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ABSTRACT

The inadequacy of previous calculations of terminal velocities at other than sea level conditions is dis-
cussed. Attention is called to actual measurements of terminal velocities at different air densities, and em-
pirical formulae are presented which fit the data very closely.

1. Introduction

Accurate measurements of the terminal velocity of
water drops at 20C and 1013 mb were made by Gunn
and Kinzer (1949), and their measurements are used
almost universally by meteorologists today. For many
applications it is desirable to have reliable estimates at
other than sea level conditions. The larger terminal
velocity of raindrops aloft is important in many cloud-
physics computations, and has a critical role in the
interpretation of Doppler radar records.

Several investigators have published estimates of
terminal velocities aloft, based on assumptions which
will here be shown to be inadequate. The present
paper is meant to draw attention to what appear to be
the only actual measurements of terminal velocities
at low air densities, those of Davies,® and to present
convenient empirical formulae which fit Davies’ data
very closely.

2. Calculation of terminal velocity from drag data

For a water drop falling at its terminal velocity in
air, the equation of motion reduces to

mg=30V*Cpnr*, 1)

which states that the drop’s weight is balanced by the
upward-directed aerodynamic drag. Here m is the mass
of the drop, g the acceleration of gravity, p air density,
V the terminal velocity of the drop, Cp the drag
coefficient, and » the drop radius. For nonspherical
liquid drops the radius of a sphere of equal volume is
normally used, and Cp is adjusted accordingly. Clearly,
the problem of using (1) to predict V is centered
around the determination of Cp, which for a rigid body,
is a function only of the Reynolds number Re. The

1 The research reported in this paper has been supported by the
Section on Atmospheric Sciences of the National Science Founda-
tion under Grants No. GP-5539 and GA-1431.

2 On special leave from the Weather Bureau, Pretoria, South
Africa.

3 Davies, C. N., 1939: Unpublished Rept., Ministry of Supply,
United Kingdom, London.

usual method of calculating terminal velocities, then,
is equivalent to the following indirect procedure. One
can assume a value for V and calculate the Reynolds
number from

Re= — (2)

where » is the kinematic viscosity. From the appro-
priate drag curve, such as given in Fig. 1, one obtains
Cp, and a new V is calculated from (1). Using this
velocity, the calculation can then be repeated. With
a reasonable first guess the method will converge with
only a few iterations. While this iterative procedure is
eliminated in a scheme proposed by McDonald (1960a),
the underlying physics is identical to that of the pro-
cedure just outlined; the foregoing also appears to be
the method used by Mason (1957), Caton (1966) and
du Toit (1967). Battan (1964) used the ratio of terminal
speeds of spheres aloft and at surface conditions to
adjust the Gunn and Kinzer data to other air densities.
However, Battan used kinematic viscosities applicable
in the standard atmosphere, rather than at the tem-
peratures and pressures he specified.

It is important now to see why the procedure out-
lined above will be inadequate for computing velocities
of drops greater than about 1 mm in diameter, above
which the drop shape starts to deviate from sphericity.
Consider the drag curve determined by Gunn and
Kinzer for water drops, shown in Fig. 1. For Re< 500,
the smaller drag coefficients of water drops than of
rigid spheres is evidence of an organized circulation
within the drop (McDonald, 1960b; Kintner, 1963).
For Rez 500, water drops have a higher Cp than do
rigid spheres. This is caused by the well-known flatten-
ing of large drops with an increase in horizontal cross
section. The effect is enhanced by the customary use
of the equivalent spherical radius in Eq. (1).

Thus, as increasingly larger drops take on increas-
ingly flatter shapes, the drag curve becomes quite
steep, in contrast to that of a rigid sphere. For large
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¥16. 1. Drag curves for raindrops and for rigid spheres. The solid curve was computed from
the Gunn and Kinzer measurements.

drops, the drag coefficient is not a function of the
Reynolds number alone, as for rigid bodies, but also
depends on other nondimensional numbers associated
with the drop-shape problem.

We are now in a position to see why the method used
by earlier investigators is in error. Essentially any
reasonable assumption about Cp will predict a larger
terminal velocity for a drop falling in less-dense air,
but corresponding to this, actually a smaller Reynolds
number. In the size range of large raindrops, this smaller
Re will dictate use of a smaller Cp, a drag coefficient
which was actually determined at sea level for a smaller
and, hence, less flattened drop. This Cp will be too
small, and the method will predict excessively large
terminal velocities. Thus, the Gunn and Kinzer drag
curve cannot be used to extrapolate terminal velocity
data for drops 2 1lmm in diameter to other atmospheric
conditions.

The difficulty with theoretically extending terminal
velocities to lower air densities is concerned with know-
ing the equilibrium drop shape at these new conditions.
If the drop shape were known, one could obtain drag
coefficients from suitable wind tunnel measurements.
However, while the physics of raindrop shape is
moderately well understood (McDonald, 1954; Foote,
1969), there is great difficulty in actually predicting
equilibrium drop shapes because of the difficulty in
determining the aerodynamic flow around the (equi-
librium) drop surface, which governs the external
pressure distribution over the drop. Even despite the
complications arising due to the interrelation of drop
shape and external flow, which would make determina-
tion of the true equilibrium very difficult, there are
currently no numerical methods which will treat high

Reynolds number flows around bodies of arhbitrary

shape (for which no special coordinate systems exist).
Thus, at the present time, actual measurement of

terminal velocities is the only feasible approach.

