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ABSTRACT: While numerical weather prediction models have made considerable progress regarding forecast skill, less

attention has been paid to the planetary boundary layer. This study leverages High-Resolution Rapid Refresh (HRRR)

forecasts on native levels, 1-s radiosonde data, and (primarily airport) surface observations across the conterminous United

States. We construct temporally and spatially averaged composites of wind speed and potential temperature in the lowest

1 km for selected months to identify systematic errors in both forecasts and observations in this critical layer. We find near-

surface temperature and wind speed predictions to be skillful, although wind biases were negatively correlated with ob-

served speed and temperature biases revealed a robust relationship with station elevation. Above ’250m above ground

level, belowwhich radiosonde wind data were apparently contaminated by processing, biases were small for wind speed and

potential temperature at the analysis time (which incorporates sonde data) but became substantial by the 24-h forecast.

Wind biases were positive through the layer for both 0000 and 1200 UTC, and morning potential temperature profiles were

marked by excessively steep lapse rates that persisted across seasons and (again) exaggerated at higher elevation sites.

While the source or cause of these systematic errors are not fully understood, this analysis highlights areas for potential

model improvement and the need for a continued and accessible archive of the data that make analyses like this possible.

SIGNIFICANCE STATEMENT: We employed high vertical resolution radiosonde and near-surface observations to

evaluate an operational numerical weather predictionmodel, theHigh-Resolution RapidRefresh (HRRR), focusing on

the lowest 1 km above ground level. This layer of the atmosphere plays a critical role in overall forecast skill and

uncertainty as processes within in must be parameterized. Our analysis critically assessed not only the model forecasts

but also the observations, and we determined that radiosonde wind information to be contaminated below about 250m

above the ground. Our verification revealed consistent biases with respect to wind speed and also between temperature

and elevation, thereby identifying several areas for model improvement and highlighting the value of high-resolution

observations in the boundary layer.

KEYWORDS: Radiosonde observations; Surface observations; Forecast verification/skill; Numerical weather

prediction/forecasting

1. Introduction
Forecast skill of operational numerical weather prediction

(NWP)models has been increasing thanks to improvements on

many fronts, not limited to initialization, data assimilation,

ensemble approaches, model physical parameterizations, grid

design, numerical methods, and even applications of artificial

intelligence (e.g., Bytheway et al. 2017; Loeser et al. 2017;

Caron and Steenburgh 2020; Beck et al. 2020; Burke et al.

2020). It is particularly straightforward to assess forecast skill

against near-surface measures such as the 10-mwind speed and

2-m temperature and humidity owing to the substantial avail-

ability of observations, at least over land, thanks in part to the

proliferation of mesonets (cf. Mahmood et al. 2017). However,

we have remained largely unable to assess how good forecasts

of winds or temperature are in the lower troposphere just

above the heights of temperature shelters and anemometers.

By any measure, the data available for verification in the

planetary boundary layer (PBL), a highly parameterized re-

gion that can serve as a significant source of forecast error, is

muchmore sparse in time and/or space, more difficult to obtain

andmanipulate, and can also be subject to contamination (e.g.,

Daniel et al. 1999; Walters et al. 2014). Furthermore, com-

parisons often focus on integrated or averaged metrics such as

500-hPa height or liquid water path rather than the vertical

structure of the PBL.

This study emerged from a need to understand how good

forecasts of winds and temperatures in the PBL are and

whether they possessed systematic and predictable biases. Our

area of interest is the conterminous United States (CONUS),

and we have selected a set of observations, consisting of ra-

diosondes from the Radiosonde Replacement System (RRS),

and an operational model, the High-Resolution Rapid Refresh

(HRRR), on which to focus. TheHRRR is related to theRapid

Refresh (RAP) model described in Benjamin et al. (2016) and

is based on the Weather Research and Forecasting (WRF)

Model’s Advanced Research WRF (ARW) core (Skamarock

et al. 2008). The purpose of this analysis is to assess the skill of

HRRR in the PBL, identify areas where further improvements

in the modeling system such as parameterizations can and

should bemade, and also to assess limitations of the radiosonde

observations employed in the verification. This will be ac-

complished by examining longer temporal and larger spatial

periods that smooth away the influence of individual weather

events in order to reveal systematic characteristics of themodel

forecasts that might be obscured at a single site and/or time.Corresponding author: Robert G. Fovell, rfovell@albany.edu
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It is well recognized that all NWP models are imperfect for

many reasons, including issues with initialization and assimi-

lation, model physics, and even the observational data used to

inform and verify themodel. It was anticipated that the HRRR

would be quite skillful compared to its peers owing to its rel-

atively high horizontal resolution (3 km), rapid cycling, and

advanced assimilation. As a popular model, the HRRR has

undergone substantial verification in previous studies,

although a large portion of these utilized a small number of

specialized observations limited in geographic area or time

(e.g., Olson et al. 2019b; Pichugina et al. 2019; Lee et al. 2019),

focused on only a specific subset of atmospheric conditions or

meteorological phenomenon (e.g., Pichugina et al. 2017; Pinto

et al. 2015), or both. Others, such as Ikeda et al. (2013) and

Griffin et al. (2017), have leveraged standardized observations

over long periods of time to infer overall model biases with re-

spect to a specific atmospheric variable (cold season precipita-

tion and cloud cover, respectively). Similar attention has not yet

been given to the PBL and especially its vertical structure.

The specific task here is to construct composite soundings

from stations across the CONUS having different elevations

above mean sea level (MSL). The RRS system consists of

Global Positioning System (GPS) antennae and radiosonde

packages, precision digital barometers, and software capable

of capturing observations every second (National Weather

Service 2018), corresponding to roughly 5–6-m vertical reso-

lution. Although available starting in 2005, and seemingly ideal

for PBL studies (Love andGeller 2012), it is not clear that RRS

data have been utilized much in its very high-resolution form.

Processed RRS data are most easily obtainable from sources

such asNCAR’sResearchDataArchive (as PREPBUFRfiles)

and the Integrated Global Radiosonde Archive (IGRA) at the

National Centers for Environmental Information (NCEI) in

formats that facilitate analyses on isobaric surfaces, especially

at the standard reporting levels (1000, 925, 850 hPa, etc.).

These work rather well for temperature but less so for

boundary layer winds, which are much more significantly

influenced by distance above ground level (AGL). Indeed,

composite wind profiles constructed in isobaric coordinates are

subjected to considerable vertical smearing when ground ele-

vation varies among the sites, as well as potential information

loss near the surface, as illustrated in Fig. 1.

Both the retention and accuracy of near-surface information

in the model and observations are deemed important. An im-

portant consideration is that the HRRR outputs are made

available on the model’s native vertical levels, which helps

preserve simulated vertical structures near the surface. Most

operational model products are only available on isobaric

surfaces only, which entails the smearing as discussed above.

Furthermore, we are utilizing both more complete and less

processed versions of the RRS data to perform a more precise

analysis of the winds near the surface in a coordinate system

defined by height AGL or native levels, which are closely re-

lated in models employing a terrain-following sigma coordi-

nate system like WRF-ARW.

