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ABSTRACT

The equilibrium shape of raindrops has been determined from Laplace’s equation using an internal hydrostatic
pressure with an external aerodynamic pressure based on measurements for a sphere but adjusted for the effect
of distortion. The drop shape was calculated by integration from the upper pole with the initial curvature
determined by iteration on the drop volume. The shape was closed at the lower pole by adjusting either the
pressure drag or the drop weight to achieve an overall force balance. Model results provide bounds on the axis
ratio of raindrops with an uncertainty of about 1% and very good agreement with extensive wind tunnel mea-
surements for moderate to large water drops.

The model yields the peculiar asymmetric shape of raindrops: a singly curved surface with a flattened base
and a maximum curvature just below the major axis. A close match was found between model shapes and
profiles obtained from photos of water drops for diameters up to 5 mm. Coefficients are provided for computing
raindrop shape as a cosine series distortion on a sphere.

In contrast to earlier models of raindrop shape for the oblate spheroid response to gravity (Green, Beard) or
the perturbation response to the aerodynamic pressure for a sphere (Imai, Savic, Pruppacher and Pitter), the
present model provides the appropriate large amplitude response to both the hydrostatic and aerodynamic
pressures modified for distortion. In addition, the new model can be readily extended to include other pressures
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such as an electric stress.

1. Introduction

A large number of experimental and theoretical in-
vestigations on the shape of raindrops falling at their
terminal velocities have been reported in the literature.
High-speed photographs reveal that a large raindrop
falling through the air exhibits a characteristic asym-
metric shape having a flattened base and a smoothly
rounded top. A small raindrop appears to have the
symmetrical distortion of an oblate spheroid, whereas
a drizzle drop looks spherical.

Current motivation for the research on raindrop
shape is the need to understand depolarization of elec-
tromagnetic waves in rain. Depolarization degrades
communication signals by cross-polar interference, but
depolarization can also be a source of information
about rainfall characteristics. As a consequence, there
have been numerous studies on the effects of raindrop
shape on the propagation of microwaves in commu-
nication links and on backscattering of microwaves as
detected by weather radars (for review articles see Ogu-
chi, 1981; Olsen, 1981; Rogers, 1984). In two recent
studies the distortion of very large raindrops has been
increased significantly over standard values to fit radar
polarization data from storms (Caylor and Illingworth,
1986; Sachidananda and Zrnié, 1986) based on aircraft
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measurements of raindrop shape (Cooper et al., 1983;
Chandrasekhar et al., 1984). Thus, our knowledge of
the shape and distortion of raindrops is currently un-
dergoing a reevaluation.

Experimental work on the shape of drops falling in
air apparently originated with the wind tunnel studies
of Lenard (1904) who speculated that internal circu-
lation and surface tension were the key factors in drop
deformation. [Earlier theoretical work of Bashforth and
Adams (1883) focused on the effects of the internal
hydrostatic pressure in producing sessile and pendant
drops.] Modern experimental research on raindrop
shape began with the wind tunnel studies of Blanchard
(1950) and Magono (1954). More recent work with a
refined wind tunnel (Pruppacher and Beard, 1970;
Pruppacher and Pitter, 1971) has provided more de-
tailed information on axis ratio as a function of rain-
drop size. Wind tunnel studies have also shown that
large electrostatic distortions are likely for raindrops
in thunderstorms (Richards and Dawson, 1971; Ras-
mussen et al., 1985).

Spilhaus (1948) provided a theoretical estimate of
raindrop shape and suggested that the flattening of large
raindrops is due to the aerodynamic pressure. He con-
sidered the raindrop as an ellipsoid but used an incor-
rect relationship in determining the pressure increment
due to surface tension. A more extensive theory was
developed by Imai (1950) who calculated the axis ratio
of raindrops in potential flow using the linearized form
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of Laplace’s equation. Imai disregarded the internal
hydrostatic pressure and the external viscous effects to
produce drops with the shape of an oblate spheroid for
small deformation. Savic (1953) expressed the linear-
ized form of Laplace’s equation as an orthogonal series
of cos(nf) and used a measured aerodynamic pressure
distribution for a sphere (Flashbart, 1927). By solving
a system of linear equations, he obtained the shape
coefficients for falling drops. Savic found that the dis-
tortion depended on the aerodynamic pressure but was
independent of the internal hydrostatic pressure.

McDonald (1954a), calculated the aerodynamic
surface pressure from photographs of Magono (1954)
and roughly estimated the magnitude of internal cir-
culation at the waist. He concluded that the hydrostatic
pressure due to gravity was an important component
of drop shape, and that the separation in the airflow
around a raindrop was primarily responsible for the
asymmetry of large raindrops. Pruppacher and Pitter
(1971) made some adjustments to Savic’s model and
used the measurements of Fage (1937) for a sphere.
They obtained very similar results to Savic’s and found
fairly good agreement with wind tunnel measurements
of drop axis ratio. Green (1975) estimated the axis ratio
by simply considering the balance between surface
tension and hydrostatic pressure at the equator of an
oblate spheroid. Beard (1982, 1984) showed that axis
ratios could be obtained from a potential energy bal-
ance using only gravity and surface energy. These sim-
ple theories of gravitational distortion also give fairly
good agreement with wind tunnel measurements.