3. Davies’ data for terminal velocities aloft

Apparently the only actual measurements of terminal
velocities at other than sea-level densities are those of
Davies (loc. cit.), reported by Sutton (1942), and also
published by Best (1950). Briefly, Davies made use of
a fall tube 11 m in length, which could be evacuated
down to about half an atmosphere. Velocities were
measured by allowing the drops to fall through six
narrow sharp-edged beams of light. From the time of
passage through successive beams an average velocity
could be computed, and a check could be maintained
on the absence of acceleration.

In a somewhat neglected paper, Best (1950) tabulated
all of Davies’ experimental data, and gave empirical
formulae which were fitted to Davies’ curves. For ter-
minal velocities at surface conditions, Best proposed
use of the equation,

Vo(d)=Ao{1—exp[—(d/a)"]}, 3)

where Vg refers to surface conditions, and 4o, ¢ and =
are constants that take the values 943, 1.77 and 1.147,
respectively, when ¥V, is in cm sec™! and the drop
diameter d is in mm. As an extension to other altitudes,
Best proposed

V(d)=Vod)e?, (4)

where Vo comes from (3), and & is a constant which
depends on atmospheric conditions. Best gave values
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of & of 0.0405 for the I.C.A.N. standard atmosphere
and 0.0354 for the standard summer tropical atmosphere.

Sutton (1942) quotes the following expression, due
to Davies (loc. cit.), which is supposed to predict the
terminal velocities of drops of any liquid down to
pressures of half an atmosphere (see also Mason, 1957):

log: Q-‘fl ¥
_"_%_"__]_fs,

logio Re= 2.655[ (%)

2
where

F1=0.460+1.012 log1X+0.225 (logiX)?,
f2=0.933—0.167 logi0X,

f3=3.306+0.118 log10X+0.0765 (log10X)?,
X=pilg/a,

Q=Cp Re*=8mg/ (mpr?).

Here p, is the density of the liquid, and all other symbols
are as previously defined. This relation is stated to be
accurate to within 3%, for all liquids in the range

0.4<pd?g/c<1.4. (6)

For water drops, the limits on d in (6) become 1.8-3.3
mm. Calculations using (5), however, show that at
typical 500-mb conditions it is in error by 4%, for 1-mm
drops, increasing to 179, for 5.8-mm drops, when com-
pared with Davies’ experimental data. For 700-mb
conditions, it is within a few per cent for drops <1 mm,
but increases to a maximum error of about 14%,. Eq.
(5) overestimates velocities of water drops in all cases.
Clearly, (5) is of little use for meteorological purposes.

While (4) is useful for analytical manipulation, it is
written in terms of height, rather than the more rele-
vant variable, air density (temperature is also a pa-
rameter of secondary importance because of viscosity
dependence on temperature). In an attempt to arrive
at an expression that will predict terminal speeds at
arbitrary atmospheric conditions (rather than at a
given height in the standard atmosphere), the authors
have gone back to the original Davies’ data to derive
the more general equation

V(d)= V(,(d)1o¥[1+o.0023(1.1—§)(n— To)], )

Po po\ ]*®
V=043 logm(u)—o.tl[logm(*)] . (8)
p P

The subscript zero refers to 20C and 1013 mb. Several
curves computed from (7) are shown in Fig. 2. The
Gunn and Kinzer values have been used for V,.

The bracketed term in (7) attempts to take account
of the dynamic viscosity dependence on temperature,

where

FOOTE AND P. S.

Du TOIT 251
T T T j Ij T ] T 'l T l T I T I
2 500 mb-10C
Nk 600 mb OC -
700 mb 10C
10 800mb IS5C -
900 mb 20C
° 1013mb 20C
[~ n
P Gunn & Kinzer data
lg 8 ]
(]
£
> 7 N
|
o
S e ]
w
>
g s .
Z
z
w 4 1
Ly
3 -
2 -
| _J
oL« 1 4 V.4 0oy
0 [ 2 3 4 5 6 7 8

DROP DIAMETER (mm)

Fic. 2. Terminal velocities computed from Eq. (7) for indicated
conditions. The Gunn and Kinzer curve is also shown.

which changes, by a small amount, the Reynolds
number, and, hence, the drag coefficient. All Davies’
data were taken at 20C.

