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ABSTRACT

This study 1) presents a logistic regression equation of the snow ratio (SR) for use in a conversion of
numerically predicted precipitation amounts into snowfall depths and 2) examines the quality of snowfall-
depth forecasts using the proposed SR equation.

A logistic regression equation of SR has been derived with surface air temperature as the predictor, using
observed 3-h snow ratio and surface air temperature. It is obtained for each of several ranges of the
precipitation rate to reduce the large variability of SR. The proposed scheme is found to reproduce the
observed SRs better than other schemes, according to verification against an independent observation
dataset.

Predictions of precipitation and snowfall using the Weather Research and Forecasting (WRF) model and
the proposed SR equation have shown some skill for a low threshold [1 mm (6 h) ™! and 1 cm (6 h)~" for
precipitation and snowfall depth, respectively]: the 10-case mean threat scores (TSs) are 0.47 and 0.43 for
precipitation and snowfall forecasts, respectively. For higher thresholds [5 mm (6 h)™' and 5 cm (6 h) ' for
precipitation and snowfall depth, respectively], however, TSs for snowfall forecasts tend to be significantly
lower than those for the precipitation forecasts. Examination indicates that the poor predictions of relatively
heavy snowfall are associated with incorrect prediction(s) of precipitation amount and/or surface air tem-
perature, and the errors of the estimated SRs. The proposed SR equation can be especially useful for
snowfall prediction for an area where the spatial variation of precipitation type (e.g., wet or dry snow) is
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significant.

1. Introduction

At present, snowfall depth forecasting can be viewed
as a two-step problem (Roebber et al. 2003). The first
step is to make a quantitative precipitation forecast
(QPF), and the second step is a conversion of the lig-
uid-equivalent precipitation amount into snowfall
depth.

Precipitation forecasting is one of the most challeng-
ing goals of numerical weather prediction (NWP).
Meanwhile, NWP for winter precipitation can be more
reliable than that for summer, since winter precipita-
tion systems are associated mainly with synoptic-scale
systems and are less convective than those during the
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summer. Olson et al. (1995) found that numerical pre-
cipitation forecasts showed increased accuracy in the
cold season.

Winter precipitation over the Korean Peninsula is
mainly associated with one or more of the following
conditions: 1) extratropical cyclones passing over and
around the peninsula, 2) moist air flowing toward a
mountainous area, and 3) airmass transformation dur-
ing cold-air outbreaks toward the south (over the warm
seas) (Cheong et al. 2006). Thus, NWP should have
good potential to forecast winter precipitation over the
peninsula, since numerical models tend to produce bet-
ter predictions for phenomena associated with the con-
ditions mentioned above. However, a complicating fea-
ture is that precipitation often occurs in environments
with surface air temperatures around 0°C or slightly
greater, at which temperatures precipitation can be ei-
ther snow, rain, or of mixed phase.

Snowfall depth forecasts can be made by converting
the liquid-equivalent amount of solid precipitation, pre-
dicted by a model with parameterized microphysics,
into snowfall depth. To do this, we need to know the
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ratio of snowfall depth to liquid-equivalent precipita-
tion amount (hereafter, this ratio will be called the
snow ratio, SR).

Changes of precipitation from dry snow in one area
to wet snow in a nearby area occur frequently over the
Korean Peninsula, and the SR varies significantly in
such situations. A snow-ratio formula applicable to
such variable situations is desired for accurate numeri-
cal snowfall forecasts.

A complex relationship of many factors affects the
density of freshly fallen snow (Roebber et al. 2003). As
a result, the SR for fresh snow varies greatly depending
on the circumstances. For example, Roebber et al.
(2003) reported variations from 3 to 100, while this
study finds ratios from O (i.e., no accumulation) to
larger than 50. Various studies have been made to for-
mulate the relation between the snow ratio and meteo-
rological factors (e.g., Kyle and Wesley 1997; Judson
and Doesken 2000; Roebber et al. 2003). Roebber et al.
(2003) proposed an algorithm in which the snow ratio is
determined as one of three classes using a 10-member
ensemble of artificial neural networks.

Although no method satisfactorily handles large
variations of observed SR, simpler methods are used
for operational snowfall forecasts. The National
Weather Service (NWS) uses a “new snowfall to esti-
mated meltwater conversion table” as an observing aid
in determining the water equivalency of newly fallen
snow (National Weather Service 1996). The SR can be
obtained from this table for various ranges of surface
air temperatures. However, these methods may not
provide continuous SR values in an area with signifi-
cant spatial variation of precipitation composition (i.e.,
dry or wet snowfalls). A fixed snow ratio of 10 (10-to-1
rule, SR = 10) is also used operationally, although sev-
eral studies have shown that the average SR can differ
significantly from 10 (e.g., Judson and Doesken 2000;
Roebber et al. 2003; Baxter et al. 2005).

Quantitative snowfall predictions using NWP outputs
need an adequate method to convert the liquid-
equivalent amount of solid precipitation into snowfall
depth in a variety of situations, including snowfall
events with significant spatial variations in precipitation
type. A relationship that can produce a continuous SR
prediction is also desirable for NWP.