In spite of these modern theoretical and experimen-
tal investigations, the forces important to raindrop
shape are not well understood. The perturbation mod-
els provide only an aerodynamic shape, and are of
questionable value when applied to large amplitude
distortions observed for raindrops greater than 3 mm
diameter. The gravitational models are inappropriate
for calculated shape since the forces on raindrops are
only crudely approximated. Absent from previous
models is the possible significant effect of internal cir-
culation (Foote, 1969). And, existing theories of drop
distortion by electric charges and fields do not include
the circulations within and around drops. Thus, a
principal motivation for our study is to solve the com-
plicated problem of raindrop shape with due regard to
the important forces. In the new model, the approach
of Bashforth and Adams for the hydrostatic distortion
has been expanded to incorporate an aerodynamic
supporting pressure. The method of applying an em-
pirical pressure distribution around a sphere, originally
proposed by Savic, has been refined to include varia-
tions in the pressure distribution with Reynolds num-
ber and drop distortion. In subsequent research, we
plan to make further improvements to the aerodynamic
pressure distribution, and address electrostatic effects
and, possibly, internal circulation.
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2. Calculations of drop shape

There are five key factors that affect raindrop shape:
surface tension, hydrostatic pressure, aerodynamic
pressure, internal circulation and electric stress. The
initial step in the development of the new model is a
force balance along the surface of a raindrop among
the first three factors. Possible subsequent development
of the model, to include internal circulation and electric
stress, is discussed in the conclusions.

The theoretical basis for drop shape is given by La-
place’s pressure balance relating the curvature at each
point on the surface to the internal and external pres-

sures by
o[1/R,+1/R;]=Ap (1

where ¢ is the surface tension, R; and R, are the prin-
cipal radii of curvature, and Ap is the pressure across
the interface. The curvature can be evaluated in the
manner of Hartland and Hartley (1976) using a tangent
angle coordinate system in a vertical plane through the
center of the drop with the origin at the uppermost
point of the surface as shown in Fig. 1. The principal
variables are the arc length (s) and the angle (¢) between
the tangent to the drop surface and the x-axis. The
radius of curvature in the x—z plane is R, with length
BP, and is defined by the differential relation between
¢ and the arc length as ds = R,d¢. This curvature is

therefore
1/R, = d¢/ds. (2)

The orthogonal radius of curvature, R,, with length
of AP, generates a horizontal arc through P as the tri-
angle ACP is rotated about the z-axis. Since x = R;
X sing, this curvature is simply

1/R, = sing/x. (3)
Laplace’s equation is therefore
od/ds + o sing/x = p;— p.. 4)

Two auxiliary equations in the tangent angle coordinate
system are dx/ds = cos¢ and dz/ds = sing, as is evident
from the differentials in the triangle shown on Fig. 1.

Laplace’s equation is a nonlinear differential equa-
tion when expressed in terms of the coordinates x and
z. It has no analytical solution for the effect of distortion
pressures, even for axisymmetric drops. However, the
problem of the hydrostatic distortion was of sufficient
interest that the integration was carried out numerically
over 100 years ago. The results were published by
Bashforth and Adams (1883) on experiments and cal-
culations of the shape of sessile and pendant drops.
They determined the shape of a sessile drop, with a
hydrostatic pressure of Apgz by assuming an external
pressure of p. = 0 and an internal pressure of p; = (p)),
+ Apgz. [At the top the curvatures are equal from axi-
symmetry so that (p), = 206/R, where R, is the radius
of curvature.]
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Fi1G. 1. Diagram of curve for the drop surface in the x-z plane
with radius of curvature R, given by BP and R, by AP (both lying
on the perpendicular to the curve at P),

The shape is calculated by forward integration of ds/
d¢ for assumed values of the initial curvature at the
top. For convenience, we use a dimensionless form of
the sessile drop equation given by

od¢/dS = —singp/X+2/C+Z 5)

where dS = bds, X = bx and C = bR, and Z = bz, and
where the physical properties are specified by b = (Apg/
0)'/? having units of inverse length. The integration is
terminated at a tangent angle of 180° at the outer edge
of the flat base where the drop height (%) and volume
have been completely determined. At this point the
integral of vertical force from internal pressure over
the curved surface reaches zero, and therefore the net
force from the uniform pressure over the base (2¢/R,
+ Apgh) is equal to the drop weight. The base is flat
because the external pressure of the support is also
equal to 2¢/R, + Apgh.

Results for sessile drops can be found in Hartland
and Hartley (1976) with the shape tabulated for par-
ticular values of C in terms of ¢, S, X, Z, and the
dimensionless surface area and volume. The shape for
certain drop sizes can be found by locating the appro-
priate dimensionless volume.

3. Simple calculations using the new model

A more challenging problem is to calculate the shape
of a raindrop, since both hydrostatic and dynamic
pressures must be treated. We have extended the
method of Bashforth and Adams for a sessile drop to
a raindrop by including the external aerodynamic
pressure (p,). Laplace’s equation is expressed in the
tangent angle coordinate system as

od¢/ds + o sing/x = (p;),+ Apgz — p,. (6)
At the top p; = (p;), and p, = (p,):, so that the initial
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curvature has the relation 2¢/R; = (p;), — (po);. There-
fore (6) can be rewritten as

odp/ds=—o sing/x+26/R,+ Apgz+ (Do), —pPa  (7)
with a dimensionless form given by
d¢/dS = —sing/X +2/C+ Z+(ab) '[(Pa)— P (8)

Following Savic (1953) the aerodynamic pressure is
based on the measured distributions around a sphere
in terms of a polar coordinate angle 6, with § = 0 at
the lower pole

1
Pa=30V(0) ©)
where «(6) is the dimensionless pressure distribution.
Since the aerodynamic pressure at the top is (p,), = (1/
2)pV?, and «, = «(), Eq (8) can be rewritten as

do/dS = —sing/X +2/C+ Z — We[x(0) — (x)]/4 (10)

where We = apV?/2¢ is the Weber number, 4 = ba is
the dimensionless drop radius, and a is the radius of
an equivalent volume sphere.

