpolated es-

timates limited by the spacing and number of observations.

In such a situation, it can be confidently stated that the

autocorrelation threshold is below the median resolu-

tion, but the exact autocorrelation distance or time

cannot be verified or confidently stated. Further, any

apparent variance in autocorrelation thresholds that are

below the median sounding spacing from day to day or

storm to storm also cannot be verified or confidently

TABLE 2. List of the minimum, maximum, mean, and median

dropsonde spacing for each day to the nearest kilometer.

Day Name Min Max Mean Median

27 Sep Marty 6 44 18 17

28 Sep Marty 3 83 21 13

2 Oct Joaquin 7 150 39 41

3 Oct Joaquin 5 344 54 38

4 Oct Joaquin 8 120 37 27

5 Oct Joaquin 9 121 33 28

20 Oct Patricia 18 267 87 44

21 Oct Patricia 7 69 26 24

22 Oct Patricia 4 142 26 11

23 Oct Patricia 3 73 22 25
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stated. These distances and times are still valuable,

however, to estimate the temporal and spatial resolu-

tions required to sample TCs from transects of sound-

ings. The spatial autocorrelation estimates in particular,

are presented and discussed in this study, with the un-

derstanding that the exact values are estimated and may

not be fully conclusive.

The vertical velocities, TC centers, and RMWs were

obtained following the methodology of Nelson et al.

(2019). The same data restriction methods used in

Nelson et al. (2019) were employed in this study to en-

sure that autocorrelations were computed for the same

subset of the TCI data. Data were restricted to only in-

clude data points for dropsondes that terminated at an

altitude below 500m to ensure that data were recorded

in the low levels of the TCs, comparable to Stern et al.

(2016). Data points that occurred outside of a radius of

10 times the RMW (10R*; Nelson et al. 2019) were also

removed, which corresponds to a range of radii from 112

to 768km depending on the date. The 10R* restriction

was used to ensure that data points outside of the TCs

themselves (i.e., environmental soundings) were re-

moved. The results of this study, however, are not sen-

sitive to the inclusion of data beyond 10R*, with spatial

autocorrelation scales differing by 1–2 km at most when

removing the 10R* radial restriction, and temporal au-

tocorrelation scales differing by less than 1 s. Data were

also restricted to only use points below an altitude of

17.5 km, as upon launching from an altitude of 19 km,

the dropsondes take time to adjust to the ambient air

(;0.5–1 km; Nelson et al. 2019). A total of 437 drop-

sondes (276 659 data points) were used in this study after

the above data restrictions. The raw ‘‘level 1’’ sounding

datawere used in this study in lieu of the quality-controlled

TCI dropsonde dataset documented byBell et al. (2016) to

ensure that the autocorrelation scales observed were as-

sociated with the data itself and not from filtering tech-

niques. Similar to Nelson et al. (2019), all data used in this

study were at 1-Hz resolution, which is coarser than the

native 2- or 4-Hz data acquisition frequency.

To compute the temporal and spatial autocorrela-

tion scales, the data within any sounding need to be

detrended (Janert 2011). If a trend ormean state is present

in the data, then correlograms show smoothed and high-

amplitude periodic curves or large, negative correlations at

long lags (see the online supplemental material). Rather

than using a linear detrend, median atmospheric profiles

of w, T, jVhj, and ue were used to detrend the data. Six

detrend methods were explored: 1) no detrend, 2)

detrend using median profiles from a specific date (date

detrend), 3) detrend using median profiles from a spe-

cific TC (storm detrend), 4) detrend using median pro-

files from the entire dataset (total detrend), 5) detrend

using median profiles within four radial sections from

the entire dataset (radial detrend), and 6) detrend using

median profiles within four radial sections from a spe-

cific date (D1R detrend). The sixth method (D1R de-

trend) was ultimately used in this study, because it

exhibited the largest autocorrelations among the most

parameters, while accounting for the variance in the

mean state radially, from date to date, and from storm to

storm. The four radial sections were 1) #1.25R*, 2)

1.25R*–3R*, 3) 3R*–5R*, and 4) 5R*–10R*. Note that,

by combining all soundings within 1.25R*, data from the

high-gradient region near the eyewall are used and the

median state can be influenced by the soundings within

the eye itself. Further details about the six detrending

methods, their results, and comparisons can be found

in the online supplemental material.

The D1R detrend median profiles for each variable

and each date are provided in Figs. 1–3 and the total

number of soundings in each radial section are provided

in Table 3. The mean and median number of soundings

in each radial section was 11–12, with a maximum of 24

(Joaquin on 5October) and a minimum of zero (Patricia

on 20 October). Many of the medianw profiles resemble

profiles observed by Black et al. (1996) and primarily

show weak, near-zero vertical motions below the aver-

age freezing level (5–6 km) and stronger vertical veloc-

ities aloft (Figs. 1a–d, 2a–d, and 3a–d), but it is unknown

if this increase is real or due to errors aloft (Nelson et al.