NCEI’s RRS archive makes available binary files from

which the 1-s radiosonde data can be extracted at various levels

of processing. Unfortunately, the archive is incomplete and has

been degrading in recent years; for our study period, obser-

vations were obtainable for only about three-quarters of the

sites (see Fig. 2a). Even worse, regular archiving of these data

ceased altogether during summer 2019, as this effort was ap-

parently deemed to be redundant to the IGRA archive.1 The

IGRA data presently available are not complete in that useful

information obtainable from the less-processed, higher-

resolution, and timestamped observations are not included.

Some of the data evaluation and analysis performed in this

study would not be possible with IGRA data alone.

The structure of this paper is as follows. In section 2, we

provide an extensive discussion of our data andmethods, which

FIG. 1. Conceptual demonstration of how isobaric (dashed gray lines) and terrain-following

(solid red)model levels can differ with respect to the composite wind profiles (shown at right)

they create in the presence of topography (green). The red and gray dots help identify in-

formation that is aggregated into the composite profiles at right.

1 ‘‘NCEI plans to discontinue DSI-6301, US and US operated

station radiosonde data, on 31 May 2019. All Radiosonde data

traditionally provided in DSI-6301 are now available in NCEI’s

Integrated Global Radiosonde Archive (IGRA) version 2 data set.’’

From https://www.ncdc.noaa.gov/data-access/weather-balloon-data,

retrieved 6 February 2020.
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is important as it reveals the strengths and weaknesses of the

RRS dataset as used to verify near-surface winds in particular.

Section 3 presents our results, consisting of comparisons of

HRRR analyses and forecasts against not only RRS observa-

tions but also near-surface information from the Automated

Surface Observing System (ASOS) network. Finally, section 4

presents our discussion and conclusions.

2. Data and methods
The study period is 15 December 2018–15 July 2019, corre-

sponding to the overlap period between HRRRmodel outputs

and RRS data. Our particular focus will be on the month of

April 2019 with other time periods examined as needed to

demonstrate robustness of these results. Comparisons of

the observational and model products described in this

section were confirmed with and/or made using Model

Evaluation Tools software (Bullock et al. 2017) maintained by

the Developmental Testbed Center.

a. HRRR model outputs

The HRRR model products employed herein were gener-

ated by version 3 of the ARW-based system (HRRRv3), which

used the Mellor–Yamada–Nakanishi–Niino Level 2.5 (MYNN2)

PBL scheme (Nakanishi and Niino 2004), the Rapid Update

Cycle land surface model (Smirnova et al. 2016), and the Rapid

Radiative Transfer Model for General Circulation Models

(RRTMG) radiation package (Iacono et al. 2008), among

other model physics. The MYNN2 parameterization has been

considerably refined in recent years (Olson et al. 2019a).

HRRR simulations were initialized with RAP as described in

James and Benjamin (2017) and Jankov et al. (2019). A new

cycle was launched hourly, with 0000 and 1200 UTC runs in-

tegrated for 36 h, while the other runs were 18 h. James and

Benjamin (2017) report that the RAP/HRRR assimilation

system incorporated twice-daily radiosondes as well as 2200–

2500 surface observations.

The model used 50 unequally spaced vertical levels for

scalars and horizontal velocity components with a model top of

20 hPa. As noted above, model outputs weremade available on

the native model levels (‘‘wrfnat’’ files) as well as 41 isobaric

levels (‘‘wrfprs’’ files) and NCEP’s NOMADS made both file

types available for several days after a model run completed.

After this time, the University of Utah maintains an archive of

the isobaric level data (Horel and Blaylock 2019), but only for

the analysis time (forecast hour 0). No publicly accessible ar-

chive of the nativemodel level outputs is known. For this study,

we employed wrfnat files verifying at 0000 and 1200 UTC that

we collected daily since mid-December 2018.

b. ASOS observations
There are about 850 ASOS stations in the CONUS (Fig. 2b)

for which 1-min data are available from NCEI. These stations

are generally (but not exclusively) located at airports2 and

measure winds (with sonic anemometers) and temperatures

(with aspirated hygrothermometers) nominally at 10 and 2m

AGL, respectively. With surface observations, the term

‘‘wind’’ is used herein synonymously with ‘‘sustained wind,’’

representing an average of anemometer samples over a spec-

ified (for ASOS, 2min) period with the largest sample during

that interval representing the gust. The 1-min NCEI archive

permits us to compare more precisely against on-the-hour

observations that are not generally available via Meteorological

Assimilation Data Ingest System (MADIS) and gives us access

to the most complete gust observations. Unfortunately, the

Meteorological Terminal Aviation Routine Weather Report

(METAR) format employed by MADIS seriously compro-

mises the gust record (cf. Gallagher 2016; Fovell andGallagher

2018). From either source, the resolution of ASOS wind and

gust reports is 0.5144m s21 (1 kt).

c. RRS observations
The RRS archive at NCEI provides not only the processed

wind and temperature data used in subsequent data products

(such as the aforementioned PREPBUFR and IGRAdatasets)

but also the less refined information described below. Use of

the terms ‘‘raw,’’ ‘‘smoothed,’’ ‘‘corrected,’’ and ‘‘processed’’

FIG. 2. CONUS maps of (a) radiosonde launch sites, with col-

oring indicating whether less-processed data are (at least partially)

available (red) or unavailable (blue) in the NCEI RRS archive

for the period between January and June 2019, inclusive, and

(b) ASOS surface observation sites available for April 2019.

2 Notable exceptions include KYNC (Central Park, NY), KCQT

(Downtown Los Angeles), and KDGP (Guadalupe Pass, TX).
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herein is consistent with RRS documentation (National

Weather Service 2003) and the RRS Workstation Software

(RWS) manual (National Weather Service 2010). Software

provided by NCEI was used to extract the following products

from the archived data:

d The 3GPSu data provide raw, timestamped, 1-s horizontal

wind (U and V) components, along with GPS latitude, lon-

gitude, and geometric height MSL for the balloon location.
d The 4GPSs product provides smoothed versions of the

3GPSu data for the same timestamps. According to

National Weather Service (2003) the 4GPSs data ‘‘may

represent an average of several values over a period sample

(vendor specific), thus allowing for the removal of random

and systematic instrument noise. [These] data [are] smoothed in

the SPS [sounding processing system] to remove the effects

of erratic and pendular motion.’’ Smoothing algorithms are

vendor-specific and proprietary.
d The 2rPTU dataset provides raw temperature, pressure, and

moisture information at 1-s intervals, with timestamps that

are shifted from those in 3GPSu/4GPSs by a fraction of

a second.
d The 5pPTU product is the processed information, including

corrected pressure, corrected and smoothed pressure,

smoothed uncorrected and corrected temperature and mois-

ture, and derived geopotential height for the same time-

stamps as indicated in 2rPTU. During this step, the initial

(T0) observation of the smoothed and uncorrected temper-

ature is replaced with a contemporaneous surface observa-

tion taken nearby (National Weather Service 2010). After

that replacement, proprietary corrections are applied, which

include adjustments for radiation.
d The 6pGPS wind dataset is processed by RWS and ‘‘arrived

at by applying normalization, correction, smoothing, outlier

removal, and data plausibility checks to the raw GPS

‘smoothed wind’ [4GPSs] data provided by the radiosonde’’