Equation (10) can be solved by forward integration
from the upper to lower poles. The initial value of the
curvature is simply d¢/dS = 1/C, since Z = 0, «(6)
— k(w) = 0, and d¢/dS = sing/X. The appropriate lower
boundary value is reached through the constraint of
mechanical equilibrium between the weight of the drop
and the support. The accumulated downward force can
be computed by integration of the volume element
wx’dz (times Apg) or by integration of the internal
pressure acting on the surface with a vertical compo-
nent given by df = —2wxp; cos¢ds = —2mwpxdx. Thus
the lower pole is reached in the integration just as the
net weight of the drop is completely supported by an
external force. [The external force can be calculated
from summing the elements 27p,xdx.]

a. Sessile drop shape

In our first set of calculations we set the Weber num-
ber to zero in (10) to obtain the shape of a sessile drop
with the assumption that the weight of the drop was
supported by a thin film of air above a fixed horizontal
plane. This conceptual model allows the surface tension
along the base of the drop to be unaffected by the sup-
port, and is equivalent to a perfectly nonwettable sup-
port with a contact angle of 180°. Integration was begun
at the upper pole using the boundary condition for the
dimensionless curvature given by d¢/dS = 1/C. As the
integration proceeded from the upper pole, the cur-
vature in the x-z plane continually increased. The in-
tegration was terminated at a tangent angle of 180°
where the drop shape and volume were completely de-
termined.

An iterative method was used to determine the value
of R, necessary to achieve the appropriate volume for
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a particular drop size. The integration method was a
fourth order Runge-Kutta scheme. A small enough
step size was specified so that agreement was obtained
to 5 significant figures in the drop height with previ-
ously calculated results for sessile drops (Hartland and
Hartley, 1976). No significant differences were found
between results using our simple fourth order scheme
and a fourth/fifth-order Runge~Kutta scheme with in-
ternal control of step and global errors (Forsythe et al.,
1977).
Sessile drop shapes are shown in Fig. 2 for six drop
sizes, d = 1, 2, 3, 4, 5 and 6 mm where d = 2a is the
.diameter of the equivalent volume sphere. As described
in the previous section the flat base is a result of the
drop’s weight acting on a horizontal supporting surface.
The extent of the base area increases with the Bond
number (Bo = Apga?®/s), and drop size, since the hy-
drostatic pressure at the base increases with respect to
the internal pressure (20/R,). The axis ratio («) for a
sessile drop, shown in Table 1, is smaller than predicted
by the hydrostatic effect in the oblate spheroid models
of Green (1975) and Beard (1982). From the asym-
metry about the horizontal axis in Fig. 2, it is evident
that one effect of the extra volume in the lower half of
a sessile drop is to increase the width of the drop when
compared to an oblate model.

b. Raindrop shape using p, for a sphere

For calculations of the aerodynamic effect we had
to consider how to balance the weight of the drop
against an upward force in order to obtain a closed
drop shape. Although the weight of a drop falling at
terminal velocity is supported entirely by the aerodyn-

FIG. 2. Sessile drop profiles ford = 1, 2, 3, 4, 5 and 6 mm. Shown
for comparison are dashed circles of diameter d divided into 45 degree
sectors. .
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TABLE 1. Model results for raindrop axis ratios. Values in brackets
have been interpolated from results at the nearest drop sizes.

Aerodynamic models Hydrostatic models

Pruppacher Sessile
d(mm) Imai Savic andPitter Green Beard drop
1.0 0.96 —_ [0.98] 0.98 0.98 0.97
2.0 0.88 [0.92] [0.92] 0.92 0.92 0.90
3.0 ‘0.61 [0.85] 0.85 0.84 0.85 0.82
4.0 — — 0.76 0.77 0.77 0.75
5.0 —_ —_ 0.70 0.71 0.69 0.67
6.0 —  [0.67] 0.66 0.65 0.62 0.61

amic drag, only the normal component (i.e., the pres-
sure drag) can be used in Laplace’s equation of me-
chanical equilibrium. For raindrops the pressure drag
is about 60% to 90% of the total drag based on estimates
of the pressure drag and total drag on spheres, discussed
in detail below.

The normal component of the drag in dimensionless
form (the pressure drag coefficient) is given for a sphere
by the integral of the dimensionless pressure from ¢
=0 to 180°

Cip=2 f k() cost sinfdf. (1)
In the range of Reynolds number applicable to larger
raindrops (Re = 860-4830 for d = 2-8 mm) the pres-
sure drag on a sphere increases with Reynolds number
from about 81 to 92% of the total drag as determined
from an empirical formula based on the measurements
of Achenbach (1972)

Cip=CJ1—-BRe™] (12)

with B = 5.48 and m = 0.50. This formula is an ex-
trapolation of the data trend in the 75 000-20 000
Reynolds number range and intersects the numerical
results of LeClair et al. (1970) at Re =~ 100 where C,/

- Cq4 = 0.46. However, at Re = 400 the extrapolation

predicts a significantly higher value of C,/C,; than
LeClair et al. (0.73 vs 0.58). Thus an interpolation for-
mula was obtained by using end points from LeClair
et al. at Re = 400 and Achenbach at 75 000. The use
of the interpolation formula instead of Achenbach’s
decreases the pressure drag coefficient by only a few
percent for larger raindrops (d > 3 mm). _
We used (12) with B = 13.4 and m = 0.58 to estimate
the pressure drag on a raindrop by assuming that the
ratio Cuy/C, for a sphere is the same for a raindrop.
Since the drag on a raindrop is well approximated by
the drag on an equivalent rigid spheroid (see, Beard,
1976), it is appropriate to calculate the pressure drag
on a raindrop by this method. The equivalent volume
diameter (d) is used to define the Reynolds number in
(12). (The use of the Reynolds number based on the
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horizontal major axis would change the value of Cg,
by only 0.01.)