2019). The median w profiles were especially noisy in

Patricia on 20 and 23 October likely due to the small

number of soundings in the radial section (Table 3) or

strong vertical motions in the eyewall (Nelson et al.

2019). The jVhj median profiles differ from day to day

and show the evolution of the TC wind field, but also

show that peak jVhj strengths generally occurred be-

tween 0.5 and 1km (Figs. 1e–h, 2e–h, and 3e–h). The jVhj
median profile for Patricia on 23 October had a noisy

double jet structure, with strong median jVhj from 5 to

7 km similar to the double jet structure in the eyewall of

Patricia shown by Rogers et al. (2017) (Fig. 3e). T and ue
varied slightly from day to day, and had smooth de-

creases aloft for T and increases aloft for ue (Figs. 1i–l,

2i–l, and 3i–l).

To calculate horizontal dropsonde-to-dropsonde auto-

correlations, median profiles similar to those in Figs. 1–3

were created using 0.25-km bins from 0 to 17km height to

account for small altitudinal variations among the

observations and differences in the number of data

points in each sounding. The bin size was chosen to

match the altitudinal binning scheme by Nelson et al.

(2019). Spatial dropsonde-to-dropsonde autocorre-

lations and corresponding distances were computed

using the following equations:
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where the autocorrelation rt is calculated for the binned,

median, D1R detrended data (X0) at a distance d in the

x–y plane. The autocorrelation of each sounding is cal-

culated from pairs of all soundings and not just those

immediately adjacent to a given sounding. n is the total

number of soundings for each date or TC, and k is an

index that runs from 0 to n 2 1 that accounts for each

sounding in the calculation. If it is assumed that the

D1R detrend process accurately removed the mean

state in each sounding, then the mean of X0 should be

zero in all of the equations presented here. The d used is

the mean distance between the two soundings. Given the

uneven spacing of soundings and the finer resolution of

observations within the core, the spatial autocorrelation

distances presented here may be biased toward lower

values. In contrast, the use of a median profile creates

smoother soundings than what was actually observed in

TCI andmay bias autocorrelation distances toward larger

values. These assumptions in the methodology, however,

do not severely impact the results of the study, because

statistically significant high autocorrelations are not ex-

pected at large (.100km) distance scales within a TC.

To calculate the autocorrelations within an individual

sounding, data were ordered with respect to time and

the ‘‘acf’’ function in the R software package was used

for each individual sounding, for each observation day,

and for each storm. The acf function computes auto-

correlation using the following equations:

r
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FIG. 1. Median atmospheric profiles of (a)–(d)w (m s21), (e)–(h) jVhj (m s21), (i)–(l)T (K), and (m)–(p) ue (K) duringMarty for data (left)

within 1.25R*, (left center) between 1.25R* and 3R*, (right center) between 3R* and 5R*, and (right) between 5R* and 10R*.
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where rt is the autocorrelation, ct is the autocovariance,

co is the variance of the series, n is the length of the se-

ries, s is time, and t is some lag forward in time (Venables

and Ripley 2002). For the temporal autocorrelations

within any given sounding, the X0 data were not binned

like in the dropsonde-to-dropsonde data. The sound-

ings, therefore, have differences in the total number of

data points, which is a function of the fall speed, hori-

zontal wind speed, dropsonde fall behavior, and missing

data. The autocorrelations were computed assuming

that no missing data were present and the temporal

resolution was 1Hz. If there were missing data in the

sounding, the data were not replaced with an interpo-

lated mean value or padded with a fill value, because

that would, potentially, increase the autocorrelations

artificially depending on the number of missing data

points. It is hypothesized that missing data would affect

the results by biasing the autocorrelations to smaller

temporal scales.

Because of the highly accurate data telemetry, how-

ever, large regions of missing data were rarely present

in soundings. The total percent of missing data points

is negligibly small for the soundings considered, after

altitude and radial restriction, at 5%. Most regions

of missing data occur over depths of less than 100m.

The autocorrelation scales and correlograms presented

in this study are interpolated splines over all of the

soundings for an individual date or TC, which would

decrease the impact of missing data in a relatively

small number of soundings within the dataset.

3. Results

The autocorrelations for each TC and in total were

plotted as correlograms. Individual correlograms for

each of the 10 days in the dataset are not provided, but

the results from those figures are summarized in Tables 4

and 5, and Fig. 4. Correlograms for each TC are provided

in Figs. 5 and 6. The correlograms are smoothed splines

fitted to scatterplots of the correlograms for each

sounding or altitude level. Table 4 documents the

autocorrelation spatial scales where correlation drops

below 0.5 for adjacent data points at a fixed altitude

(dropsonde to dropsonde). Table 5 documents the

autocorrelation time scales where correlation drops

below 0.5 for data within a given individual sounding.