(National Weather Service 2003). As with temperature, the

T0 observation is replaced with a contemporaneous surface

measurement. This is then connected to the radiosonde

observation sequence via linear interpolation (National

Weather Service 2010), with the consequences discussed

below. Timestamps have been reconciled with those in the

5pPTU dataset.
d The 7Lvls product joins the processed wind and PTU infor-

mation, providing timestamped ‘‘mandatory, significant, and

other special winds and PTU levels’’ (National Weather

Service 2003) at irregular intervals arrived at as described in

National Weather Service (2010), including wind speed and

direction, geopotential and geometric heights MSL, and

dewpoint and relative humidity. Data for standard isobaric

levels are created via interpolation if necessary. Balloon

latitude and longitude information, however, is missing.

The processed IGRA and PREPBUFR observations are

subsampled from the 7Lvls information, so many levels are

missing as well as all observation record timestamps and geo-

metric heights.

d. RRS data issues and handling
Our analysis made use of the processed, 1-s 5pPTU tem-

perature, pressure and geopotential height information and the

6pGPS wind components, from which wind speed was com-

puted. (The 7Lvls information was not used owing to the ir-

regular time intervals among records.) However, the 3GPSu

wind components and geometric heights were also retained for

each record, for the reasons discussed presently. The 3GPSu

and 6pGPS/5pPTU datasets were merged by record number

and timestamps were monitored for anomalies.

Utilizing radiosonde data requires addressing a number of

obstacles and limitations. First, it is important to recognize that

nearly all balloon releases in the CONUS occur before the

nominal observations times of 0000 and 1200 UTC (cf.

Coniglio et al. 2013; Evans et al. 2018). In April 2019, for in-

stance, about 80% of launches had occurred by 50min prior to

the nominal times (Fig. 3), which meant that the instrument

packages were transiting the boundary layer earlier than might

FIG. 3. Cumulative distribution function of balloon launch times relative to the nominal

target times of 0000 UTC (red) and 1200 UTC (black) for radiosonde releases made at the

sites shown in Fig. 2a for the month of April 2019. The dashed gray lines demonstrate that

approximately 80% of all balloon launches occurred by 50min prior to the nominal times.
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be anticipated. This means 23-h forecasts from 0000 to

1200 UTC may represent more faithful comparisons to the

observations than their 24-h counterparts. This is particularly

relevant to temperature near the ground, which may be

changing rapidly around release times.

Other issues can directly and negatively affect the usefulness

of RRS data recorded near the surface. Although not shown,

geometric and geopotential MSL height estimates provided in

the processed RRS can disagree by sizable amounts.3 We

adopted the pressure-derived height estimates for our analysis

owing to concerns regardingGPS estimates close to the surface

(Dirksen et al. 2014), although analyses repeated using geo-

metric heights revealed no important differences in basic re-

sults or fundamental conclusions (not shown). Additionally,

the RRS observation metadata supplied MSL-relative release

point and barometer elevations but we need AGL heights,

which could be a problem if the release point is not actually at

the local surface. We determined the surface MSL height at

each reported release point via using Google Earth and com-

pared them to the height specified in the metadata. In some

obvious cases, such as Albany, New York (KALY, 72518);

Tucson, Arizona (KTWC, 72274); and Tallahassee, Florida

(KTAE, 72214), the launches clearly took place from tall

rooftops so even the first record represented a sizable distance

above the actual ground. The release points at most sites,

typically associated with domes mounted on low-rise struc-

tures, appeared to be several meters above the local terrain,

representing height adjustments between 0 and 3m. These

adjustments were implemented but ultimately determined to

be unimportant owing to the most serious issue described next.

We unfortunately conclude that a combination of ostensible

prerelease information, surface data replacement, smoothing,

and linear interpolation precludes the use of observations

within about 250m of the launch height, at least for wind

speeds. The aforementioned pendular motion is readily ap-

parent in the raw wind (3GPSu) observations, as illustrated in

Fig. 4a, representing a nominal 1200 UTC rooftop release from

KALY from December 2018. While the variation of the raw

values about the smoothed (4GPSs) and processed (6pGPS)

wind speed data is large—up to about 10m s21—one might

expect further aggregation of wind data across sites and times

could mitigate residual pendular and erratic effects in the

processed winds. However, in some cases, including the pres-

ent one, the raw observations suggest that ostensible prere-

lease information has contaminated the near-surface winds.

Note that for the first 15 records (5 15 s), the raw wind speeds

were precisely zero (Fig. 4b), and the GPS position was also

constant during this interval (not shown), suggesting the bal-

loon had not yet been launched. Yet, smoothing within the SPS

introduced spurious positive readings into the 4 GPSs series,

FIG. 4. Radiosonde wind speed observations from an example launch at Albany, NY

(KALY), for 1200 UTC 28 Dec 2018 showing the first (a) 600 and (b) 100 observations,

representing 10min and 100 s of record, respectively. Shown are the 3GPSu raw wind values

(black dots), 4GPSs smoothed observations (gray line), and 6pGPS processed observations

(red line).

3 For April 2019, over all launches, the mean difference between

geometric and geopotential heights in the lowest 1 km AGL was

close to zero but the 95th percentile of absolute height differences

was ’16m.
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shown in gray. As described above, the 6pGPS (red curve)

values were subsequently forged by replacing the first (T0)

record with the nearby surface observation and linearly in-

terpolating back to the 4GPSs data, possibly with further

smoothing applied. In the present example, the 6pGPS and

4GPSs wind speeds come into near agreement after about 35 s,

at which time the balloon had ascended roughly 100m from the

launch point (or about 120m AGL at this rooftop site).

With respect to wind information, this interpolation estab-

lishes a false linear profile in a layer in which a stability-

modulated logarithmic profile is anticipated. Figure 5 presents

composite profiles of processed wind speed and potential

temperature (6pGPS and 5pPTU), aggregated on fixed AGL

heights over available RRS sites for the month of April 2019.

Apparent prelaunch data had already been identified and re-

moved, resulting in a small reduction of the observation count

at many of the sites. Furthermore, to avoid profile distortion,

only releases that had valid wind and temperature data for all

height levels between 10 and 1000mAGL were considered, so

only 56 of the 60 RRS sites contributed to a total of about 970

samples at each level for each time.