When we integrated the pressure distribution used
by Pruppacher and Pitter (1971) for calculating rain-
drop shape (Fage, 1937), we found that the pressure
drag was 0.45, higher than the fotal drag on a sphere
in the range of Reynolds numbers (1500-5000) appli-
cable to large raindrops (d = 3-8 mm). Although the
distribution of Fage supposedly applies in the range
from Re = 10°-10° (Pruppacher and Klett, 1978), the
actual measurement was made at Re = 1.6 X 10°. At
such high Reynolds numbers the total drag on a sphere
is C; =~ 0.45. Since Eq (12) predicts that Cy, ~ Cy,
our integration of Fage’s data to obtain the pressure
drag is consistent with drag measurement for spheres
at very high Reynolds number.

We could not find any measurements of the pressure
distribution around a sphere for Reynolds number less
than 6 X 10* It is apparently impractical to measure
the pressure distribution for lower Reynolds numbers
(assuming a standard wind tunnel measurement with
a practical sphere size, e.g., see Maxworthy, 1969). The
major difficulty appears to be that the stagnation pres-
sure, as measured by a manometer, results in less than
a 3 mm water displacement if the Reynolds number
is less than 6 X 10%,

To examine the suitability of Fage’s pressure distri-
bution at Re = 1.6 X 10° for Reynolds number of less
than 10* we compared available measurements and
numerical results for spheres in Fig. 3. There is little
difference among results in most of the unseparated
region (8 < 65°). At larger angles the numerical result
for steady-state flow at Re = 400 differs from the mea-
surements having a notably broader dip and higher

1-0 T T A T ¥ L § ¥ T T T T
6.8 —  LECLAR 400 ]
o — — FAGE 160,000 =
0.8 - ---- ACHENBACH 160,000 4
L —— —— MAXWORTHY 60,000 4
0.4+ R
0.2 | B
x® F ]
0.0
-0.2} <
e e = .2
~0.4} S ,{
-0.8 F & ]
- i
-0.8 4
_,1.0 -Ax; a1l " 1 1 IS S SR R 1 " n
0 30 60 90 120 150 180
POLAR ANGLE (6)

FIG. 3. The aerodynamic pressure (x) as a function of polar angle
(¢). Dashed curves show the distribution measured for a sphere for
high Reynolds number with a detached wake. Solid curve show a
numerical result for steady state with an attached wake.
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rear stagnation pressure. The distributions for high
Reynolds number are rather flat behind the separation
point which is a characteristic of a gradual pressure
recovery for flow around a detached wake. Since a de-
tached wake occurs for Re > 450 (see Beard, 1976),
the pressure distribution in the wake for raindrops
should more closely resemble the high Reynolds num-
ber curves than the numerical result for steady-state
flow with an attached wake (Re = 400). The high
Reynolds number curves predict dimensionless pres-
sures () within +0.05 with only a few degrees variation
in the location and breadth of the pressure dip. Small
uncertainties in pressure and in the location of the
minimum are not a primary consideration, since the
major response of raindrop shape occurs from changes
of considerably larger magnitude (for example, in ap-
plying the shape correction I',, discussed below). Based
on these comparisons Fage’s distribution appears to be
areasonable approximation to the flow around a sphere
for Re = 10°~10°, although an adjustment may be de-
sirable to obtain the appropriate pressure drag for a
particular Reynolds number.

The flow behind spheres is unsteady above about
Re = 200, and therefore the use of Fage’s averaged
pressure distribution to calculate raindrop shape would
not account for possible shape responses to pressure
fluctuations in wake. Coupling is expected to be stron-
gest where the oscillation period for the oblate-prolate
mode is comparable to the eddy shedding period
(Gunn, 1949). The two periods are comparable at d
~ 0.9 mm for water drops falling in air, but at d = 2
mm the eddy shedding frequency is an order of mag-
nitude above the oscillation frequency. For larger rain-
drops eddy shedding is less coherent and has averaged
frequencies corresponding to oscillations of very high
harmonics (>10). Thus, the principal distortion of
larger raindrops (d = 1.5 mm) should be the response
to the steady-state pressure distribution or the average
as obtained from Fage.