FIG. 2. As in Fig. 1, but for Joaquin.
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The means, medians, and standard deviations for the

spatial and temporal autocorrelation scales computed

from all 10 observation days are included in Tables 4

and 5.

a. Correlations from dropsonde to dropsonde

All of the calculated daily spatial autocorrelation

length scales were below themean andmedian sounding

spacings, and were comparable to, or less than, the

minimum observed sounding spacings (Tables 2 and 4).

The data from Table 4 imply that the actual spatial

autocorrelation length scales were below the median

spacing, but the exact values cannot be verified with

the observed dataset. The values discussed below and

presented in Table 4, therefore, are rough estimates.

Vertical velocity and ue had relatively small mean and

median spatial autocorrelation scale estimates at 4–6km

(Table 4), with w generally being the smallest. All var-

iables had comparable standard deviations in the esti-

mated spatial autocorrelation scales between 4 and

FIG. 3. As in Fig. 1, but for Patricia.

TABLE 3. List of the number of dropsondes within each of the four radial sections and in total on each day.

Day Name #1.25R* 1.25R*–3R* 3R*–5R* 5R*–10R* Total

27 Sep Marty 11 13 6 20 50

28 Sep Marty 13 16 15 14 58

2 Oct Joaquin 15 13 6 10 44

3 Oct Joaquin 11 11 7 14 43

4 Oct Joaquin 13 16 15 11 55

5 Oct Joaquin 9 13 7 24 53

20 Oct Patricia 5 5 2 0 12

21 Oct Patricia 13 18 13 7 51

22 Oct Patricia 5 13 12 13 43

23 Oct Patricia 5 6 9 8 28
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5 km, but jVhj and T had the smallest spreads (Table 4).

Estimated mean and median jVhj and T spatial auto-

correlation scales were 10–11 and 7–9 km, respectively

(Table 4).

The estimated spatial 0.5 autocorrelation scales for all

variables increased with increasing RMW (Fig. 4a). The

spatial scales for w and ue had the strongest positive

correlations with RMW size. While the correlations do

not indicate a robust, conclusive relationship between

the RMW and spatial 0.5 autocorrelation scales because

of the relatively small sample size and relatively large

median sounding spacing, it is plausible that the spatial

autocorrelation scales could be influenced by the storm-

scale structure of the TCs. The jVhj and T do show ap-

preciably strong (.0.5) correlations with the RMW, but

not as strong as the other two variables. This result is

interesting, because jVhj and T would be expected to

have the strongest correlations with the RMW based

upon the well-recognized idea that gradient or thermal

wind balance dominates the storm-scale structure of

TCs (e.g., Willoughby 1990; Molinari et al. 1993).

Rather, variables associated with convective features

(w and ue) aremore correlated with theRMW. Figure 4a

also illustrates that most of the estimated spatial scales

are smaller than the RMW by a factor of 4–8, with jVhj
mostly on the low end and w on the high end of the

range. Despite the relationship between the RMW and

autocorrelation length scales, data are still grouped by

each TC to examine the differences in the temporal and

spatial autocorrelations present from storm to storm.

Figure 5 shows the spatial correlograms for all four

variables inMarty, Joaquin, and Patricia. Here,w and ue
decorrelate rapidly within 10–20 km, reaching zero at

approximately 20 km (Figs. 5a,d); T and jVhj decorrelate

slower, reaching zero between 40 and 60km (Figs. 5b,c).

All of the variables have autocorrelations that fluctu-

ate around zero outside of 50 km (Fig. 5). The median

sounding spacing when data are grouped by each TC

is, approximately, 11–14 km. The 0.5 autocorrelation

length scales were generally smaller than the median

sounding spacing by a factor of 3–5 for all variables in all

three TCs. All three TCs had horizontal autocorrela-

tion length scale estimates between 3 and 4km, de-

pending upon the variable considered (Fig. 5). These

spatial autocorrelation scales differ from the daily au-

tocorrelation scale estimates, and are less than the mean

and median estimated scales in Table 4, because Fig. 5

shows the spatial autocorrelation composited from data

in each of the three TCs. The spatial autocorrelation

scales were examined as a function of altitude, but the

corresponding distances were often nonlinear or non-

monotonic and no robust conclusions could be made.

To put the estimated spatial autocorrelation scales

into context, the values are compared to the correlation

length scales in Table 1. The correlation distances ob-

served in non-TC studies, except for w, are considerably

larger compared to what was observed in the TCI data.

For example, the estimated spatial autocorrelation scales

for T observed on an individual day and in an individual

TC are much smaller than the horizontal autocorrela-

tion distances observed by Gunst (1995) and Nichol and

Wong (2008). This finding is robust, even when consid-

ering the median sounding spacing. The estimated spa-

tial autocorrelation scales for w were primarily between

1 and 5km from day to day (excluding 20 October), and

2 and 4km from storm to storm (Table 4 and Fig. 5a).