The major goals of this study are 1) to obtain a snow-
ratio equation and 2) to evaluate the quality of numeri-
cal snowfall-depth forecasts using the proposed SR
equation and the Weather Research and Forecasting
model (WRF; Skamarock et al. 2005). For this study,
observed meteorological data are used to derive a non-
linear regression equation of SR. Numerical simula-
tions for 10 snowfall cases over the Korean Peninsula
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F1G. 1. The topography and locations of the stations for surface
(open circles) and upper-air (asterisks) observations. The filled
triangles and plus signs indicate the locations of major mountain
peaks near the east coast of the midpeninsula and the southern
part, respectively. One upper-air station at Jeju Island (33°31'N,
126°32'E), located to the south of the Korean Peninsula, is not
included in this figure.

were used to evaluate the accuracy of snowfall forecasts
using the proposed SR equation.

This paper is arranged in the following manner. Sec-
tion 2 describes the relationships between the observed
snow ratio and the meteorological variables and the
derivation of a nonlinear (logistic) regression equation
of SR. Section 3 includes the descriptions of the experi-
mental design and snowfall events, as well as the evalu-
ation of snowfall predictions for the 10 cases. Conclu-
sions are given in section 4.

2. Determination of snow ratio

A regression equation of SR is obtained here, based
on the relationships between the observed snow ratio
and other meteorological fields. Both surface and up-
per-air observations are considered. Data for surface
air temperatures higher than 4°C are not used.

The 3-hourly surface observations are taken from
about 70 stations in South Korea (Fig. 1). The 3-hourly
fresh snow depth is measured using a snow plate of 50
cm X 50 cm width. Upper-air observation data are
taken from six radiosonde sites (Fig. 1).

The dependence of snow ratio on temperature at
various levels is shown in Fig. 2. The temperatures are
taken from six radiosonde stations in South Korea for
the 22 yr between 1983 and 2004. Upper-air data are
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F1G. 2. Observed SR for 6-h precipitation vs temperature at (a)
the surface and (b) 850 and (c) 500 hPa.

matched with 6-hourly SRs at the same station except
for one, for which a nearby surface station is used. For
example, upper-air data for 1200 UTC are matched
with the SR for the 6-h period of 0900-1500 UTC. Pre-
cipitation rates of less than 1 mm (6 h)~! are not con-
sidered in this diagram to avoid the large variations of
SR associated with small precipitation amounts.
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F1G. 3. Scatterplots of observed SR for 3-h precipitation vs sur-
face meteorological fields: (a) surface air temperature, (b) pre-
cipitation rate, and (c) wind speed. Precipitation rates of less than
1 mm (3 h) ! are not considered in this diagram to avoid too large
variations of SR associated with small precipitation amounts. For
(b) and (c), data with surface air temperatures higher than —2°C
are also excluded to consider dry snow only.
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FI1G. 4. Smoothed SR (averaged over 0.5°C intervals of surface air temperature) for data
with PRs greater than (a) 1 and (b) 5 mm (3 h)~'. Large variations of SR for temperatures
lower than —7°C are due to the small amount, or complete lack, of data.

The snow ratio shows a significant dependence on
the surface air temperature for temperatures near 0°C
and above: The SR decreases rapidly with temperature
and becomes close to 0 for temperatures greater than
about 1°C. For temperatures lower than 0°C, SR is
more scattered and does not show any noticeable de-
pendence on temperature. As height increases, the de-
gree of scatter becomes larger, and small SR values
(i.e., smaller than 10) are found throughout the entire
temperature range. Note that the upper-level tempera-
tures for the snow episodes are mostly below the freez-
ing point. This is also found at 925 hPa (not shown).
These may suggest that, at least for this study, the wet-
ness of the snow is determined mostly by the tempera-
ture near the surface. This differs from the findings of
Diamond and Lowry (1954), who suggested a stronger
correlation of SR with air temperature at 700 hPa. In
this study, SR correlates strongly with surface air tem-
perature for the wet snow temperature range, while the
correlation with temperature decreases with height.

Scatter diagrams for SR and the surface meteorologi-
cal variables are shown in Fig. 3. [Precipitation rates of
less than 1 mm (3 h) ! are not considered.] Since there
are many more surface observation stations than radio-
sonde stations, the diagram for SR and surface air tem-
perature is shown again in Fig. 3a, but this time using
surface observation data for the 8-yr period of 1997—
2004. Here, SR is obtained using observed 3-h depths of
snow and precipitation, and the surface air temperature
is a 3-h average. A strong negative correlation is found
again for the wet snow temperature range, while a very
large scatter is found for dry snow. Note that a large
portion of the data is found in the wet snow range.

To show the effects of the precipitation rate and sur-
face wind speed on the SR of dry snow only, data with
surface air temperatures higher than —2°C are also ex-
cluded in Figs. 3b and 3c. In this event, the snow ratio
shows a significant dependence on precipitation rate

(Fig. 3b), approaching a value near 12 as the precipita-
tion rate increases. The variability of SR becomes
larger as the precipitation rate gets smaller. For small
precipitation rates, the SR value can be as large as
about 50. The large variability of SR for small precipi-
tation rates may be due to many factors, such as me-
teorological conditions, microphysical structure, obser-
vation systems and sites, etc. Surface winds do not seem
to show any noticeable relationship with SR (Fig. 3c).
Surface relative humidity also does not affect SR sig-
nificantly (not shown).