Calculations for the aerodynamic effect were first
made for d = 5 mm using a cubic spline interpolation
of the measured pressure distribution of Fage (1937).
To close the drop shape at the lower pole the pressure
drag was increased to equal the weight by increasing
the amplitude of «(6). Since the amplitude of pressure
distribution was artificially enhanced, the result should
overestimate the distortion of a water drop falling in
air. Although the distribution of Fage is the same as
used by Pruppacher and Pitter (1971), it was assumed
to apply to a distorted drop at the point on the surface
having the same tangent angle as the sphere. It is shown
in the next section that this assumption normalizes the
pressure distribution for potential flow around oblate
spheroids of any axis ratio. The pressure distribution
of Fage, «(8), was therefore evaluated using «(y), where

= w — ¢ is the tangent angle referenced to the lower
pole.
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In the trial calculation for d = 5 mm, the amplitude
of the pressure distribution was altered using a constant
factor, Ax({), to obtain a pressure drag equal to the
weight of the drop. The initial value of the curvature
at the upper pole was readjusted until volume was con-
served. Resultant curves of the drop surface in the ver-
tical plane of symmetry are shown in Fig. 4 for A
=(0.74,0.76,0.78 and 0.80. The amplitude of the pres-
sure distribution, which was based on a sphere, had to
be decreased (A < 1) to compensate for the increased
pressure drag when applied to a distorted drop. It was
possible by adjusting A to get as close to the z-axis as
needed to adequately determine the volume and axis
ratio or to make the cusp at the z-axis imperceptible
on a plot of drop shape. (A = 0.764 was used to obtain
the axis ratio to three significant figures: a = 0.746.)

The axis ratios computed by the tangent angle
method are a = 0.98, 0.93, 0.87, 0.81, 0.75 and 0.69,
ford=1,2, 3,4, 5 and 6 mm, respectively. The results
from the present model might be expected to represent
a lower bound on the axis ratio for raindrops, because
the distorting pressure from pressure drag was increased
to balance the weight. Nevertheless, the axis ratios are
larger (drops less distorted) than other results shown
in Table 1. In the following sections the axis ratio is
reduced (the distortion increased) to more reasonable
values by modifying the pressure distribution for the
effect of the shape.

The above results for raindrops show higher axis ra-
tios (less distortion) than for sessile drops in Table 1.
This comparison would seem to indicate that the effect
of adding the aerodynamic to the hydrostatic distortion
is to lessen the distortion. However, both the sessile
drop and the aerodynamic calculations use the same
total supporting force so that the comparison actually
shows how axis ratios are affected by differing forms
of the supporting pressure. The larger axis ratio for the
aerodynamic support is principally an outcome of the
greater drop height produced by the rounded base
(compare the 5 mm drops in Figs. 2 and 4).

4. Calculations adjusted for shape

Model calculations discussed to this point are based
on the measured pressure distribution for a sphere at
high Reynolds number using an adjustable amplitude
factor (A) to satisfy the lower boundary condition. No
correction has been made to the pressure distribution
for the effect of raindrop shape. As the distortion in-
creases, the air velocity around the side of the drop
increases thereby lowering the pressure minimum.

a. Pressure distribution around a spheroid

We have modified the measured pressure distribu-
tion around a rigid sphere at large Reynolds number

for the effect of raindrop distortion by applying different -

adjustments in the unseparated and separated flow re-
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FIG. 4. Drop shapes in response to the hydrostatic and aerodynamic -
pressures for d = 5 mm. The four curves near the lower pole are for
different values of A in the modified pressure distribution, A«(y),
with values of A that increase (0.74, 0.76, 0.78, 0.80) for the succes-
sively lower curves. The best value of A is 0.764 to three significant
figures.

gions. Potential flow is used to determine the change
in pressure applicable to unseparated flow in the lower
portion of the raindrop. Although a series solution for
potential flow can be determined for the computed
axisymmetric shapes (Grover and Beard, 1974), it is
much simpler as a first approximation to consider the
change in pressure for an oblate spheroid. For this pur-
pose the velocity field was evaluated using the appro-
priate boundary conditions in the general form of the
stream function given by Happel and Brenner (1965)
in oblate spheroid coordinates (£, 7). The distribution
of dynamic pressure at the surface was then determined
from Bernoulli’s principal (the quantity p + 0.5pU? is
a constant along streamlines) resulting in p = 0.5p V?
— 0.5pU,2. The pressure is given in dimensionless form
by

Xom)=1- U2V~ (13)

The solution for the surface velocity is
U, = Vsing[(A2+ 1) — sin?y] "} [(A\*+ 1) cot™'A = A]™!
(14)

where 7 is related to the polar coordinate angle by tann
= ¢ tanf, and where X\ is the ratio of the axis ratio to
the eccentricity: A = a/e, e = (1 — o)
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To obtain a pressure distribution corrected for shape
we assumed that the fractional deviation of the cor-
rected pressure distribution from Fage’s measured dis-
tribution would be the same as the fractional deviation
in potential flow of an oblate spheroid from a sphere.
Using the stagnation point as a reference, this rela-
tionship is [1 — KWV/[1 — «)] = [1 — x(W][1
— x(¥)], where K(¥) is the corrected pressure, and
where x = 1 — § sin®} is the pressure distribution for
potential flow around a sphere. [The fractional devia-
tions were calculated at the same tangent angle () for
consistency with the method used in applying the
aerodynamic pressure to computed drop shape.] The
corrected pressure at a particular axis ratio and tangent
angle was found from

K@) =1-T.l1-«(¥)]

where, from potential flow

(15)

L= [1 = Xl ~x@] = (U0 V]’[% siw]'« :
(16)

The value of the spheroid velocity at the same tangent
angle as the sphere was found using tany = o ! tany
and replacing sin’p in (16) with sin®y[o® cos®y
+ sin?y]”". When this substitution is made the adjust-
ment for the potential flow velocity is found to be only
a function of axis ratio,

r,= gx—z[(xz +1) cot™']A— A]2 (18)
since A = a1 — o?]"'/2. The fact that (18) is indepen-
dent of Y demonstrates that the tangent angle assump-
tion normalizes the pressure distributions for spheroids.
Thus, the use of the tangent angle for computing drop
shape is consistent with theory.