The w estimated spatial autocorrelation scales are most

comparable to the rainfall and convective rain rate au-

tocorrelation distances over land with rain gauge, and

TABLE 5. As in Table 4, but for the temporal 0.5 autocorrelation

thresholds (s) for each day in the dataset and any given individual

sounding. The size of the RMW (km) and TC intensity (m s21) are

also noted.

Day Name w jVhj T ue RMW Intensity

27 Sep Marty 19 25 22 28 37 26

28 Sep Marty 23 31 24 31 21 36

2 Oct Joaquin 23 41 27 25 31 57

3 Oct Joaquin 25 38 35 34 27 67

4 Oct Joaquin 22 31 23 31 38 44

5 Oct Joaquin 20 31 21 30 49 39

20 Oct Patricia 8 21 15 19 77 15

21 Oct Patricia 22 32 13 22 40 26

22 Oct Patricia 21 27 17 25 19 59

23 Oct Patricia 20 33 17 20 11 93

Mean — 20.3 31.0 21.4 26.5 35 46

Median — 21.5 31.0 21.5 26.5 34 41

Std dev — 4.4 5.5 6.1 5.1 18 22

TABLE 4. List of dropsonde-to-dropsonde spatial 0.5 autocor-

relation thresholds, or estimated thresholds, (km) for each day in

the dataset for vertical velocity w, horizontal wind speed jVhj,
temperature T, and equivalent potential temperature ue. The size

of the RMW (km) and TC intensity (m s21) are also noted.

Day Name w jVhj T ue RMW Intensity

27 Sep Marty 5 10 7 7 37 26

28 Sep Marty 4 7 5 4 21 36

2 Oct Joaquin 4 7 5 5 31 57

3 Oct Joaquin 3 5 5 3 27 67

4 Oct Joaquin 5 19 15 8 38 44

5 Oct Joaquin 5 12 7 5 49 39

20 Oct Patricia 17 15 16 18 77 15

21 Oct Patricia 5 16 14 5 40 26

22 Oct Patricia 4 13 9 4 19 59

23 Oct Patricia 1 7 2 1 11 93

Mean — 5 11 9 6 35 46

Median — 4 11 7 5 34 41

Std dev — 4 5 5 5 18 22
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radar, data in Habib et al. (2001), Bringi et al. (2015),

and Jameson (2017). The estimated spatial autocorre-

lation scales are also slightly smaller than the w 0.2

autocorrelation length scales adjacent to updrafts and

downdrafts in TCs as shown by Black et al. (1996), but

are comparable if Black et al. (1996) used a 0.5 auto-

correlation threshold. The differences between this

study and Black et al. (1996) may not be robust, how-

ever, considering that the 0.5 autocorrelation spatial

scales are smaller than the median sounding spacing.

b. Correlations within a sounding

The temporal 0.5 autocorrelation scales were above

8 s for all variables and for each observation day, with

most above 15 s (Table 5). Mean and median temporal

autocorrelation scales ranged from 20 to 31 s for all

variables (Table 5). The smallest mean and median

temporal scales were for w and T. The smaller temporal

autocorrelation thresholds in T and w could be due to

smaller thermal perturbations away from the median

profiles in each radial section (e.g., Fig. 2) and weaker

vertical motions dominating the vertical velocity distri-

bution (Nelson et al. 2019). The mean and median

temporal autocorrelation scales for ue were slightly

larger than for w and T at 26.5 s. The jVhj had the largest

temporal autocorrelation scales within individual soundings

at approximately 30 s. The estimated still air drop-

sonde fall speed ranges from approximately 52m s21 at

17.5 km to 18m s21 at sea level (Nelson et al. 2019). It is

estimated from the typical fall speeds that vertical

autocorrelation length scales would likely range from

0 to 2 km.

Figure 4b shows that as the horizontal autocorre-

lation length scale increases, the temporal autocor-

relation scale generally decreases for w, jVhj, and T.

The ue temporal scales have a weak, negative cor-

relation with the horizontal autocorrelation length

scales, but this is primarily due to one outlier data

point. If this data point was removed, the correlation

would be positive at 0.32. This single data point out-

lier is not present in the other three variables, but

occurred in Patricia on 20 October, where few drop-

sondes were launched (Table 3). The strongest correla-

tion was for the w temporal and spatial autocorrelation

scales at 20.91. The general negative correlation, es-

pecially for w, is not surprising. As a hypothetical

situation, if an XDD sampled a coherent feature

through the depth of the troposphere, like an eyewall

updraft, that sounding will likely not correlate well

with other dropsonde data launched outside of the

convective region of the eyewall, leading to smaller

spatial correlation scales. Conversely, if an XDD

FIG. 4. Comparison of the (a) daily dropsonde-to-dropsonde spatial autocorrelation scales (km) with the RMWs