According to this study, precipitation rate is the dom-
inant factor for the SR of dry snow, while surface air
temperature appears to be the most important predic-
tor for the SR of wet snow. Other surface variables such
as wind speed and relative humidity do not show any
appreciable relationship with SR.

For dry snow, an average snow ratio (SR,) as a func-
tion of precipitation rate appears to be a more practical
approach for an operational snowfall forecast, since no
set of predictors seems to fit the wide range of observed
SRs. A smoothed SR (averaged over 0.5° intervals of
surface air temperature) shows a curve that approaches
approximately SR, for colder temperatures, and zero
for above freezing temperatures (Fig. 4). Figure 4 also
indicates that SR, can vary significantly with precipita-
tion rate.

In this study, we have employed a logistic regression
analysis using surface air temperature as the predictor
to obtain a relationship for SR for a given range of
precipitation rates. Logistic regression is employed
mainly because SR is assumed to vary between a con-
stant (average) dry snow ratio (SR,) and 0, and its
curve fits the data for the wet snow range well (i.e., for
temperature higher than —2°C).

The surface air temperature reflects the tempera-
tures of the ground surface and the air just above the
surface, which affects the conditions of the deposited
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F1G. 5. Observed SR for 3-h precipitation as a function of surface air temperature (°C) for
each of five ranges of the PR. Curves represent the logistic regression lines obtained for each

PR range.

snow over the ground. For this reason, the regression
analysis using surface air temperature as the predictor
gives a smaller mean square error (MSE) of the esti-
mated SR than do those using temperatures at upper
levels (not shown). Multiple logistic regression analysis
including other predictors (e.g., temperatures at the
925- and 850-hPa levels) does not decrease the MSE
significantly (not shown). Thus, surface air temperature
(T) is considered to be the primary predictor, and pre-
cipitation rate (PR) is used as the control factor for SR,,.

SR = a/{1 + exp[(T — b)/c]},
a=18.8,b = 0.0811, ¢ = 0.6508,
a=16.1,b = 02182, c = 0.5373,
a=14.9,b = 02295, ¢ = 0.5174,
a=13.2,b = 02678, c = 0.5074,
a=11.9,b = 0.1524, c = 0.5174,

Since the number of surface observation stations is
much larger than that of the radiosonde stations, the
final logistic regression analysis has been carried out
using surface observation data. A total of 10 512 surface
observations (for the 8-yr period of 1997-2004) are
used in the derivation of the regression equation. The
SR equation is obtained for each of several ranges of
PR to reduce the large variability of SR at lower tem-
peratures (Fig. 5):

ey

Imm@Bh) '=PR<2mm@Gh)
2mm(3h) ' =PR<3mm@Bh)’,
3mm(3h) '<PR<4mm@Bh)™},
4mm(3h) '=PR<5mm@3h)”!, and
PR=5mm 3 h)"
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This nonlinear (logistic) regression model for a sig-
moidally shaped curve (Ratkowsky 1990) was selected
because it gave a better fit, based on the sum of the
squared differences, than did other linear and nonlinear
(e.g., logistic) models tested in this study. As PR in-
creases, the coefficient a (the average SR for dry snow,
SR,) decreases. According to this study, SR, for the
case of PR = 5 mm (3 h)"'is 11.9. The SR equation
does not seem to change significantly with the length of
the data period. It is found that the values of a for the
5-yr period of 1997-2001 are close to those for the 8-yr
period of 1997-2004 [cf. Eq. (1)], although the values of
b and c show relatively large changes with the length of
the data period. The coefficient b represents the tem-
perature at SR = a/2, and the coefficient ¢ indicates the
degree of slope for the wet snow range. Equation (1)
does not have coefficient values for PR smaller than 1
mm (3 h)~'. For the application of Eq. (1) to the nu-
merical snowfall prediction in the next section, the re-
lation for 1 mm (3 h) ' = PR <2 mm (3 h) ! is used
for PR smaller than 1 mm (3 h)~".

The SR relation proposed here is simple enough for
operational use and provides continuous SR values. It
can be used to predict snowfall for areas where the
spatial variation of the precipitation composition (from
dry snow in one area to wet snow in a nearby area) is
significant, as for the Korean Peninsula.

The present scheme is similar to the scheme used by
the National Weather Service (1996) in that surface air
temperature is used to determine new snowfall depth.
However, in the NWS scheme, SR is obtained from a
table of SR values for various surface air temperature
ranges. In the NWS table, SR approximate ranges from
10 [for the temperature range of 34°-28°F (1.1°-
—2.2°C)] to 100 [for the range of —21°-—40°F (—29.4°-
—40°C)]. In one approximate temperature range [27°—
20°F (—2.78°-—6.67°C)], the precipitation rate also af-
fects the ratio: The SR value varies from 20 at 0.01 in.
(0.254 mm) of precipitation to 15 at 0.1 in. (2.54 mm).
The main advantage of the present scheme over the
NWS table is in that the present scheme includes pre-
dictions of the snow ratio for temperatures where wet
snow is falling while the NWS scheme does not. This
will be demonstrated later (e.g., Fig. 10).