At first glance, the profiles are reasonable. As expected,

there was more vertical shear as well as weaker winds near the

surface at 1200 UTC compared to 0000 UTC (Fig. 5a) and a

slightly superadiabatic layer survived in the afternoon/evening

composite (Fig. 5b) while the morning profile was strongly

stable. However, note that the wind profiles were precisely

linear below 100m AGL at both times (Figs. 5c,d). A linear

profile appeared at nearly every station as revealed in Fig. 6,

which presents temporally averaged processed wind profiles

for individual sites (with the station composite superposed)

as a function of observation record number. A strong tendency

is present for the profiles to be linear below a sharp change in

slope4 at about record number 23, or 22 s after nominal launch,

at which time the sondes were about 130m above their launch

points based on average altitude measures. At 0000 UTC, the

near-surface slope not only varied among the stations but also

was well correlated (r’ 0.8) with longitude, thereby reflecting

local time within the diurnal cycle (not shown). This suggests

some potentially useful information may be present, but it

remains that the linearity is forced and spurious.

RWS documentation (National Weather Service 2010)

states that the ‘‘first good block at or after Surface will contain

FIG. 5. Composite profiles averaged on fixed AGL heights (10-m interval) and over 0000 UTC (red) and

1200 UTC (blue) releases for available RRS sites for the month of April 2019, showing processed (a) wind speed

(6pGPS); (b) potential temperature (5pPTU); (c) wind speed as in (a), but plotted on a log height axis; and (d) wind

speed as in (a), but for the lowest 100m AGL. Dots in (d) indicate the AGL heights on which the profiles are

averaged.

4 These include all 6pGPS observations, including those affected

by suspected prelaunch values. Exclusion of those suspect obser-

vations had little material effect on this plot (not shown).
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45-or-more smoothed U/V points.’’ Given the standard, cen-

tered smoothing window is 45 points, the first observation that

could be beyond the forced linearity layer would be at or near

record number 46, which based on average ascent corresponds to

approximately 250–260m AGL. Based on temporally and spa-

tially averaged conditions, this falls betweenHRRRmodel levels

4 and 5, so we will pay more attention to model-observation

comparisons farther aloft. It is possible that given access to the

raw (3GPSu) observations, a more careful reconstruction of

surface layer winds could be pursued, particularly with respect to

removing prelaunch data, as long as the substantial pendular

motion is also addressed [perhaps as in Wade et al. (2018)].

RWS documentation is less detailed regarding temperature

handling near the ground, other than to indicate the T0 ob-

servation is also replaced by an externally supplied value and

smoothing involved fewer (9) data points. Inspection of raw

and processed temperature records suggest that near-surface

readings may be less corrupted than for winds, but information

in the lowest levels will be treated with suspicion anyway.

e. Merging HRRR and RRS information
Our analysis commences with HRRR model information

being interpolated to the observation sites. Next, for RRS data,

the observationswere interpolated to theHRRRscalar/horizontal

wind model levels at each individual site and for each launch,

and then aggregated across both sites and times to create

composites at the 0000 and 1200 UTC target times. The

composites were then plotted against heights representing

the temporal and spatial means for each model level. As the

HRRR employs a mass coordinate that is affected by tem-

perature, the local heights of model levels vary across space

and also with time at individual locations. For April 2019,

the first HRRRmodel level resided at a mean local altitude of

10.5m (standard deviation s 5 0.3m), and eight levels were

positioned within the lowest 1 km AGL. Once released, ra-

diosonde balloons can drift away horizontally with the wind,

which is a concern because displacements of tens of kilome-

ters, representing many grid points, can occur by the time the

upper troposphere is reached (Coniglio 2012). Drift has been

ignored as our interest is primarily in the lowest 1 km AGL,

which can be traversed in about 3min.

Although the HRRR employs relatively high resolution,

there are systematic discrepancies between model and actual

site altitudes. The true site elevation, as determined by the

launch point, averaged about 10m higher than the corresponding

model location, and ranged between1100 and260m but with 46

of the 60 sites having absolute errors , 14m. As can be an-

ticipated,MSL elevation discrepancies are particularly obvious

in temperature and pressure comparisons, which is one reason

why changes in the former with forecast time is emphasized.

No important differences were noted when sites with larger

(.14m) altitude discrepancies were retained or excluded, so

by default all sites were employed in our analyses.

Two issues need to be addressed at the outset. First, the ra-

diosonde data we are examining are assimilated into the HRRR

analyses for the 0000 and 1200 UTC cycles we are examining.

Thus, for the 0-h forecast, the ostensible forecast bias should be

small because the observations and analyses are not truly

independent. A superior manner of assessing the analysis

quality would be to employ soundings not included in or

withheld from the assimilation system (e.g., Coniglio 2012).

Second, radiosonde observations themselves naturally have

errors. Benjamin et al. (2004), for example, presumed errors

for pre-RRS soundings of 0.5 K for temperature [in agreement

FIG. 6. Processed wind speed profiles (6pGPS) for the first 50 observational records (each separated by one

second) from each radiosonde site, temporally averaged over themonth of April 2019 (gray lines) for (a) 0000UTC

and (b) 1200 UTC, along with the 51station composite (black line). The dashed black line indicates observation

number 23, highlighting the typical record at which the observed linear slope changed.
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with, e.g., Zeng et al. (2019) for RRS] and 2.5–4m s21 for wind

speed, and the preceding discussion could be used to argue for

still larger inaccuracies in the latter. As a consequence of these

two issues, note that our primary goal is to compare 24-h

forecasts to their corresponding analyses, valid for the same

times, and to composite over both space and time, in an at-

tempt to extract systematic issues that may (and do) exist. This

still involves the implicit assumption that the analyses are more

accurate than the forecasts, which cannot be conclusively

proven without independent information. However, it can also

reveal modeling system issues, which may be due at least in

part to the physical parameterizations employed.

3. Results
In this section, we present an examination of HRRR ana-

lyses and forecasts from the 0000 and 1200 UTC cycles, com-

mencing with a comparison to surface observations from the

ASOS network. Although 0000 and 1200UTCHRRRv3 cycles

extended to forecast hour 36, we will focus on the first 24-h

period. Our current interest is in forecasts of wind speed and

temperature (potential temperature for the radiosondes).

a. Surface verification
Figure 7 presents comparisons of ASOS observed and

HRRR forecasted 10-m wind speeds and 2-m temperatures for

the 0000 and 1200UTC cycle runs, not only averaged across the

ASOS network but also aggregated over all of April 2019,

thereby smoothing away weather events and leaving behind

the diurnal cycles of these variables smeared over four time

zones. As noted above, instantaneous hourly wind and tem-

perature forecasts were compared to top-of-the-hour obser-

vations, but we note that using mean observations over a

66-min window instead (not shown) altered neither our results

nor conclusions. We required stations to have at least 90% data

availability for themonth, resulting in 733 stations being retained

in the April wind assessment. Owing to the outsized influence of

altitude, the temperature analysis also required the HRRR ab-

solute elevation discrepancy to be less than 80m, which left 630

locations. For each hour, the mean and standard deviation of

’19 700 samples are shown, the latter being necessarily large

owing to the temporal and areal extent of the observations.