(km) and (b) daily dropsonde-to-dropsonde spatial autocorrelation scales with the daily temporal 0.5 autocorre-

lation length scales (s) for w, T, jVhj, and ue (black, red, orange, and blue, respectively). The 1:1 (or x 5 y) line

(black) is shown in (a).
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sampled an area with weak radial gradients, and in-

coherent vertical structure, then the dropsonde-to-

dropsonde spatial scale will be larger and the temporal

scale will be smaller. Similar to the relationship between

the RMW and spatial 0.5 autocorrelation scale (Fig. 4a),

these correlations do not provide robust conclusions be-

cause of the relatively small sample size, but they can be

used to develop a hypothesis as to the relationships be-

tween the two scales.

Figure 6 shows the temporal correlograms for all four

variables in Marty, Joaquin, and Patricia. All variables

decorrelate rapidly within 80 s, reaching zero at approx-

imately 100–150 s (Fig. 6). Weak, negative autocorrela-

tion values were observed at longer time lags for all

variables (Fig. 6). w decorrelated the fastest, but the

difference in the rate of decorrelation is negligible.

Joaquin consistently had the largest 0.5 autocorrelation

temporal scales out of the three TCs for all variables, but

both Marty and Joaquin had the same temporal 0.5 au-

tocorrelation scales for ue (Fig. 6d). There was little var-

iation in the temporal 0.5 autocorrelation scales for w

from storm to storm, with temporal scales of 19–21.5 s

(Fig. 6a). Marty and Patricia had comparable 0.5 auto-

correlation temporal scales for jVhj (27–28.5 s). In com-

parison, the 0.5 autocorrelation temporal scales for jVhj
in Joaquin were approximately 33 s. Patricia had con-

siderably smaller temporal autocorrelation scales for T

and ue when compared with Marty or Joaquin. The 0.5

FIG. 5. Spatial autocorrelations for XDDs launched into Marty (red), Joaquin (green), and Patricia (blue) for for (a) w, (b) jVhj, (c) T,
and (d) ue. Correlations of 0.5 and 0.0 are denoted with dashed red and black lines, respectively. Each panel has an inset in the upper-right

corner that shows the variations in the 0.5 autocorrelation crossings.
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autocorrelations were also examined as a function of

radius, but the corresponding temporal scales were often

nonlinear or nonmonotonic and no robust conclusions

could be made.

c. Correlations within updrafts and downdrafts

Given that the typical structure of a TC features strong

kinematic and thermal perturbations within the con-

vective eyewall and rainbands, it is possible that the 0.5

autocorrelation temporal scales differ in soundings

that observed updrafts or downdrafts from soundings

in less convective areas. It is also possible that the tem-

poral scales in these updraft and downdraft soundings

differ from the findings in Fig. 6 and Table 5, which in-

clude all soundings in the dataset. Updrafts and down-

drafts are defined here following Nelson et al. (2019) as

consecutivew above62ms21 with at least one data point

above 64ms21. There was not a requirement for the

minimum depth for the updrafts or downdrafts. Updraft

and downdraft soundings are the subset of soundings with

at least one updraft or downdraft, respectively, in the

sounding. The number of updraft and downdraft sound-

ings for each day is provided in Table 6. In the situation

where both an updraft and a downdraft is observed

in a given sounding, it is classified as both an updraft

and downdraft sounding. Soundings that contain both

an updraft and a downdraft compose 3% of the entire

dataset. Approximately 17% of the updraft soundings

contain at least one downdraft, and approximately

35% of the downdraft soundings contain at least one

updraft. The p values of below 0.05 are used to define

statistically significant differences.

As an example, shown in Figs. 7 and 8 are sounding

profiles from the eyewall of Patricia on 23 October.

FIG. 6. As in Fig. 5, but for temporal autocorrelations in each sounding.
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The red lines denote the start and end of the updraft

following the definition of Nelson et al. (2019). The up-

draft occurred in themidlevels, was approximately 7.5km

deep, and was sampled for over 400 s (Figs. 7, 8). The

updraft was also collocated with the midlevel jet shown

by Rogers et al. (2017), a relatively warm ue bubble, and

small variations in the T profile. The perturbation profile

of T, however, shows strong, negative 5–10-K perturba-

tions, and the perturbation profile of ue showsweak, near-

zero perturbations in the middle of the updraft and

strong, negative perturbations at the base of the down-

draft (Figs. 9c,d). These perturbation profiles are not

consistent with what is expected for an updraft sounding

and may be due to the median profiles reflecting the

relatively warmer low- and midlevel eye. In contrast, the

w and jVhj perturbation profiles exhibited strong, positive
perturbations within the defined updraft as expected for

an eyewall updraft (Figs. 9a,b). The temporal autocor-

relations within this sounding were significantly larger

than for the entire date, with a p value of 0.009 (Fig. 10).