Verification of Eq. (1) is made against an indepen-
dent dataset (the observations for the period of January
2005-May 2006) that contains 2836 data points. Table 1
shows the correlation coefficient and root-mean-square
error (RMSE) of the estimated SR. In Table 1, SR(7,
PR) represents the present scheme defined by Eq. (1),
while SR(T) represents a scheme that is similar to the
present scheme but without considering the precipita-
tion rate [a = 16.9, b = 0.0957, ¢ = 0.6001 in Eq. (1)].
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TaBLE 1. Correlation coefficient and RMSE between the ob-
served and estimated SRs for snowfall events in January 2005-
May 2006. Here, SR(T, PR) represents the proposed scheme [Eq.
(1)], where T and PR represent the surface air temperature and
precipitation rate, respectively. The SR(7') is the same as in the
proposed scheme, except that the PR is not considered [a = 16.9,
b = 0.0957, ¢ = 0.6001 in Eq. (1)]. Here, SRyws represents the
NWS scheme. The numbers in parentheses represent the values
when the data points with zero SR are excluded.

SR(T, PR),
[Eq. (1)] SR(T) SRyws
Correlation coefficient ~ 0.80 (0.55)  0.79 (0.52)  0.71 (0.39)
RMSE 5.20(6.70) 528 (6.81) 6.08 (7.49)

Table 1 also includes the results for the NWS scheme
(SRyws)- The correlation of estimated SRs with the
observations is good, influenced no doubt by the large
number of data points with a zero snow ratio. The snow
ratio from the present scheme shows the highest corre-
lation with observations and the smallest RMSE. When
the zero points (i.e., data points with zero SR) are ex-
cluded, the correlation coefficient becomes significantly
smaller as shown in Table 1. However, the coefficient of
0.55 for the present scheme is still a significant value,
considering that the correlation is poor for the dry snow
range. In other words, good correlation is found for the
wet snow range. Regarding the regression analysis, the
zero points are necessary since the zero points are a
part of the dataset. (Note that data for surface air tem-
peratures higher than 4°C are not used in this study.)
The regression equation, derived without the zero
points, produces SR values that do not approach zero
quickly enough as the surface air temperature increases
above the freezing point (not shown). As a result, sig-
nificant snowfall can be predicted for surface air tem-
peratures well above 0°C (e.g., over 3°C).

The effect of including the precipitation rate, as in
Eq. (1), reduces the RMSE by just 0.08. This relatively
small improvement may be due to the fact that most
data points have small precipitation rates, and only a
small number of data points have large rates. When we
consider a heavy snowfall event [e.g., an event with a
precipitation rate greater than 5 mm (3 h)~'], the re-
duction of the RMSE should be larger. Thus, SR, as a
function of precipitation rate can be more useful for
heavier snowfall events.

3. Numerical snowfall prediction

a. Model and experimental design

The Advanced Research WRF model (ARW, ver-
sion 2.0.3; Skamarock et al. 2005) is used for this study.



650 WEATHER AND FORECASTING VOLUME 23
TABLE 2. Snowfall events considered for our numerical snowfall prediction experiment.
Type of
Case Duration of precipitation event (h) Duration of numerical integration (h) snowfall event
1 2100 UTC 14 Feb-1800 UTC 15 Feb 2001 (21) 1200 UTC 14 Feb-0000 UTC 16 Feb 2001 (36) II
2 1200 UTC 19 Jan—-0300 UTC 20 Jan 2001 (15) 0000 UTC 19 Jan-1200 UTC 20 Jan 2001 (36) 111
3 1200 UTC 6 Jan-0000 UTC 8 Jan 2001 (36) 0000 UTC 6 Jan-0000 UTC 8 Jan 2001 (48) v
4 1200 UTC 10 Dec-0600 UTC 11 Dec 1997 (18) 0000 UTC 10 Dec-1200 UTC 11 Dec 1997 (36) II
5 1800 UTC 4 Jan—-0600 UTC 6 Jan 1997 (36) 0600 UTC 4 Jan—-0600 UTC 6 Jan 1997 (48) 111
6 2100 UTC 12 Jan-0300 UTC 14 Jan 1992 (30) 1200 UTC 12 Jan-1200 UTC 14 Jan 1992 (48) v
7 0300 UTC 3 Jan-2100 UTC 3 Jan 1991 (18) 1200 UTC 2 Jan—-0000 UTC 4 Jan 1991 (36) I
8 0600 UTC 29 Jan-1200 UTC 01 Feb 1990 (78) 1800 UTC 28 Jan—1800 UTC 31 Jan 1990 (72)
9 2100 UTC 17 Jan-0900 UTC 20 Jan 1989 (60) 0000 UTC 18 Jan-1200 UTC 20 Jan 1989 (60) 111
10 1500 UTC 23 Dec-0900 UTC 24 Dec 1983 (18) 0000 UTC 23 Dec-1200 UTC 24 Dec 1983 (36) I

