{
"cells": [
{
"cell_type": "markdown",
"id": "adc8fe25-feea-4121-8743-e786349e0ab3",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"id": "clinical-console",
"metadata": {},
"source": [
"# Plotting archived HRRR data: 1km reflectivity"
]
},
{
"cell_type": "markdown",
"id": "a32df8af-ecc4-4db7-a211-277eb46e9133",
"metadata": {},
"source": [
"## Overview\n",
"1. Access archived HRRR data hosted on AWS in Zarr format\n",
"2. Visualize one of the variables (1km reflectivity) at an analysis time\n",
"3. Use one of **MetPy**'s customized color tables\n",
"4. Create and visualize a reflectivity time loop of all forecast hours in an archived HRRR run"
]
},
{
"cell_type": "markdown",
"id": "1ec4a6c8-6042-4e91-920f-1e709d14a8b8",
"metadata": {},
"source": [
"## Prerequisites\n",
"\n",
"| Concepts | Importance | Notes |\n",
"| --- | --- | --- |\n",
"| Zarr, Dask, S3 storage | 2mT notebook| Necessary | |\n",
"\n",
"* **Time to learn**: 30 minutes\n",
"***"
]
},
{
"cell_type": "markdown",
"id": "860a2761-73dc-4fa3-9f09-8336802f2c55",
"metadata": {},
"source": [
"## Imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fluid-transfer",
"metadata": {},
"outputs": [],
"source": [
"import xarray as xr\n",
"import s3fs\n",
"import metpy\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import cartopy.crs as ccrs\n",
"import cartopy.feature as cfeature\n",
"from metpy.plots import colortables\n",
"import pandas as pd"
]
},
{
"cell_type": "markdown",
"id": "parallel-strike",
"metadata": {},
"source": [
"## Access the Zarr-formatted data on AWS"
]
},
{
"cell_type": "markdown",
"id": "004b16ec-c133-4662-aa88-a43bd8f69ab4",
"metadata": {},
"source": [
"As in the 2m temperature notebook, create objects pointing to the HRRR S3 bucket and object of interest."
]
},
{
"cell_type": "markdown",
"id": "behavioral-apparatus",
"metadata": {},
"source": [
"
Globe
in Cartopy with these values.\n",
"