The autocorrelations for the Patricia eyewall sounding

ranged from approximately 70 s (w) to 120 s (ue).

Temporal autocorrelations were computed for all 78

updraft and 37 downdraft soundings on each day and are

provided in Tables 7 and 8. The mean and median 0.5

autocorrelation temporal scales in updraft soundings

were larger than, or comparable to, the temporal

scales in all soundings, but the differences were not

significantly different by Student’s t tests (Tables 5, 7).

Similarly, mean and median 0.5 autocorrelation tem-

poral scales in downdraft soundings were larger than,

or comparable to, the temporal scales in all soundings

(Tables 5, 8). None of the differences, however, were

statistically significant.

Figures 11 and 12 show the temporal autocorrelations

for individual soundings computed similarly to the single

sounding in Fig. 10. The temporal scales for w, jVhj, T,
and ue in updraft soundings have positive correlations

with the maximum updraft depth in the soundings

(Fig. 11). The correlation for w was strong at 0.76,

with a p value of 6 3 10216 (Fig. 11a). Correlations

were also statistically significant at a p value below

0.05 for jVhj (0.04) and ue (0.008), but the correlations

themselves are relatively weak compared to w. The

positive, statistically significant correlations between

TABLE 6. Number of updraft (U) and downdraft (D) soundings for

each day.

Day Name U D

27 Sep Marty 4 3

28 Sep Marty 9 5

2 Oct Joaquin 13 15

3 Oct Joaquin 15 4

4 Oct Joaquin 4 0

5 Oct Joaquin 5 0

20 Oct Patricia 8 1

21 Oct Patricia 5 1

22 Oct Patricia 3 2

23 Oct Patricia 12 6

Total — 78 37

FIG. 7. Vertical profiles of (a) w, (b) jVhj, (c) T, and (d) ue from an updraft sounding (dropsonde 72CC) launched

into the eyewall of Patricia on 23 Oct. The red horizontal lines denote the depth of the updraft. The black long-

dashed vertical line in (a) denotes w 5 0m s21. The black short-dashed vertical line in (a) denotes w 5 2m s21,

which is the minimum, continuous, w strength required for an updraft. At least one data point within this region

exceeds 4m s21, which classifies this sounding as an updraft sounding.
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w and ue to the mean updraft depth agree well with

parcel buoyancy arguments and correlations between

draft core diameters and mean w strength, and ther-

mal buoyancy, in Eastin et al. (2005). In contrast to

the updraft soundings, the downdraft soundings had

near-zero or weakly negative correlations between

the maximum downdraft depth and temporal auto-

correlation scale, with no statistically significant re-

lationships (Fig. 12). The positive correlations for

updraft soundings indicate that there are, poten-

tially, statistically significant relationships between

the temporal autocorrelation scales and the depth

of the updrafts, even though the mean and median

temporal autocorrelation scales do not differ ap-

preciably from the total dataset.

4. Discussion

From the large dataset of 437 XDDs in three TCs, it is

evident that mean temporal autocorrelations were ap-

proximately 20–30 s for w, T, jVhj, and ue, corresponding

to an approximate altitudinal depth of 0.3–1.5 km, given

FIG. 8. As in Fig. 7, but with respect to time. The red vertical lines denote the time of the updraft. The black long-

dashed horizontal line in (a) denotesw5 0m s21. The black short-dashed horizontal line in (a) denotesw5 2m s21,

which is the minimum w strength required for an updraft.

FIG. 9. As in Fig. 7, but for profiles of perturbation (a) w, (b) jVhj, (c) T, and (d) ue. The black dashed vertical line

denotes zero perturbation.
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the typical XDD fall speeds discussed in Nelson et al.

(2019). The temporal autocorrelation scales suggest

that interpolating sounding data to matching altitudes

is, likely, justifiable within small 0.5-km intervals. The

binning scheme used here and in Nelson et al. (2019) is

finer than this estimate. These results also imply that

the XDD sampling frequency adeptly oversampled the

TCs in TCI.

From dropsonde to dropsonde, one of the conclusions

that can be drawn is an estimate of the minimum spatial

distribution of dropsondes needed to accurately depict a

TC with transects of dropsondes from the observed at-

mospheric variables. Another way to phrase the previ-

ous statement is, ‘‘How close together can the XDDs

be in TCs before adjacent data points become appre-

ciably correlated?’’ The estimated spatial autocorrela-

tion scales for all variables, except for w (Black et al.

1996; Lothon et al. 2006), are smaller than what was

observed in previous studies (Table 1). Specifically, the

jVhj and T estimated spatial autocorrelation scales are

smaller for all observation days in the dataset (Wylie

et al. 1985; Gunst 1995; Nichol and Wong 2008). This

result is robust given that the median sounding spacing

was also smaller than the autocorrelation scales shown

by Wylie et al. (1985), Gunst (1995), and Nichol and

Wong (2008).

