1 2	Script for UFS/SRW demonstration (Derecho version) ATM419/563 Spring 2024
3	
4	IMPORTANT: Log onto derecho.hpc.ucar.edu with your NCAR login and
5	password . You will then need to authenticate with Duo. I suggest you open TWO
6 7	separate sessions on derecho.
, 8 9 0	This demonstration uses the UFS Short Range Weather (SRW) application version 2.2.0. We will redo the WINDSTORM case at 25 km grid spacing.
1	Derecho help documents: <u>https://arc.ucar.edu/docs</u>
2 3	* preliminaries *
) 1	• move to your scratch space
	\$ cd /glade/derecho/scratch/\$USER
	\$ cu / glade/ del echo/ sel atell/ \$05EK
	• create new directory for the UES SRW and move into it
	\$ mkdir UFS SRW
	\$ cd UFS_SRW
	• get the UFS SRW code from github. This is one single line:
	\$ git clone -b release/public-v2.2.0 https://github.com/ufs-community/ufs-
	srweather-app.git
	\rightarrow this creates a new directory called "ufs-srweather-app"
	• move into the new directory
	\$ cd ufs-srweather-app
	• prepare for building code. This may take a few minutes. Output shown below
	\$./manage_externals/checkout_externals
	Processing externals description file : Externals.cfg
	Checking status of externals: ufs_utils, ufs-weather-model, upp, arl_nexus, aqm-utils,
	workflow-tools,
	Checking out externals: aqm-utils, ufs_utils, upp, arl_nexus, ufs-weather-model,
	workflow-tools,
	• build the code. You will have to hit the space bar to continue at some point.
	This takes time.
	\$ /daybuild.shplatform=dorocho

46 47	* preparing a new simulation *
48	\$ source ./etc/lmod-setup.sh derecho
49	\$ module use ./modulefiles
50	\$ module load wflow_derecho
51	
52	 The command above should respond with
53	Please do the following to activate conda: > conda activate workflow_tools
54	
55	\$ conda activate workflow_tools
56	
57	• Henceforth your command prompt will contain "(workflow_tools)"
58	\rightarrow ssh, sftp, and scp will stop working in this session
59	*
60 (1	* running the simulation
61	• move to the working directory
6Z	\$ ca ush
03	a converting "viewel" file that will drive the model (like normalist in part)
64 65	• copy the yami life that will drive the model (like namelist.input)
05	s cp / glade/derecho/scratch/loven/comg.yami. [remember space and dot]
60 67	a launch the experiment
69	• Idulicii ule experiment • /generate EV2LAM wflow py
00 60	\$./generate_FvSLAM_wnow.py
09 70	• this should result in output that looks like this
70 71	• this should result in output that looks like this
71 72	Experiment generation completed. The experiment directory is:
73	Experiment generation completed. The experiment directory is.
74	EXPTDIR='/glade/derecho/scratch/[vourlogon]/IJES_SRW/expt_dirs/ufs_srw_case
75	windstorm'
76	
77	* monitoring the simulation *
78	• the config.vaml file specifies the output directory to be ufs srw case windstorm .
79	• this directory is created in UFS SRW/expt dirs. Move to it
80	
81	\$ cd//expt dirs/ufs srw case windstorm
82	+ •,,, ·
83	• next command lists all of the many parts of the UFS workflow, and status of each
84	\rightarrow it may take several minutes for the xml file to be created, so please be patient
85	
86	\$ rocotostat -w FV3LAM_wflow.xml -d FV3LAM_wflow.db -v 10
87	
88	• this command summarizes the job status . You can reissue this command to check
89	on job status.
90	\$ tail -n 40 log.launch_FV3LAM_wflow
91	-

	ightarrow While modeling system is running, you'll see output like this
	Summary of workflow status:
	~~~~~~
	0 out of 1 cycles completed. Workflow status: <b>IN PROGRESS</b>
	End of output from script "launch_FV3LAM_wflow.sh".
	$\rightarrow$ we are looking for "SUCCESS"
	Summary of workflow status:
	~~~~~~
	1 out of 1 cycles completed.
	Workflow status: SUCCESS
;	* outputs *
	• in expt_dirs/ufs_srw_case_windstorm/ output is placed in folder "2021123012"
	• It will take awhile for this folder to be created and populated with outputs
	\rightarrow outputs named dynfNNN ng contain prognostic fields on model levels
	\rightarrow outputs named abufNNN nc contain fields like 10m wind and 2m temporature
	\rightarrow NNN – forecast hours
	\rightarrow outputs in GRIB2 format are in 2021123012/postprd
	• make sure you are in the 2021123012/postprd directory
	\$ module load eccodes
	 combine isobaric GRIB2 files into a single file [simplifies handling]
	\$ grib_copy srw*prslev* ufs_example_combined.grib2
	* visualization *
•	You can use Jupyterhub on NCAR resources or move your GRIB2 file back to Albany
	for visualization.
	NCAR visualization
	\rightarrow for NCAR, copy my notebook from my scratch directory to your home directory
	\$ cp /glade/derecho/scratch/fovell/GRIB_plot_example.ipynb ~/.
	$ ightarrow$ the \sim / stands for your home directory
	Chrome or Firefox are preferred browsers. See <u>https://arc.ucar.edu/docs</u> for
	more in-depth information.

138 Procedure:

- 139 (1) Go to jupyterhub.hpc.ucar.edu. Under "Available NCAR Resources" select the
 "Production" button
- 141 (2) Log in with your NCAR username and password and then Duo authentication.
- 142 (3) "Add new server". Select "Casper logon" from the options when they appear.
- 143 (4) You'll start in your Derecho home directory. You should see
- 144 GRIB_plot_example.ipynb among your files. Launch as usual.
- 145 (5) Check Cell #3 for the **location** of your UFS run. Other things to check:
- 146 initiation_time [model start time] and timeindex [forecast hour you want to plot]
- 147

148 Moving to Albany

- 149 It is easiest to use scp or sftp to transfer the files to ash.atmos.albany.edu or
- 150 reed.atmos.albany.edu, into your home directory [if you have room]. From there,
- 151 you can scp them to your atm419lab space.
- 152 \rightarrow DO THIS FROM YOUR SECOND DERECHO SESSION. *Executing the UFS python*
- 153 environment causes ssh, sftp, scp to cease working
- 154 \rightarrow you can start with and modify \$LAB/PLOTTING/GRIB_plot_example_V3.ipynb
- 155
- 156 *** ------ future work** ------ *****
- 157
- A pre-configured yaml file to run at 6 km grid spacing in a spatially smaller domain
- 159 for 24 h from 2021123000 can be copied from
- 160 /glade/derecho/scratch/fovell/config.yaml.6km. Just rename it "config.yaml"
- 161 → consider renaming, moving, or removing your existing "ufs_srw_case_windstorm"
 162 directory.
- 163
- 164 {Coureurs des UFS}