In the separated flow region of the raindrop, the
pressure recovers only slightly as a result of the gradual
deceleration of the flow outside a detached wake. The
potential flow correction if applied downstream from
the pressure minimum would cause large, unrealistic
variations in the pressure gradient. To obtain the pres-
sure in the wake, I" was held at the constant value that
yielded the appropriate pressure drag.

For the purpose of drop shape calculations, Fage’s
data was first interpolated to 1° intervals using a cubic
spline method. Then the measured distribution around
the sphere was adjusted for the effect of distortion using
(16). In the unseparated flow region from 0 to 72°, the
potential flow correction (T',,) given by (18) was applied
up to the pressure minimum in Fage. In the wake from
88° to 180°, a constant adjustment of I' = T'; was
chosen to obtain the appropriate pressure drag by in-
tegration of the entire pressure distribution [K(y)] nor-
mal to the surface of an oblate spheroid. The pressure
drag was specified by (12) using C, for the particular
raindrop. (The value of T in the region from 72° to
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88° was chosen to be a simple linear transition between
I'yand T'y)

Shown in Fig. 5 are the pressure distributions used
in calculating the adjusted distribution for a raindrop
of d ~ 5 mm with an assumed axis ratio of 0.71 and
Reynolds number of 3100. Potential flow distributions
are given for a sphere (a = 1) and an oblate spheroid
(a = 0.71). The measured distribution of Fage for a
sphere is the curve labeled as a = 1 and Re = 160 000.
The potential flow adjustment was applied from 0° to
72° so that the difference between resultant pressure
for the raindrop and Fage’s measured pressure for a
sphere was scaled by the difference between potential
flows for the oblate spheroid and the sphere. The ad-
justment in the wake I'; from 88°~180°, using a linear
transition between I', and T', from 72°-88°, was cho-
sen for an appropriate pressure drag on the raindrop.

b. Raindrop shape using adjusted p,

The aerodynamic pressure distribution corrected for
the effect of shape, K(¥), is illustrated by examples in
Fig. 6 for axis ratios of a = 0.9, 0.8 and 0.7 with as-
sumed Reynolds numbers of 1000, 2000 and 3000
(corresponding to raindrops of d ~ 2.2, 3.6 and 5.0
mm). Also shown for comparison is the pressure
around a sphere (a = 1) measured by Fage (1937) but
adjusted for an appropriate pressure drag at a Reynolds
number of 500. The amplitude of the aerodynamic
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FIG. 5. The aerodynamic pressure (K) as a function of tangent
angle (¥). The curves are shown for potential flow around a sphere,
the measured distribution around a sphere at high Reynolds number,
for potential flow around an oblate spheroid with « = 0.71, and for
the adjusted distribution for a raindrop (d ~ 5 mm) assuming Re
= 3100 and a = 0.71.
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FIG. 6. The dynamic pressure (K) around a spheroid as a function
of tangent angle (). Curves are shown for « = 0.9, 0.8 and 0.7
corresponding to Re = 1000, 2000 and 3000. Also shown for com-
parison is the pressure distribution around a sphere (o = 1.0) adjusted
to Re = 500.

distributions for raindrops becomes progressively larger
with distortion.

The shape was first calculated for d = 5 mm using
the aerodynamic pressure distribution based on an as-
sumed axis ratio of o’ = 0.7. In order to obtain a closed
drop shape the drag was also increased to balance the
weight using a pressure distribution given by A'K(y).
[For the shape adjusted pressure distribution we use
the notation A’ for the amplitude factor and «' for the
resultant axis ratio.] The amplitude factor for the 5
mm raindrop (A’ = 0.74) was practically the same as
that used for the sphere (A = 0.76). However, the aero-
dynamic pressure adjustment for shape (I',) was sig-
nificantly greater than unity so the axis ratio («’
= (.704) was appreciably lower than the result based
on the pressure distribution around a sphere («
= (0.746).
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Results for the axis ratio (") are given in Table 2
for d = 1 to 8 mm along with the raindrop size param-
eters (Re, Bo, We, C,,/Cy). Also shown are parameters
used for the shape calculations: the pressure adjust-
ments for shape (T',, I'y) and the amplitude factor (A").
The adjustment in the unseparated flow region (T,) is
based on potential flow around an oblate spheroid and
so is a function of only the axis ratio. The adjustment
in the wake (I';) is used to obtain a pressure drag over
an oblate spheroid which is an appropriate fraction of
the total drag using (12). The amplitude factor for the
pressure distribution (A’) is large for small raindrops
to compensate for the smaller value of Cg,/Cy. [A' is
the factor that increases the pressure drag to equal the
weight.] The value of A’ is monotonic decreasing with
increasing drop size as pressure drag becomes a larger
fraction of the drop weight. However, A’ becomes less
than unity for d > 2 mm because the pressure drag
over the resultant drop shape increases with distortion.