The relatively high resolution of the original dataset

could be why some of the autocorrelation length scales

for the TCI data are smaller relative to past studies

(Table 1). It is also plausible that the features measured

by the non-TC studies were synoptic-scale features rather

than mesoscale features, like in the three TCs observed

during TCI, which would lead to smaller autocorrelation

length scales or estimated spatial autocorrelation scales

(Table 1). Regardless, the agreement between the spatial

autocorrelations for w in this study and the spatial auto-

correlations for w from radar data adjacent to updrafts

and downdrafts in Black et al. (1996) is encouraging, and

provides support for the findings herein.

It is important to note that one cannot truly know the

spatial correlation limit without testing observations

(like the XDDs) at a much higher launch rate/finer

horizontal resolution. The autocorrelation spatial scales

FIG. 10. Temporal autocorrelation correlograms of (a) w (black), (b) jVhj (blue), (c) T (red), and (d) ue (dark red).

Correlations of 0.5 and 0.0 are denoted with horizontal dashed red and black lines, respectively. Correlograms for the

single updraft sounding in Figs. 7–9 are solid curves, and correlograms for all soundings on 23 Oct are dashed curves.

TABLE 7. As in Table 5, but for soundings containing an updraft.

Also included are the p values for the Student’s t test comparisons

between the temporal scales in Table 5 and the temporal scales in

updraft soundings for each variable.

Day Name w jVhj T ue RMW Intensity

27 Sep Marty 24 28 34 29 37 26

28 Sep Marty 30 42 27 34 21 36

2 Oct Joaquin 30 39 29 17 31 57

3 Oct Joaquin 26 43 51 40 27 67

4 Oct Joaquin 34 38 50 63 38 44

5 Oct Joaquin 10 24 25 27 49 39

20 Oct Patricia 5 19 14 17 77 15

21 Oct Patricia 33 25 27 25 40 26

22 Oct Patricia 19 28 15 14 19 59

23 Oct Patricia 26 37 22 27 11 93

Mean — 23.7 32.3 29.4 29.3 35 46

Median — 26 32.5 27.0 27.0 34 41

Std dev — 9.7 8.5 12.7 14.3 18 22

p — 0.34 0.69 0.10 0.57
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below the median, and even the minimum, horizontal

sounding spacing (e.g., Patricia on 23 October; Tables 2

and 4) are estimates that are limited by the spacing of the

original dataset. It can be confidently stated, however,

that the true 0.5 autocorrelation spatial scales from day

to day and storm to storm were smaller than the median

sounding spacing, which was an average of 27 km on an

individual date or 13 km for an individual TC. The rel-

ative agreement between the mean and median esti-

mated spatial autocorrelation scales in Table 4 and Fig. 5

increases the confidence that these values are plausible

and valid.

The medians for all of the individual days illustrate that

w and ue had small estimated spatial autocorrelation scales

between 4 and 6km (Table 4). This agrees well with the

model grid spacing required to resolve TC eyewall kine-

matics and physics (Gentry and Lackmann 2010). The

estimated spatial autocorrelation scales for w and ue
also agree well with the mean diameter of strong,

buoyant updrafts documented in flight-level observa-

tions (e.g., Black et al. 1996; Eastin et al. 2005), which

indicate that the spatial scales for these variables are

governed at the convective scale and not the storm

scale. The jVhj and T had slightly larger estimated

spatial autocorrelation scales, with means/medians of

approximately 7–11 km, which agrees well with the

model grid spacing required to resolve features on the

scale of the average RMW (approximately 55 km;

Kimball and Mulekar 2004; Gentry and Lackmann

2010). When data were combined for each TC, w or ue
always had the smallest estimated spatial autocorre-

lation scale, with the mean and median below 3 km;

jVhj or T always had the largest estimated spatial

autocorrelation scales for each TC between 3 and 6km.

The results, not surprisingly, imply that the spatial res-

olution of dropsondes needed to adequately depict the

thermal or horizontal wind fields in transects of TCs is

larger than what is needed to adequately depict convec-

tion and convection-related variables by approximately a

factor of 2, assuming that the spatial autocorrelation scale

estimates are accurate.

The spatial requirements of the XDDs for each at-

mospheric variable present an operational challenge

for future TC dropsonde campaigns. The results of this

study suggest that soundings should be, at a maximum,

10–20km apart to accurately, and adequately, depict TC

TABLE 8. As in Table 7, but for soundings containing a downdraft.