Evidently, the HRRR has substantial skill in reproducing

the diurnal variations. Additionally, calm observations, here

defined as values , 1 kt owing to ASOS’ precision, were

roughly equally common in the observations (0.6%) and the

forecasts (1.5%).5 However, for both 0000 and 1200UTC cycles,

the HRRR had a negative forecast wind bias—defined as fore-

castminus observation—of about20.5m s21 at the analysis time

(0-h forecast) although most of that disappeared over the first

24h (Figs. 7a,b). For temperature, the 1200 UTC cycle started

with a negative bias of about 20.4K that vanished even more

rapidly (Fig. 7d). The magnitude and evolution of these errors

for other months examined were comparable (not shown).

The analysis of individual stations commences with Fig. 8,

plots of forecasted versus observed winds averaged over the

month of April 2019 on which each dot is a station.

Incorporating all forecast hours, including the analysis time,

yielded about 1060 forecast–observation comparisons per

retained site for this month.6 Aggregating over all hours

FIG. 7. ASOS observations (red) and HRRR forecasts (black),

averaged spatially across the ASOS network and temporally over

the month of April 2019, of (a),(b) 10-m wind speeds and (c),(d) 2-

m temperatures for every hour of the (a),(c) 0000 UTC and (b),(d)

1200 UTC forecast cycles. The vertical gray bars denote the stan-

dard deviation of the averaged observations.

5 Had ASOS METAR reports been used instead, calm obser-

vations would have been more frequent, owing to the METAR

reporting rules (cf. Fovell and Gallagher 2018).

6 As the 36-h runs overlapped in time, most observations were

employed in more than one verification.
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FIG. 8. Forecasted vs observed wind speeds averaged over April 2019 for (a) all 0000 UTC cycle forecast hours,

(b) all 1200UTC cycle forecast hours, (c) 0000UTC analysis times, (d) 1200UTC analysis times, (e) 24-h forecasts

from 0000 UTC cycles, and (f) 12-h forecast from 1200 UTC cycles. Each dot is an individual station color coded

by the density of neighboring points (cooler colors are less dense, warmer colors are more dense). Also shown are

the linear regression fits (solid red lines) and one-to-one correspondences (dashed gray lines).
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(Figs. 8a,b), there is overall skill (coefficient of variation

R2 ’ 0.53) and a small (20.19 m s21) net bias but also some

substantial scatter about the 1:1 correspondence line (dashed).7

In previous work focusing in forecast verification during

Southern California ‘‘Santa Ana’’ wind events (cf. Cao and

Fovell 2016; Fovell and Cao 2017; Cao and Fovell 2018; Fovell

and Gallagher 2018), forecast wind bias was found to be

negatively correlated with average observed wind speed,

meaning that sites characterized by slower observed winds

were systematically more likely to be overpredicted while

windier sites were underestimated. Comparable results

were obtained in this study (Figs. 9a,b). Also similar to Cao

and Fovell (2018), albeit not shown here, the forecast bias

was uncorrelated with average forecast wind speed but was

positively associated with gustiness in the form of the gust

factor (gust divided by sustained wind), which was in-

terpreted by Cao and Fovell (2018) as conveying informa-

tion about site exposure.

FIG. 9. As in Fig. 8, but comparing temporal averages of observed wind speed to forecast bias for ASOS

stations. Panels are representative of the same forecast cycles and forecast hours as in Fig. 8, and dots still

represent individual stations color coded by the density of nearby points. Zero bias lines are shown in

light gray.

7 Some stations possess issues, such as with their land-use as-

signments, but these are not influencing the results or conclusions.
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Figures 8 and 9 also examine skill and bias at the analysis and

24-h forecast times, comparisons that necessarily involved far

fewer samples. As noted above, new HRRR runs are ini-

tialized with previously generated forecasts combined with

data assimilation incorporating many, many surface observa-

tions. The imperfect relationship between observed and mod-

eled ASOS winds at the analysis time (Figs. 8c,d) may reflect

biases that were inherited from previous forecasts and

suppressed, but not completely eliminated, via assimilation

(cf. the R2 values). Another potentially important factor is

the influence of non-ASOS information in the assimilation.

Note the average station bias was markedly more negative

(at 20.5 m s21) at the analysis time, a likely consequence of

the assimilation and consistent with the slow bias seen at

hour 0 in Figs. 7a and 7b. As in the ASOS analysis, the 24 h

forecast time scatterplots (Figs. 8e,f) reveal the negative

bias disappeared with time.

The tendency for slower wind stations to be overpredicted

may reflect, in part, an inherent characteristic of the wind speed

bias (b5 f2 o), where f and o are the forecasted and observed

values, respectively. Because wind speeds are necessarily

nonnegative, bias is capped by f when the observed wind is

calm and bounded by 2o as the forecasted wind approaches

zero. In particular, the latter may force positive biases in less

windy instances. These hard constraints can be seen in Figs. 10a

and 10b, which incorporate every forecast–observation pair

(over 850 000 examples) from the HRRR 0000 UTC cycle runs

from April 2019 and present wind speed bias plotted against

FIG. 10. Forecast wind bias vs (a),(c) forecasted 10-m wind speed and (b),(d) observed 10-m wind speed for

individual forecast observation pairings during April 2019 from (top) all forecast hours or (bottom) only for the

analysis times. As in Figs. 8 and 9, the color coding indicates point neighborhood density. Additionally, frequency

contours of 100, 1000, and 10 000 have been plotted and smoothed, introducing some artifacts. The diagonal dashed

lines represent bounds represented by zero (calm) observations in (a) and zero (calm) forecasts in (b). The reso-

lution of ASOS wind speed observations is 0.51m s21 (1 kt).
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FIG. 11. ASOS stations ranked separately according to their temporally averaged observed (red) and fore-

casted (black) wind speeds for April 2019 for (left) 0000 UTC and (right) 1200UTC forecast cycles using (a),(b)

all forecast hours; (c),(d) analysis times only; (e),(f) the first forecast hour; and (g),(h) forecast hour 24.
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the forecasted and observed values, color coded and contoured

by local point density.8 Despite these constraints, the plots

reveal that it is not the forecasts that are biased, as the contours

in Fig. 10a help emphasize the most likely error for a given

forecast of nearly any speed was zero. Note further that the

distribution of forecast winds was nearly random about a mean

bias value of zero and that although a sector was missing owing

to the b , f constraint, its impact on the distribution of biases

versus forecasted wind speeds was small owing to the very high

concentration of bias values near zero.

In pointed contrast, the distribution of observations versus

biases (Fig. 10b) tilted strongly toward the left (i.e., negative bias)

with observed wind speed. For less windy events, the mean bias

was indeed positive (averaging 0.85ms21 for o , 2.5ms21) as

suggested by this figure, but this quickly shifted to underprediction

as the measured winds increased. Observed winds exceeded 2.5

and 5ms21 67% and 29% of the time, respectively, and mean

biases in those situations were 20.70 and 21.38ms21 when av-

eraged over all forecast hours. Although this result is not com-

pletely understood, and may reflect something inherent in sonic

anemometers, it remains that the higher the observed wind speed

was, the more likely the corresponding HRRR forecast was too

slow and this should be recognized when usingHRRR-forecasted

winds. These findings also held when only the analysis time pairs

were considered (Figs. 10c,d).