In these calculations the amplitude of the pressure
distribution was increased to balance the weight,
thereby artificially enhancing the distortion of a water
drop falling in air. This “increased drag” method
should provide a lower bound on axis ratios. An upper
bound on the axis ratio was calculated by retaining the
appropriate pressure drag but reducing the weight of
the drop. A balance was obtained by first reducing the
effective mass of the drop, a quantity proportional to
Ap, so that the ratio of the reduced mass to the effective
mass was the same as the ratio of the pressure drag to
the total drag. The inverse length for use in the di-
mensionless form of Laplace’s equation, became

b=[(Cs/C)Apg/a)'". (19)

In order to close the drop shape at the lower pole it
was still necessary to use an adjustable amplitude factor
for the shape corrected pressure distribution, A"K(y),
so that the pressure drag over the resultant drop shape
was the appropriate fraction of the total drag. [The
notation A” and «” is used for the “reduced weight”
method.] .

The results of the shape calculations for the upper
and lower bounds on the axis ratios are shown in Table

TABLE 2. Raindrop size parameters (Re, Bo, We, C,,/C,), and model axis ratios (a') with the pressure distribution
adjusted for drag and distortion (T, Iy, A').

d (mm) Re Bo We Cup/Cy T, r, A o
1.0 263 0.0334 0.0651 0.532 1.016 0.936 1.802 0.978
2.0 863 0.1338 0.352 0.734 1.071 0.939 1.180 0.917
3.0 1593 0.301 0.799 0.814 1.153 0.961 0.950 0.842
4.0 2335 0.535 1.288 0.851 1.256 0.997 0.833 0.765
5.0 3012 0.836 1.713 0.871 1.383 1.050 0.778 0.694
6.0 3625 1.204 2.069 0.884 1.535 1.110 0.749 0.628
7.0 4229 1.639 2414 0.894 1.711 1.168 0.723 0.566
8.0 4833 2.141 2.759 0.902 1.942 1.229 0.691 0.508




1 JUNE 1987

3. The constant (A”) used to adjust the pressure drag
over the resultant shape is nearly unity for small rain-
drops because no adjustment to the pressure drag is
required for a sphere to obtain a force balance with the
reduced weight. A stronger adjustment is needed for
larger raindrops to correct the pressure drag, based on
an oblate sphere, for the resultant asymmetric drop
shape. The corrections (T',, T',) to the pressure distri-
bution for the effect of drop shape for reduced weight
method are not shown since they differ only slightly
from those for the increased drag method shown in
Table 2.

The axis ratios in Table 3 for the upper bound (")
are higher than the lower bound (&) by Aa = 0.010 to
0.028 with A« increasing with raindrop diameter from
1 to 8 mm. The uncertainty in the model results can
be stated as o =~ a + da where da < 0.014. Thus, the
present model predicts axis ratios with about a 1% un-
certainty.

¢. Raindrop shape using an intermediate force method

In order to test the sensitivity of the model axis ratios
to the increased drag method and the decreased weight
method, we repeated calculations for all drop sizes us-
ing the mean of the distorting forces. We were partic-
ularly interested in seeing whether an axis ratio cal-
culated using a mean forcing () would be close to the
mean axis ratio for the upper and lower bounds (&
=0.5a' + 0.5«"). In addition, it would be more sat-
isfactory for comparisons of our result with other model
shapes (and with observed shapes) to use calculated
shape parameters for axis ratios appropriate for an in-
termediate forcing,.

In these calculations the intermediate values for the
distorting force were obtained by simply reducing the
effective weight of the drop to the mean value deter-
mined from the effective weight and the fraction of the
effective weight given by C,,/Cy,. To represent the in-
termediate forcing we used the factor ¢’ = 0.5 (1 + C,p/
C,) in (20) to obtain an inverse length given by

b=[c'Apg/o]'. (20)

An amplitude factor (T) was used with the shape cor-
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rected distribution, TK(y), to satisfy the lower bound-
ary condition.
The results of calculations using the mean forcing

“are shown in Table 3. In addition to the axis ratio for

the mean (&) and the mean forcing (a), values are given
for the shape correction factors (I'y, I'y) and the am-
plitude factor (7). Since the factors I', and T'; are shape
dependent, the values from the mean forcing in Table
3 are practically the same as those for the lower bound
in Table 2. Because of the intermediate forcing, the
amplitude factor for adjusting the pressure drag (T) is
intermediate to values for A’ and A” in Tables 2 and
3. The computed axis ratio « for the intermediate forc-
ing is essentially the same as the mean & with a max-
imum difference of 0.001. The difference between the
two estimates of the mean-axis ratio is much smaller
than the range between the upper and lower bounds
(Aw), since |a — &|/Aa < 0.1.

The computed shapes in the vertical plane of sym-
metry are shown to relative scale in Fig. 7 ford = 1 to
6 mm from the mean forcing method. The drop shapes
were placed with the center of mass at the origin of the
polar coordinate diagram with corresponding dashed
circles of radius a for each drop size. A common feature
of these shapes is that the curvature (1/R,) is positive
everywhere, and therefore the cross sections in Fig. 7
are equivalent to drop profiles. Another common fea-
ture is that the maximum in the curvature, most clearly
seen in the larger raindrops, lies just below the maxi-
mum horizontal chord.

