1	Script for Hurricane Milton ensemble
2	ATM419/563 Fovell Fall 2024
3	
4	* synopsis *
5	Let's explore the influence of model physics choices on the landfall of Hurricane
6	Milton, which is currently heading for the west Florida coast. The simulations will
7	use a pre-made 36 km domain, initialized with GFS from 10/8/2024 at 12Z. Outputs
8	from ungrib, geogrid, and metgrid are provided, so the task is to modify
9	namelist.input, run real.exe and submit the WRF job.
10	**
11	* make a directory in your lab space called MILTON , copy into it
12	\$LAB/MILTON/SETUP.TAR and unpack it (tar -xvf)
13	VELD/METON/DETOTITIE and anpack it (all AVI iii)
14	* execute sh make_all_links.sh
15	* CHOICES *
16	• Choose a model configuration.
17	Some PBL/surface layer options
18	(a) bl_pbl_physics=1, sf_sfclay_physics=1
19	
	(b) bl_pbl_physics=2, sf_sfclay_physics=2 [NAM-like]
20	(c) bl_pbl_physics=5, sf_sfclay_physics=5 [HRRR-like]
21	(d) bl_pbl_physics=7, sf_sfclay_physics=7
22	(e) bl_pbl_physics=11, sf_sfclay_physics=1
23	Some microphysics options
24	mp_physics = 1, 2, 3, 4, 8, 10
25	Some radiation options
26	ra_lw_physics= ra_sw_physics=both 1 or 4
27	icloud=1 or 0
28	Some land surface model options
29	(a) sf_surface_physics= 2, num_soil_layers=4
30	(b) sf_surface_physics= 3, num_soil_layers=6
31	(c) sf_surface_physics= 7, num_soil_layers=2
32	Some cumulus options
33	cu_physics=1, 2, 3, 6, 10, or 16
34	
35	Execute real and wrf
36	srun -p burst-daes -n 4 ./real.exe
37	sbatch -p burst-daes submit_wrf
38	
39	• When WRF run has finished, run WRF_plot_MILTON.ipynb on ARCC Jupyterlab.
40	• EDIT YOUR SURNAME IN CELL #3
41	This will generate output in a cell like [lat/lon/SLP] and two PNG files
42	→ LANDFALL at 26.942585 -82.0943 983.39233
43	 COPY yourlastname_*.png to \$LAB/MILTON_ENSEMBLE/.
44	
45	[If you run the animation cell and want to execute the notebook again, please restart
46	kernel and clear all outputs first. Look in Kernel menu.]