FIG. 12. As in Fig. 9, but comparing observed 2-m temperatures and forecast biases for the (a) 0000 UTC and

(b) 1200UTC forecast cycles. Again, each dot is a station averaged overApril 2019 and color coded by nearby point

density and least squares fits are shown (red lines). (c),(d) Forecast bias and station elevation are compared for the

0000 and 1200 UTC cycles, respectively, also color coded by neighborhood density.

8 The finite resolution (0.5144m s21) of the ASOS observations

is readily seen in Fig. 10b. Coarsening the forecasts to the same

resolution had virtually no impact on these results.
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Another way of considering the station-aggregated data is

presented in Fig. 11. Forecasts and observations utilized in

Fig. 8 were sorted separately, ranked by increasing magnitude,

and then superimposed, permitting a visual comparison of

relative wind speed distributions. Aggregated over all hours

(Figs. 11a,b), the forecast winds were clearly faster than the ob-

servations among the lower rankings, but were slower beyond

ranks 195 and 173 in the 0000 and 1200 UTC runs, representing

about 73%and 76%of total stations, respectively. This is why the

net bias was negative, albeit by a small amount, when averaged

over all possible pairs. Interestingly, at the analysis time, only 11

and 1 ranks had faster forecasted than observed winds at 0000

and 1200 UTC (Figs. 11c,d), establishing a marked gap between

the two distributions, and yet a sizable fraction of that discrep-

ancy disappeared within the very first forecast hour (Figs. 11e,f).

This may again suggest the initial negative bias was a conse-

quence of the data assimilation, but the supplied information was

not retained very long, especially in the 0000UTC runs that were

more likely to commence with a convective boundary layer. By

the 24-h forecast time (Figs. 11g,h), the forecasted and observed

wind speed distributions were very similar, apart from the very

lowest ranks in the 0000 UTC cycle.

Finally, with respect to 2-m temperature, Fig. 12 presents

average observed temperature plotted against mean forecast

bias for April 2019. Again, each dot is a station. At both 0000

and 1200 UTC, temperature biases were negatively but quite

weakly (correlations r 5 20.22 and 20.28, respectively) asso-

ciated with observed temperature (Figs. 12a,b). Elevation error

had essentially no association (r ’ 0.08) with temperature bias

(not shown), in part because the sites with the largest elevation

discrepancies had already been removed. Additionally, the al-

titude discrepancies that remained were not correlated with el-

evation itself (also not shown).

When plotted against station elevation aboveMSL, however, a

more striking association emerged (Figs. 12c,d). Only 23% of the

ASOS stations in this dataset resided above 500m MSL but, for

that subset, about 75% exhibited positive forecast biases while

only 41% did so below that altitude. (Note again that sites with

large elevation errors have already been excluded.) Furthermore,

the 1200 UTC cycle runs from January and August in Fig. 13

demonstrate that the high altitude site temperature bias is neither

just a spring season issue nor a simple function of snow cover, as

might be surmised. For those two months, 89% of stations above

500m MSL exhibited positive biases, and while the average bias

for stations below 500m shifted among the three months exam-

ined, it remains that the positive bias seen at higher altitude sites

persisted across seasons. This issue may reflect problems with the

land surface characterization, including (and not limited to) al-

bedo, vegetation, slope effects, radiation and/or cloud cover,

and/or issues with resolution (such as unresolved valleys and

terrain flows) owing to differences between actual and mod-

eled terrain, and deserves closer inspection.

b. Boundary layer verification
Wind speed profiles averaged across 60 radiosonde sites for

April 2019 are presented in Fig. 14. The gray horizontal dashed

lines indicate the level below which the aforementioned near-

surface data manipulation renders the observed wind data

suspect. Owing to early releases relative to the target times as

discussed above, the forecast at 23 h (dashed green) may

provide a more valid comparison to the observed profile (red)

than that at 24 h (solid green). While the same valid times

(consisting of 24 launches each for 0000 and 1200 UTC) were

used to construct the observation and model profiles, the

number of samples employed in profile construction varied

somewhat with height owing to rooftop releases and occasional

missing or invalid data. Above the gray line, the average

number of comparisons was 1360 and 1387 at 0000 and

1200 UTC, respectively. The lowest model level, being close to

10m AGL, utilized about 856 samples.

FIG. 13. As in Figs. 12c and 12d, but for January and August 2019, respectively. Fewer stations satisfied the data

completeness requirement in January owing to missing observations.
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At 0000 UTC, the observed and model analysis time com-

posite wind profiles were nearly identical, except close to the

ground in the contaminated layer. As already discussed, rea-

sonable comparability should be anticipated because the ra-

diosonde information was assimilated into the analysis. That

said, 0-h forecast winds were weaker than the observations at

every height shown at 1200 UTC, with a negative bias as large

in magnitude as 20.64m s21 at model level 5 (about 280m

AGL). As with the ASOS data, this could be a consequence of

bias inherited from the first guess or some other aspect of the

assimilation system. These aspects of the 0000 and 1200 UTC

wind profiles were also found in both colder and warmer

months (e.g., Fig. 15).

In the day-ahead (23- and 24-h) forecasts, however, there

was a decided shift in the wind profiles toward higher speeds,

and this occurred at all model levels shown. At 0000 UTC, the

initially unbiased winds above the contaminated layer became

positively biased by as much as ’1m s21 at model level 6

(about 440m AGL). For 1200 UTC, the original negative bias

evolved into positive biases, shifting by 1.1m s21 at model level

5 (about 280m AGL). Similar substantial shifts also occurred

in January and July (Fig. 15) and other months available for

examination (not shown). To the degree that the observations

and analysis time profiles can be construed as ‘‘truth,’’ these

shifts toward higher wind speeds in the 23- and 24-h forecasts

represent errors that need to be resolved.

We note that a consistent feature of the contaminated layer

is the very sharp bias increase between the lowest two HRRR

model levels (roughly 10–39m AGL) followed immediately

by a sizable reversal. This ‘‘kinked’’ bias profile appeared both

morning and afternoon/evening, at all forecast hours, and for

all months examined. The sharp shift between the first two

HRRR levels appears to be caused by the aforementioned

RWS processing that imposes a linear wind profile within the

(more likely logarithmic) surface layer. That said, recalling that

the first radiosonde observation is replaced with a contempo-

raneous surface observation, presumably from an anemometer

mounted at 10m AGL at most sites, observations interpolated

to the first HRRR level (also being close to 10m) may be

relatively less corrupted than those within the forced linear

layer immediately above. Indeed, at the analysis time, the wind

speed bias at this level was about20.65m s21 at both 0000 and

1200 UTC, which is consistent with the initiation time bias

(20.5m s21) found for the (much more extensive) ASOS

FIG. 14. April composite wind speed profiles and forecast wind speed biases aggregated among available RRS

sites. The observation (red), analysis (black), and 23- and 24-h forecasts (dashed and solid green, respectively)

profiles were constructed from the sameApril 2019 subsets to maximize comparability. This subset consisted of the

50 launches between 0000UTC 2Apr and 1200UTC 27Apr, inclusive. The gray horizontal bars on the observation

profiles represent only 60.25s to permit more detail to be displayed.