Day Name w jVhj T ue RMW Intensity

27 Sep Marty 8 21 10 32 37 26

28 Sep Marty 27 23 23 29 21 36

2 Oct Joaquin 26 41 28 21 31 57

3 Oct Joaquin 32 47 67 38 27 67

4 Oct Joaquin 0 0 0 0 38 44

5 Oct Joaquin 0 0 0 0 49 39

20 Oct Patricia 27 19 18 5 77 15

21 Oct Patricia 21 31 21 24 40 26

22 Oct Patricia 22 34 40 31 19 59

23 Oct Patricia 20 71 17 20 11 93

Mean — 22.9 35.9 28.0 25.0 35 46

Median — 24.0 32.5 22.0 26.5 34 41

Std dev — 6.7 16.1 16.9 10.1 18 22

p — 0.40 0.47 0.35 0.71

FIG. 11. The 0.5 autocorrelation temporal thresholds for (a) w, (b) jVhj, (c) T, and (d) ue within individual

soundings that recorded an updraft as a function of maximum updraft depth in the sounding. Correlations and

linear fits (red lines) are also provided.
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structure in transects of dropsondes. Further, the esti-

mated spatial autocorrelation scales presented in this

study suggest that the finest spatial resolution (approx-

imately 3–4 km) and quickest launch frequency utilized

in TCI was at the minimum limit of the required hori-

zontal sampling interval needed to accurately, and ad-

equately, depict TC structure in transects of dropsondes.

In situations where the horizontal sampling interval was

larger than 3–4km, spatial interpolation cannot be ac-

curately conducted and does not adequately depict

the thermal or kinematic structure in the transects of

these three TCs. The same conclusion can be made if

dropsondes are launched at a resolution of 3–4 km, but

one dropsonde fails. The latter situation suggests that a

finer minimum and median horizontal spatial resolution

of soundings than what was achieved during TCI should

be used in future dropsonde-based TC campaigns.

If it is assumed that the estimated spatial autocorrelation

scales in this study indicate the approximate scales of the

observable features in the three TCs, then the spacing of

observations required to accurately resolve those features

can be estimated from the ‘‘4Dx rule’’ (Grasso 2000). The

results imply that the launch rate needs to be increased by

approximately a factor of 4 to adequately resolve convec-

tion and thermal perturbations in transects of TCs, except

for possible small-scale (smaller than 3km) eyewall vorti-

ces (Grasso 2000; Gentry and Lackmann 2010). This as-

sumes that the XDDs can adequately measure both weak

and strong convection, since the expected vertical ve-

locity errors are 61–2m s21 (Nelson et al. 2019).

Understanding the temporal and spatial autocorrela-

tions of dropsondes launched into TCs also plays an

important role in modeling, and forecasting, TC track

and intensity. The results of this study do not answer

where and when to observe a TC, but the dropsonde

spatial and temporal autocorrelations are important to

modeling, and forecasting, studies examining the inclu-

sion of targeted dropsonde observations, or dropsonde

deniability (e.g., Langland 2005; Mu et al. 2009; Torn

and Hakim 2009; Wu et al. 2009; Irvine et al. 2011;

Romine et al. 2016). In targeted dropsonde studies,

understanding autocorrelations with the XDDs allows

scientists to know how many dropsondes would be

needed to accurately resolve a targeted area without

including highly correlated spatial data (e.g., Liu andRabier

2003). For dropsonde deniability studies, removing a

few dropsondes among a group of highly correlated

dropsondes may not yield significant results. The w,

jVhj, T and ue horizontal autocorrelation scales found

in the three TCs observed during TCI are consider-

ably smaller than the typical length scales of back-

ground errors in models (Andersson et al. 1993;

Irvine et al. 2011; Rizvi et al. 2012; Wang et al. 2014),

and the horizontal autocorrelation scales are con-

siderably smaller than the mean or median sampling

intervals during TCI (Table 2). The results of this study,

therefore, imply that this problem is unlikely to exist

given the finest, mean, and median sampling intervals

during TCI and the current sampling intervals of other

research aircraft.

The results of this study also illustrate the complex-

ity and operational challenges involved in depicting

the thermodynamic and kinematic characteristics of

the TC inner core. As a hypothetical situation, if amodel

with 2-km grid spacing and a domain size of 1000km

(order ofmagnitude of the diameter of the TCs observed

FIG. 12. As in Fig. 11, but for individual downdraft soundings and maximum downdraft depth in the sounding.
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in TCI) were used and 50 XDDs were assimilated at one

time (approximate number of XDDs launched each day

during TCI), then the spacing of the XDDs would need

to be 20km apart (Liu and Rabier 2002; Gentry and

Lackmann 2010). This assumes an equal spacing of

dropsondes and an even distribution of dropsondes

inside of the core and outside of the core. The hypo-

thetical distance of 20 km is generally comparable to

the median sounding spacings in the dataset, but larger

than the daily estimated spatial autocorrelation scales

for all variables examined by at least a factor of 2;

however, the strong gradient regions of the core likely

require a finer spatial resolution than outside of the

core to accurately depict the thermodynamic and ki-

nematic characteristics of the core.
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