The model physics used in the prediction experiments
include the WREF single-moment five-class (WSMS5) mi-
crophysics scheme, a five-layer soil model for ground
temperature (Chen and Dudhia 2000), the Kain—Fritsch
cumulus scheme (Kain and Fritsch 1993), and an Me-
dium-Range Forecast model (MRF) PBL scheme
(Hong and Pan 1996). The radiation parameterization
is modeled using rapid radiative transfer model
(RRTM) longwave radiation (Mlawer et al. 1997) and a
simple fifth-generation Pennsylvania State University—
National Center for Atmospheric Research Mesoscale
Model (MMS5) shortwave scheme (Dudhia 1989).

Prediction experiments are carried out for the 10
cases listed in Table 2. Experiments have been carried
out with 30- and 10-km (nested) grids for the domains
shown in Fig. 6. Numerical integrations start 9-15 h
ahead of the time of initial precipitation in each case
except for case 9. In case 9, the observed precipitation
is already occurring before the initial time of the nu-
merical integration. However, major snowfall occurs 3
h after the initial time. Initial and lateral boundary con-
ditions for the 30-km domain are prepared using
6-hourly National Centers for Environmental Predic-
tion (NCEP)-NCAR global reanalysis pressure level
(2.5° X 2.5°) data and T62 Gaussian (192 X 94) NCEP-
NCAR global reanalysis surface flux data. The 3-hourly
snowfall depth is calculated by multiplying the 3-h total
(convective + explicit) precipitation amount by the SR,
as defined by Eq. (1). The 3-h-average surface air tem-
perature is used to obtain SR. In the verification of the
model results, the predicted value at an observation
station is obtained by a linear interpolation from the
values at model grids.

b. Snowfall events

Ten snowfall events have been selected for this study,
after a review of all of the snowfall events over the
Korean Peninsula from 1983 to 2001, in which more

than 20 cm of daily fresh snowfall is found at least at
one station (Table 2). The selection is made in a man-
ner such that one or more cases is included for each of
the major snowfall types found over the Korean Pen-
insula. Cheong et al. (2006) have classified the snowfall
events over the peninsula into five types based on the
mechanism of snowfall development:

o type I—snowfalls associated with airmass transfor-
mation during cold-air outbreaks from the northeast-
ern Asian continent toward the south (over the warm
sea surfaces),

» type II—snowfalls associated with extratropical cy-
clones passing over the peninsula,

« type III—snowfalls associated with extratropical cy-
clones passing over the sea to the south of the pen-
insula,

o type IV—snowfalls associated with a mesoscale
trough over the peninsula with the Siberian high ex-
panding toward the northeast and the southwest of
the peninsula (Lee and Park 1996), and

» type V—snowfalls associated with the combined syn-
optic situations of types III and IV or similar situa-
tions to that for type IV, except that an extratropical
cyclone to the south of the peninsula induces a trough
over the peninsula.

Moisture transport toward the peninsula and terrain
effects are important for types III and V, while terrain
effects and airmass transformation are important for
snowfalls of type IV. The snowfall cases listed in Table
2 are classified according to these typical situations.

¢. Results

Table 3 shows a comparison between the observed
and predicted depths of precipitation and snowfall for
the 10 cases. The depths are the averages over the sta-
tions in South Korea. The precipitation and snow
depths are accumulated over the entire period of pre-
cipitation.
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Fi1G. 6. (a) Computational domains and (b) model topography in domain 2. The grid sizes
for domain 1 (D1) and domain 2 (D2) are 30 and 10 km, respectively.

In general, predicted amounts of precipitation are
comparable to the observed values, although some
cases show significant differences between the two. The
correlation between the predicted and observed pre-
cipitation is generally fair, with the correlation coeffi-

cient being greater than 0.55 in seven of the cases. How-
ever, the model tends to overpredict the precipitation
amount. Five cases show a significant overprediction of
more than 50%, while two cases show a significant un-
derprediction. But, when we consider that very large
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TABLE 3. Precipitation and snowfall depths from observations and predictions, averaged over the stations in South Korea (excluding
island stations), and their relative errors (REs) and the coefficient of correlation (r) between the observations and predictions. The RE
value for each case is a bulk relative error obtained using case mean precipitation amounts or snow depths before they are rounded off
to the first decimal place. The mean values in parentheses are the values computed by combining the data over all of the cases and

treating them as a single case.