DECEMBER 2020 FOVELL AND GALLAGHER 2269

D
ow

nloaded from
 http://journals.am

etsoc.org/w
af/article-pdf/35/6/2255/5007431/w

afd200101.pdf by SU
N

Y ALBAN
Y LIBR

 SB23 user on 16 O
ctober 2020



FIG. 15. As in Fig. 14, but for (a)–(d) January and (e)–(h) June 2019, respectively.
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network (Figs. 7a,b). Also as in theASOS analysis, the biases at

the lowest model level shifted toward zero in the day-ahead

forecasts.

Figure 16 plots all forecast–observation pairs from HRRR

model levels 5–9 inclusive (roughly 280–1060m AGL) for

April 2019 for all stations and times, and Fig. 17 matches those

values against their respective forecast wind biases. These data

were employed in the construction of Fig. 14’s wind profiles

and may be more revealing than averaging by station owing to

the relatively small number of available launch sites and times.

The analysis time plots reveal a faithful (yet again imperfect)

relationship between the modeled and observed winds

(Figs. 16a,b). For 0000 UTC, the average bias was not only

nearly zero (as anticipated from Fig. 14a) but also neither a

function of the forecasted nor observed wind, despite the

rather obvious hard constraints discussed earlier. The small

negative bias (about20.4 m s21 averaged through the layer)

among the 1200 UTC analyses, consistent with the black

profile in Fig. 14d, is more identifiable in Figs. 17c and 17d,

and was nearly independent of forecasted and observed

wind speed.

The situation had again changed significantly by the 24-h

forecast time (Figs. 16c,d and 17e–h), however. A clear positive

bias developed, especially at 0000 UTC (Fig. 16c) that, in

contrast with the situation seen with the surface wind obser-

vations, is more associated with the forecasted than observed

values. This is indicated by the rightward tilt of the data points

and contours on Figs. 17e and 17g compared to Figs. 17f and

17h. Relatively larger wind speeds, especially those between 6

and 12m s21 for which there are many examples, were more

FIG. 16. Scatterplot of all April 2019 observation–forecast pairs available for HRRR levels 5–9, inclusive, for the

(a),(c) 0000 UTC and (b),(d) 1200 UTC cycles at (top) the analysis time and (bottom) forecast hour 24. Similar to

previous figures, dots are color coded by nearby point density and are additionally contoured every 50 samples.

Also shown are least squares fits (solid red lines) and the one-to-one correspondences (dashed gray). Plots for

forecast hour 23 (not shown) are very similar to hour 24.
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likely to be overpredicted. (Plots for the 23-h forecasts are

similar, and thus not shown.)

Next, we turn to the temperature analysis for April (Fig. 18)

and January and June (Fig. 19) 2019. We elected to examine

potential temperature u as it is somewhat less sensitive to el-

evation above sea level. Unlike wind speed, u (like tempera-

ture) varies more across the CONUS than at a particular site, a

characteristic that makes plots of forecasts versus observations

(not shown) appear very skillful, with R2 . 0.96 even for 1-day

forecasts. In contrast to the wind evaluation, we are not

identifying a contaminated zone as it is less clear that tem-

perature information near the surface was substantially com-

promised during processing, but emphasis will be placed on

how these profiles changed over time anyway. Clearly, the

relatively larger distinction (compared to wind speed) between

forecast hours 23 and 24 occurred because temperature was

evolving more quickly around the launch times (see also

Fig. 7), especially around 0000 UTC. This makes the analyses

less straightforward.

At the analysis time (Figs. 18b,d), April’s potential tem-

perature biases were small at and above model level 3

(about 88m AGL) at 0000 UTC and a modest negative bias

(averaging20.32 K) was apparent at 1200 UTC. Again, only

minor discrepancies were expected as these data were as-

similated. Whether that bias became more or less negative

in the afternoon/evening, however, depended on the se-

lected forecast hour owing to the comparatively quickly

changing conditions. The apparent biases in the 0000 UTC

analyses were similar in January and June to what was seen in

April (Figs. 19b,f), although how that bias evolved to the 23- or

24-h forecast ostensibly varied among the months.

For 1200 UTC, both the 23- and 24-h forecasts showed a

combination of temperature increases beneath decreases, both

relative to the analysis time. This indicates that the vertical

potential temperature lapse rate was markedly less stable in

the day-ahead forecast compared to the initial time (Fig. 18d).

An essentially similar phenomenon occurred in the cooler and

warmer months (Figs. 19d,h). While the sign of the u bias was

dependent upon the level and month examined, the consistent

result was that the site-composite mean 1200 UTC tempera-

ture at model level 3 shifted more than it did at level 6, and did

so in a positive direction. As a consequence, the reduced sta-

bility present in the 1-day forecast compared to the analysis

time was primarily due to shifts in forecasted temperatures

closer to the surface.

It was seen in the 2-m temperature evaluation for the ASOS

network that there was a pronounced tendency for higher ele-

vation (.500m MSL) stations to develop positive forecast bia-

ses by the 24-h lead time (Figs. 12c,d and 13). A similar yet more

complex result was found for HRRR model levels near the

surface (Fig. 20), and this in particular helps to shed light on the

lapse rate steepening seen at 1200 UTC (Fig. 18d). The present

comparison only involves forecasts and also differences in pre-

dictions at hours 0 (analysis time) and 24 and for HRRRmodel

levels 3 and 6 (about 88 and 441m AGL, respectively) for the

same set of valid times, sidestepping issues concerning launch

times and potentially flawed initial conditions. For our sonde

subset, 20 of the 60 launch sites resided above 500m MSL.

FIG. 17. As in Fig. 10, but for observation–forecast pairs of wind speeds on HRRR levels 5–9, inclusive. Shown are the (a),(b),(e),(f)

0000 UTC and (c),(d),(g),(h) 1200 UTC forecast cycles with comparisons being forecast wind bias vs forecasted [in (a), (c), (e), (g)] and

observed [in (b), (d), (f), (h)] wind speeds. Only analysis time parings are incorporated in (a)–(d) and (e)–(h) use only forecast hour 24

pairs. Similar to previous figures, dots are color coded by nearby point density and are additionally contoured every 50 samples. Plots for

forecast hour 23 (not shown) are very similar to hour 24.
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At 0000 UTC, potential temperature changes between the

24- and 0-h forecasts were similar for both model levels,

although they also tended to be positive for most higher

elevation sites and be generally negative closer to sea level

(Figs. 20a,b). As a consequence, the lapse rate shifts

(Fig. 20c) were relatively modest, consistent with Figs. 18a

and 18b. The results for January and June 2019 were similar

(Figs. 21a–c,g–i), with the exception that the u shift at higher

altitude sites were less consistent in the latter.