The factor in (7) involving V is the important varia-
ble. The form exhibited there is simply an improvement
on the simpler, but slightly less accurate form,

V(d)= Vo(d)[—’f’]M. ©)

p

If a given drop had the same drag coefficient at different
air densities, (1) shows that the exponent in (9) would
be 0.5. The smaller exponent of (9) implies that drops
falling at successively lower air densities must have
correspondingly higher drag coefficients. In fact, the
drag coefficients calculated from Davies’ data, seen in
Fig. 3, show this very clearly, and illustrate the nature
of the error made in using Gunn and Kinzer surface
data to extrapolate terminal speeds aloft. The shape
of these curves in Fig. 3 is evidence for the fact that
raindrops are actually flatter high in the atmosphere
than at sea level.

The viscosity correction term in (7) was found by
computing terminal velocities from (1) using the drag
curves in Fig. 3. This correction varies somewhat with
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Fic. 3. Drag data computed from Davies’ measurements. The dashed lines show the drag
curves at given air density. The dot-dash lines show the change in Cp with air density for drops
of a given size. The Gunn and Kinzer curve from Fig. 1 is also shown.

altitude, and led to the factor there involving p. At
typical 500-mb conditions in mid-latitudes, the term
amounts to about a 39, correction. As a rule of thumb,
at constant pressure a 10C change in temperature will
make a 1%, (or less) change in V.

The predictions of Eq. (7) using the Gunn-Kinzer
data for V, are always within 2.5%, of Davies’ data
over the size range of his observations (3.38-5.95 mm
diameter). This maximum difference occurs at the
lowest density used by Davies (p=0.6)X107% gm cm™3).
Most of the discrepancy is explained by the 29, differ-
ence between the Gunn and Kinzer and the Davies
surface data for certain drop sizes. The simplification

of averaging V/V, over all diameters in (7) introduces
no more than a 1%, error.

No attempt was made to take account of the tem-
perature dependence of o, the surface tension coefficient.

4. Empirical equation for ¥,

It is frequently convenient to have an empirical
expression for terminal velocities at surface conditions.
While Best’s expression (3) gives values within 19, of
Davies’ data for drop diameters from 2.3 to 6.0 mm,
it is in error by as much as 8%, for smaller sizes. For
these reasons it seems desirable to base an expression

Tasie 1. Coefficients in Eqs. (10) and (11), for 4 in mm and ¥ in m sec™ (the numbers given must be multiplied by 10= where x is
given in parentheses). The maximum difference between the polynomial prediction and the Gunn and Kinzer (1949) values is also given

as the maximum error for each polynomial.

b;

7
7 N=3 N=3 N=9 N=13

0 Z1.9274(—1)  —3.1682(—1)  —8.5731540(—2) 1.6186834(—1)
1 4.9625( 0) 5.4506( 0) 3.3265862( 0) —4.5352824(—1)
2 —9.0441(—1) —1.3806( 0) 4.3843578( 0) 1.0314424( 0)
3 5.6584(—2) 2.3612(—1) —6.8813414( 0) —5.0842472(—1)
4 —2.8781(—2) 4.7570205( 0) —7.3450430(—2)
5 1.6486(—3) —1.9046601( 0) 1.5748428(—1)
6 4.6339978(—1) —5.8210528(—2)
7 —6.7607898(—2) 9.0774564(—3)
8 5.4455480(—3) —5.8192169(—4)
9 —1.8631087(—4) 8.2413985(—5)
10 —3.2915963(—5)
11 5.4687449(—6)
12 —3.9849021(—17)
13 1.0944173(—8)

Maximum error 0.11 m sec™? 0.07 m sec™? 0.03 m sec™? 0.1 mm
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for Vo on the slightly more accurate Gunn and Kinzer
data. The present authors have found that an Nth
degree polynomial of the form

N
Vo= Z a]'dj:

=0

(10)

will fit the Gunn and Kinzer data to any desired
accuracy by simply increasing V. The ¢,’s are deter-
mined by using a least-squares curve fitting technique
(see, e.g., McCracken and Dorn, 1964).

The values of the a/'s are given in Table 1 for three
different polynomials, and the maximum error in-
volved in using (10) in the size range 0.1-5.8 mm
diameter is also given. As is seen from the signs of the
a;’s, there is a good deal of compensation between the
terms in (10). Indeed, for the higher order polynomials,
the numerical work’ becomes prohibitive for anything
but machine computation.¥For example, for N=9, a
minimum of 7 digits need to be retained for accuracy
in the second decimal place [individual terms in (10)
become as large as 10* m sec™!, summing to order
10 m sec™t].

In Doppler radar studies it is frequently necessary
to predict drop size given terminal velocity. If the
calculations are to be carried out on a computer, an
empirical expression is needed. The following has proved
convenient:

13
d= Z ijoj,

=0

(11)

where the b;’s are also given in Table 1 (here Vo must
be in m sec? and d in mm). Eq. (11) was obtained
from a least-squares fit to the Gunn and Kinzer data,
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and applies over the range 0.27-9.17 m sec™. It appears
that nothing less than a thirteenth degree polynomial
will give sufficient accuracy, i.e., predict d to within
0.1 mm. At least 7 digits must be carried in (11) for
accuracy at all sizes.

For deduction of drop size from terminal velocities
aloft, (7) can be used to find Vy, and this value then
used in (11) to yield drop diameter.
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