Precipitation (mm)

Snowfall depth (cm)

Case Observation Prediction RE (%) r Observation Prediction RE (%) r
1 5.9 9.3 56.8 0.59 52 5.4 34 0.53
2 8.7 83 —4.5 0.76 34 12 —66.3 0.32
3 27.5 312 13.5 0.75 10.7 8.8 -17.6 0.58
4 2.8 5.6 103.7 0.66 4.9 7.0 43.7 0.63
5 6.7 233 249.6 0.37 9.3 17.0 83.0 0.37
6 3.1 4.0 30.8 0.89 2.7 35 31.9 0.77
7 1.0 2.9 186.3 0.56 2.0 3.8 89.4 0.51
8 21.4 14.1 —34.0 0.62 22.4 11.8 —47.4 0.81
9 28.0 16.5 -41.1 0.49 1.9 1.3 =272 0.85
10 12 3.1 169.8 0.51 2.8 52 83.1 0.60
Mean 10.6 11.9 731(113) 062 (0.63) 6.5 6.5 17.6 (—0.4)  0.60 (0.59)

REs are found for cases with relatively small observed
precipitation (e.g., cases 7 and 10), the amount of over-
prediction is not as great as is indicated by the 10-case
average RE value. Actually, the 10-case average pre-
cipitation amounts from the predictions and the obser-
vations differ from each other by 1.3 mm. And the
mean RE, computed by combining the data over all of
the cases and treating it as a single case, is just 11.3%.

In general, the predicted snow depths also match the
observations well, although a tendency for overpredic-
tion is found here as well. However, the degree of over-
prediction is not as significant as that for precipitation
forecasts. Furthermore, when we exclude the cases with
small precipitation amounts (e.g., cases 7 and 10), no
noticeable tendency for overprediction can be found.
This may indicate that the present snow depth forecasts
actually have a tendency toward underprediction, when

we consider the significant overprediction of precipita-
tion.

Table 4 shows the forecasting skill for the 6-h pre-
cipitation and snow depth. The threat scores (TSs) for
low thresholds of precipitation and snow depths are
fairly high. The 10-case mean TS values are 0.47 and
0.43 for the precipitation and snowfall forecasts, respec-
tively. For higher thresholds, TSs for snowfall forecasts
tend to be significantly lower than those for precipita-
tion forecasts. They are smaller than 0.2 in five cases,
with a zero score for two of the cases (cases 2 and 7).
Relatively high TSs are found for cases in which ter-
rain-induced snowfalls are significant (e.g., cases 1, 6,
and 8). According to the bias score (BS), a snowfall
depth greater than 5 cm is not predicted at all for case
2, while its location is predicted incorrectly in case 7.
The mean TSs, computed by combining the data over

TABLE 4. Skill scores for predictions of 6-h precipitation and snowtfall depths. The mean values in parentheses are the values
computed by combining the data over all of the cases and treating them as a single case.

Threat score

Bias score

Precipitation threshold

Snow depth threshold

Precipitation threshold Snow depth threshold

Case 1 mm 5 mm 1 cm 5 cm 1 mm 5 mm 1 cm 5 cm

1 0.57 0.39 0.42 0.27 1.57 1.50 1.38 0.96

2 0.63 0.62 0.20 0.00 1.27 0.98 0.59 0.00

3 0.81 0.69 0.52 0.20 1.16 1.16 1.00 0.65

4 0.49 0.08 0.60 0.15 1.82 3.33 1.41 1.62

5 0.34 0.18 0.36 0.15 2.19 3.82 1.56 1.63

6 0.35 0.47 0.49 0.29 1.62 1.44 1.48 1.25

7 0.30 0.00 0.38 0.00 2.50 0.00 1.59 1.60

8 0.57 0.15 0.50 0.28 0.77 0.44 0.73 0.48

9 0.35 0.28 0.32 0.22 043 0.65 0.79 0.38

10 0.24 0.00 0.46 0.16 3.48 1.00 1.78 1.75
Mean 0.47 (0.49) 0.29 (0.38) 0.43 (0.45) 0.17 (0.20) 1.68 (1.09) 1.43 (1.05) 1.23 (1.14) 1.03 (0.85)
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all of the cases and treating it as a single case, are higher
than the 10-case mean TSs (simple average of the col-
umn). The opposite is true for the mean BSs.

As shown in Table 2, the duration of the numerical
integration varies by case from 36 to 72 h. It is possible
that the length of the integration period affects the ac-
curacy of the prediction. However, the skill scores in
Table 4 do not clearly show their dependence on inte-
gration length. In case 9, which has a relatively longer
integration period, the quality of the prediction is sig-
nificantly poorer in the later part of the integration
period than that in the earlier part. However, such a
tendency is not clear in case 8, which has the longest
integration period. The effects of integration length
may be obscured by other factors that can affect the
prediction accuracy, such as the quality of the initial
conditions, physics of precipitation development, etc.