The situation was distinctly different at 1200 UTC (bottom

row), however. At the third level, 19 of the 20 elevated loca-

tions had u increases for April (averaging to 11.3K), while

those closer to sea level were more evenly split (Fig. 20d). At

level 6 (Fig. 20e), in contrast, temperatures generally increased

at higher elevation sites and decreased at lower ones. These

shifts combined to make lapse rates (Fig. 20f) for most of the

sites (51 of 60) steeper by an average of 1.7K km21 (and by

2.8K km21 for sites above 500m MSL) over the month, which

are significant shifts that may reflect different problems de-

pending on site altitude.

Results for January and June 2019 were strongly similar

(Figs. 21d–f,j–l). As was the case with 2-m temperature, the

identified errors were not correlated with the discrepancy be-

tween model and observation elevation (not shown). Taken

together, these results confirm the finding that there is some-

thing systematically flawed about the way higher elevation

stations in particular are handled that is not confined to the 2-m

temperature, and may also suggest issues with handling of the

stable boundary layer. These findings also deserve closer ex-

amination in future work.

4. Discussion and summary
Accurate forecasts of atmospheric conditions—especially

wind speed and temperature—at the surface and through the

PBL are critical for many industries including agriculture,

aviation, wind energy, and fire weather (e.g., Zaitchik et al.

2005; Gultepe et al. 2019; Olson et al. 2019b; Erickson et al.

2018). In this study, we evaluated forecasts made by the 0000

and 1200 UTC cycles of the HRRRv3 model out to 24 h. For

our verification, we utilized high-resolution (1-s) radiosonde

(RRS) data, 1-min ASOS surface observations, and also

HRRR model output on native model levels to preserve ver-

tical structure near the surface. Our aim was to assess the

current skill of HRRR forecasts, identify areas for potential

improvement, and review the limitations of observations uti-

lized in the verification process.

Our surface analysis of composited observations from hun-

dreds of CONUS ASOS sites demonstrated that the HRRR

skillfully reproduced the diurnal variations of both 10-m wind

speed and 2-m temperature, albeit with nonzero biases in both

variables (20.5m s21 and 20.4K, respectively) at the analysis

time that disappeared as the forecast progressed. Consistent

FIG. 18. As in Fig. 14, but for potential temperature and forecast bias averaged over April 2019.

DECEMBER 2020 FOVELL AND GALLAGHER 2273

D
ow

nloaded from
 http://journals.am

etsoc.org/w
af/article-pdf/35/6/2255/5007431/w

afd200101.pdf by SU
N

Y ALBAN
Y LIBR

 SB23 user on 16 O
ctober 2020



FIG. 19. As in Fig. 15, but for potential temperature for January and June 2019.
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with Cao and Fovell (2018), HRRR systematically over-

predicted the winds at sites reporting slower winds with un-

derpredictions at faster wind locations, potentially as a result of

unresolvable site exposure. Further analysis demonstrated

that the wind speed bias was more a function of the observa-

tions than the forecasts, for reasons not fully appreciated.

Independently ranked distributions of forecasted and observed

mean station wind speeds emphasized that the model under-

specified the wind at windier locations and suggested the

negative bias seen at the analysis time (perhaps inherited from

the assimilation process) quickly disappeared with time. Last,

the 2-m temperature errors were found largely unrelated to

both forecasted and observed values but were found to have a

robust relationship with station elevation, where the majority

(75%) of locations above 500m MSL were characterized by

positive temperature biases. This pattern was found to be

persistent across seasons and indicates a model deficiency in

handling temperature at high elevations that should be inves-

tigated further.

For the boundary layer verification, we interpolated the

RRS’ processed temperature (5pPTU) and wind (6pGPS)

datasets at 1-s resolution to the AGL heights of the HRRR

nativemodel levels at each site and time, and then spatially and

temporally averaged both forecasts and observations to create

vertical profiles representing the nominal times of 0000 and

1200 UTC. Regarding wind speed, our analysis indicated that

the first 45 records after launch were contaminated during ra-

diosonde processing so values below about 260m AGL were

discounted. Above that level, wind profiles for all available

months show similar patterns of relatively small biases at the

analysis time. This result was expected as the model analyses

have assimilated the radiosonde information.

However, wind speed biases swung to become positive by

the 23- and 24-h forecasts, increasing by approximately 1m s21

at HRRR model levels 5–6 (about 280–440m AGL). This

pattern is evident at both 0000 and 1200 UTC and also across

seasons. Notably, the relationship between forecast bias and

average forecasted or observed wind speed between model

levels 5–9, inclusive, was reversed compared to the 10-m wind

in that the bias was nearly random with respect to observed

wind but had a positive relationship with forecasted wind

speed, with a greater probability of overprediction when the

forecasts were relatively higher. This result is not understood.

Regarding potential temperature, its relatively rapid

evolution near the surface made forecast errors around the

0000 UTC target time less straightforward to interpret.

However, a much more consistent pattern was found in the

vertical bias structure around 1200 UTC. While analysis time

FIG. 20. Change (D) in potential temperature from the analysis time to the 24-h forecast vs station elevation for the (a),(b) 0000 and

(d),(e) 1200 UTC forecast cycles at the (left) third and (center) sixth HRRR model levels. Also shown is the change in lapse rate

(calculated between HRRR levels 3 and 6) from the analysis time to the 24-h forecast for the (c) 0000 and (f) 1200 UTC forecast cycles.

Solid gray lines denote the zero-change line (vertical) and 500-m elevation (horizontal). Each dot is a station.
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FIG. 21. As in Fig. 20, but for (a)–(f) January and (g)–(l) June 2019, respectively.
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bias values varied among seasons, the next-day forecast

revealed a persistent trend in which the vertical lapse rate

between HRRR model levels 3 and 6 (about 88–441m AGL)

had become markedly steeper, by 1.3, 1.7, and 2.0K km21 in

January, April, and June 2019, respectively. For higher eleva-

tion sites, the steepening was driven by positive temperature

biases at level 3 that exceeded those farther aloft, while for

those closer to sea level it was generally warming residing

beneath cooling. As with surface temperature, this analysis

may indicate amishandling of temperature at higher elevations

and possibly also a more general misrepresentation of the

stable boundary layer.

In summary, our analysis has shown that the HRRRv3 is

very skillful, at least to 24 h, but also possesses systematic

biases in its forecasts of surface and near-surface conditions

that merit further investigation. These errors potentially stem

from a variety of sources including (and not limited to) data

assimilation, model physics assumptions and tunings, how

higher elevation locations are being represented, and issues

relating to the observations themselves, and may change as

the model is refined. Additionally it should be noted that

this verification benefited from access to both the higher-

resolution and less processed RRS radiosonde data and the

HRRR analyses and forecasts on native model levels. At

this writing, the former are no longer being archived at

NCEI and there is no known publicly available repository

for the latter.
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