In the results shown in Table 4, cases 2 and 3 show
significant degradation of forecasting skill for snowfall
compared to those for precipitation, while the opposite
is true for cases 8 and 10. Correlation coefficients in
Table 3 also show similar differences in performance
between precipitation and snowfall predictions for
those cases. Here, we examine these cases in more de-
tail. Figure 7 shows the spatial distribution of the pre-
dicted precipitation and snow depths as compared with
the observations. In case 2 (Fig. 7, top), for which the
TS for the snowfall forecast is O for a higher threshold
[=5 cm (3 h)™'], precipitation is found throughout
South Korea and its amount increases toward the
south. Precipitation over the southern part appears to
be mostly in the form of rain. The predicted precipita-
tion agrees well with the observations, although the
relatively large amount in the western part of South
Korea is not predicted. Observed snowfalls are limited
to the mountainous area (marked by plus signs) and to
its north, where the maximum snow depth is found.
Snowfall prediction shows limited success. The pre-
dicted snow area agrees with the observations to some
extent. However, the predicted snow depths are much
smaller than are observed, especially over mountainous
areas. This underprediction of snow depth appears to
be due to 1) an underpredicted precipitation amount
around the mountainous areas (Fig. 7b) and 2) a small
estimated snow ratio (Fig. 8b, top). The snow ratio
shown in Fig. 8 is obtained using the accumulated
depths of the snow and precipitation for the snowfall
period of each case. The estimated SRs over the moun-
tain area and to its north are much smaller than 10 (Fig.
8b), while the observed values are greater than 10 (Fig.
8a). This underestimation seems to be due primarily to
the relatively higher predicted temperatures than the
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observations (Fig. 9, top). This will be described in de-
tail later.

In case 3, for which the TSs for snowfall forecasts at
a 5-cm threshold are significantly lower than those for
the precipitation forecasts at a 5-mm threshold, the
model has reproduced the observed precipitation fairly
well (Figs. 7e and 7f). Again, snowfall prediction shows
limited success (Figs. 7g and 7h). The model has repro-
duced the observed maximum snow depth over the
mountainous area near the east coast in the midpenin-
sula, and the predicted snowfall area agrees fairly well
with the observations. However, significant portions of
the area with observed snow depths greater than 5 cm
are not predicted properly. Also, the predicted snow
depth is too large for the east coast area on the right
side of the maximum snow depth, where the observed
precipitation is mostly rain. As shown in Fig. 8f, the
estimated SRs are significantly smaller than the ob-
served values in much of the snowfall area, while the
opposite is true in the east coast area where the ob-
served SRs are less than 1. These features will be ex-
plained later by examining the predicted temperature.

In case 8, the threat score for snow depth forecasts
for the higher threshold is larger than that for precipi-
tation forecasts (Table 4). In this case, significant pre-
cipitation is observed throughout South Korea, with a
maximum amount of greater than 130 mm over the
mountainous area in the midpeninsula (Fig. 7i). The
model has predicted precipitation throughout South
Korea, with a maximum over the mountainous area in
the midpeninsula (Fig. 7j). However, the simulated
amounts are significantly smaller than the observations,
especially over the western part of the country and the
mountainous areas. The distribution of the observed
snow depth resembles that of the observed precipita-
tion, except that the observed precipitation over the
southeast coast is mostly rain. The model has repro-
duced well the general pattern of observed snow depth.
As for precipitation, the predicted snow depths are sig-
nificantly smaller than the observations. In this case,
the estimated SRs are well matched with the observed
values (Figs. 8i and 8§j). Thus, the underprediction of
snow depth in this case seems to be mainly due to the
underprediction of the precipitation amount.

A comparison between the observed and predicted
surface air temperatures is shown in Fig. 9 to explain
the cause of the under- or overpredictions of snowfall in
cases 2, 3, and 8. The values shown in the figure are for
the case-mean temperatures. The predicted tempera-
ture compares favorably with the observations in gen-
eral, although the pattern of the difference [prediction
(PRE) — observation (OBS)] varies by case. In case 2,
the predicted temperatures are higher than the obser-
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Fi1G. 7. Spatial distribution of the observed (OBS) and predicted (PRE) depths of the precipitation (PD) and snowfall (SD) for cases
(top) 2, (middle) 3, and (bottom) 8. The predictions are from a 10-km grid model. Contours are for 1, 5, 10, 20, 30, 50, 70, and 100 mm
(cm) and the two left (right) panels are for precipitation (snow depth).

vations in most of the area except along the east coast, comparable to each other (Fig. 9, middle). For case 8,
where significant underpredictions are found (Fig. 9, the predicted temperatures are lower than the observa-
top). Along the east coast of the midpeninsula, the pre- tions in most of the area, unlike in the other two cases
dicted temperatures are near or below freezing, while (Fig. 9, bottom). A common feature shown in Fig. 9 is
the observations are in the range of 2°-4°C. Case 3 that, in the mountainous area of the midpeninsula
shows a pattern of differences similar to that in case 2. (marked by a triangle), the predicted mean tempera-
However, the areas of under- and overprediction are ture is higher than the observation.
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Fi1G. 8. (a), (e), (i) Observed and predicted SRs from experiments using (b), (f), (j) the present SR equation; (c), (g), (k) a fixed ratio
(SR = 10); and (d), (h), (1) the NWS scheme for cases (top) 2, (middle) 3, and (bottom) 8. Contour values are 1, 10, 30, and 50.

One reason for the over- and underpredictions of the
surface air temperatures found in Fig. 9 may be the
inadequate representation of steep terrain by the 10-km
grid model. Steep terrain exists immediately to the west
of the eastern coastline of the midpeninsula (Fig. 1).
The height of the east coast in the smoothed model
terrain is about 290 m higher than the real height, while

the mountaintop height is about 59 m lower. This av-
eraged but inaccurate model terrain may be a reason
for the lower and higher predicted temperatures over
the east coast and the mountainous areas, respectively.

Table 5 shows the 10-case averages of the correlation
coefficient and the threat and bias scores for forecasts
of 6-h snow depth. Forecasts using the NWS table show
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F1G. 9. (left) Observed and (middle) predicted case-mean temperatures and (right) their difference for case (top) 2, (middle) 3, and
(bottom) case 8. Contour values are —5°, —2°, 0°, 2°, and 5°C.
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TABLE 5. Ten-case mean skill of snowfall predictions: correla-
tion coefficient () between predicted and observed snowfall
depths, TS and BS of snowfall predictions using the present SR
scheme [SR(T, PR), Eq. (1)], a fixed ratio of 10 (SR = 10), and the
NWS scheme (SRyws)- The numbers in parentheses are the val-
ues computed by combining the data over all of the cases and
treating them as a single case.

SR(T, PR): Eq. (1) SR = 10 SRyws
r 0.60 (0.59) 054 (0.52)  0.58(0.57)
TS(lem)* 0.43 (0.45) 035(0.36) 042 (0.44)
BS(lem)* 1.23 (1.14) 0.84 (0.79) 121 (1.13)
TS(5cm)* 0.17 (0.20) 0.12(0.13) 019 (0.21)
BS(5cm)* 1.03 (0.85) 0.41(0.39)  0.99 (0.86)

* The numbers in the parentheses represent the threshold values
of the snowfall depth.

skill that is close to that of the present scheme. Fore-
casts with the 10-to-1 rule show relatively poor skill.
The small difference in the forecast skill between the
present and the NWS schemes seems to be partly due to
the fact that both schemes consider surface air tempera-
ture as the predictor. However, given that the present
scheme reproduces the observed SR better than does
the NWS scheme (see Table 1), other causes (e.g., ac-
curacy of predicted precipitation and surface air tem-
perature) may also be important reasons for such small
differences.

An important advantage of the present formulation
over the NWS scheme can be found when we consider
a short period of time (e.g., 3 h) with significant spatial
variation of temperature. Figure 10 shows the observed
and estimated SRs for the 3-h period of 0900-1200
UTC 30 January 1990. The observation shows a gradual
decrease of SR from 10 to O in the southern area. Es-
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timated SRs using the present scheme agree better with
the observations than those of the NWS scheme. Snow
ratios from the NWS scheme show abrupt changes from
10 to 0 across the boundary of the snow area.

4. Conclusions

This study has 1) presented a logistic regression
equation of snow ratio (SR) for use in converting nu-
merically predicted precipitation amounts into snowfall
depths and 2) examined the quality of snowfall-depth
forecasts using the proposed SR equation.

According to our results, precipitation rate is the
dominant factor for the SR of dry snow, while surface
air temperature is found to be the most important pre-
dictor for the SR of wet snow. For dry snow, the aver-
age snow ratio (SR,) as a function of precipitation rate
appears to be a more practical approach for operational
snowfall forecasts, since no predictors can fit the wide
range of observed snow ratios in a satisfactory manner.

In this study, a logistic regression equation of the SR
has been obtained with surface air temperature as the
predictor, using the observed 3-h snow ratio and sur-
face air temperature. The regression equation is ob-
tained for each of several ranges of precipitation rates
to reduce the large variability of SR. Here, the SR
equation is for the 3-h snowfall depth. Logistic regres-
sion is employed mainly because the SR is assumed to
vary between a constant (average) dry snow ratio (SR,)
and zero, and its curve fits the data well for the wet
snow range (i.e., for temperatures higher than —2°C).
The proposed scheme is found to reproduce the ob-
served SRs better than other schemes do, according to
verification against an independent observation
dataset.

this study

F1G. 10. (left) Observed SR and (right) SRs estimated by the (middle) present and (right) NWS schemes for
0900-1200 UTC 30 Jan 1990 in case 8. Only one contour is shown for the value 10.



658

The WRF model has shown some skill in predicting
precipitation and snowfall for low thresholds [1 mm (6
h)™' and 1 cm (6 h)~' for precipitation and snowfall
depth, respectively]. The 10-case mean threat scores
(TSs) are 0.47 and 0.43 for precipitation and snowfall
forecasts, respectively. For higher thresholds [5 mm (6
h)™' and 5 cm (6 h)~! for precipitation and snowfall
depth, respectively], however, TSs for snowfall fore-
casts tend to be significantly lower than those for pre-
cipitation forecasts. They are lower than 0.2 in five
cases, with a zero score for two of the cases. Examina-
tion indicates that the poor predictions of relatively
heavy snowfall are associated with incorrect predic-
tion(s) of precipitation amounts and/or surface air tem-
peratures, compounded by the errors of the estimated
SRs.

The SR equation proposed here is simple enough for
use in operational numerical forecasts and provides
continuous SR values. It is found to produce realistic
values of SR for the cases considered here, when the
prediction of the surface air temperature is realistic.
This method can be useful for snowfall prediction for
an area where the surface air temperature shows sig-
nificant spatial variation around the freezing point, and
precipitation varies from dry snow in one area to wet
snow in a nearby area, as can be the case for the Korean
Peninsula.
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