5. Discussion of model results
a. Axis ratio comparisons

There are a considerable number of experimental
measurement of the axis ratio, the simplest quantitative
indicator of drop distortion. The data shown in Fig. 8
were obtained mostly from photographs of water drops
suspended by air in vertical wind tunnels. Although
care was used in obtaining the equilibrium axis ratios,
there remained some unavoidable scatter from tran-
sient distortions excited by the various means used to
stabilize the drop position and by pulsations in the

TABLE 3. Results from ramdrop model. Values shown are A” and o for the reduced weight method, o' for the increased drag method,
& for the mean [0.5(a” + a’)], and T, Ty, T’, and « for the mean forcing method.

d (mm) A o’ o T, Ty T o
1.0 0.975 0.988 0.978 0.983 1.012 0.937 1.392 0.983
2.0 0.898 0.938 0.917 0.928 1.061 0.940 1.042 0.928
3.0 0.808 0.867 0.842 0.854 1.141 0.961 0.882 0.853
40 0.744 0.792 0.765 0.779 1.241 0.998 0.790 0.778
5.0 0.711 0.722 0.694 0.708 1.359 1.051 0.746 0.708
6.0 0.694 0.657 0.628 0.642 1.498 1112 0.723 0.642
7.0 0.677 0.595 0.566 0.581 1.663 1.170 0.701 0.581
8.0 0.659 0.536 0.508 0.522 1.878 1.222 0.678 0.521
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FiG. 7. Computed shapes for d = 1, 2, 3, 4, 5 and 6 mm with
origin at center of mass. Shown for comparison are dashed circles of
diameter d divided into 45 degree sectors.

airflow. Transient distortions are evident from the
photographs of Magono (1954) for the two sizes near
d = 6 mm (these photos are more clearly reproduced
in McDonald, 1954b). The larger drop is less distorted
(d = 6.5 mm, a = 0.64) than the smaller drop (d = 6
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mm, « = 0.62), primarily because of changes in cur-
vature at the lower pole. The base of the larger drop
has a small extended region whereas the base of smaller
drop is excessively flattened. This variation in the cur-
vature at the lower pole for drops of nearly the same
size is suggestive of an oscillating base. In contrast the
photographs in Pruppacher and Beard (1970) do not
show obvious signs of oscillations.

The wind tunnel study of Brook and Latham (1968)
demonstrated that large amplitude oscillations can shift
the axis ratio, on the average, significantly above equi-
librium values. Theoretical support for these obser-
vations is found in the oscillation model studies, and
show amplitude and mode dependences in the shift
from equilibrium axis ratios (e.g., Beard, 1984). Thus,
it is unfeasible to obtain a reliable fit to the experimental
measurements shown in Fig. 8 because of likely bias
from oscillations. However, the data of Pruppacher and
Beard for very large drops should probably be given
the more weight than Pruppacher and Pitter since the
scatter is significantly smaller. The former measure-
ments were made without the use of an upstream grid
to stabilize the horizontal position of the drops, and
thus were free of turbulence known to induce large
amplitude oscillations.

The measurements of Best were made using an 11
meter fall column (see, Lane and Green, 1956). This
distance is sufficient to achieve terminal velocity to
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FiG. 8. Experimental and model results for axis ratio () as a function of drop size (d). The dashed lines show
present model results for upper and lower bounds.
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within about 3% (Beard, 1977). However, the response
time for equilibrium shape and for damping of oscil-
lations, induced by the dripper, is of the same order as
the fall time. For example, the fundamental mode for
a 5 mm diameter water drop only decays to 40% of its
initial amplitude when accelerating from rest to 11
meters. Thus, these fall column data also show scatter
due to oscillations. [The scatter is especially evident
for the two measurements near d = 5 mm.]

In spite of the scatter in the measurements, it is clear
from Fig. 8 that the mean forcing result from the new
model follows the trend in measurements of the equi-
librium axis ratio even for extremely large drops. In
contrast, the perturbation model of Pruppacher and
Pitter (1971) appears to overestimate the axis ratio for
very large drops, and possibly underestimate the axis
ratio near d = 4 mm. If we discount the two highest
axis ratios from Pruppacher and Pitter for d > 7 mm
then there is no experimental support for their theo-
retical result for very large drops. It is not really sur-
prising that the perturbation calculations should di-
verge from reality at large distortion.

The new model results appear to be consistent with
an empirical fit recommended by Clift et al. (1978) for
drops falling in air. Their formula is based on data for
drops of various liquids obtained by wind tunnel mea-
surements reported in Garner and Lane (1959), and
the fall column measurements of Reinhart (1964).
[Data were not included from the more recent wind
tunnel measurements of Pruppacher and Beard (1970)
and Pruppacher and Pitter (1971).] The predicted axis
ratios from the formula of Clift et al. are similar to the
mean found in Garner and Lane. However, the original
data in Garner and Lane and in Reinhart show con-
siderable scatter with mean axis ratios consistently
lower than the data for large water drops. Oscillations
were noted in both papers, and the upstream grid in
the wind tunnel apparently caused persistent oscilla-
tions since axis ratios had to be obtained from the av-
erage of 20 to 30 measurements at one size. Thus, there
seems to be compensating biases in these measurements
away from the equilibrium axis ratio for water drops:
1) higher axis ratios from the average of oscillating
drops, and 2) lower axis ratios from the average over
physical properties. With the assumption of roughly
compensating errors from oscillations and physical
property effects we would conclude that the empirical
fit of Clift et al. is consistent with the new model results
for equilibrium axis ratios. This possible support for
the new model is worth noting because it originates
from data other than the wind tunnel measurements
shown on Fig. 8.

b. Shape comparisons

A more refined assessment of model results can be
obtained by a direct comparison of shapes. For ex-
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ample, the raindrop shape for d = 5 mm with o = 0.708
is shown in Fig. 9 (solid line) for comparison with other
results for 5 mm drops: the sessile drop with o = 0.67
(small dashes), the perturbation shape from the aero-
dynamic model of Pruppacher and Pitter with o = 0.70
(lighter solid line) and the oblate distortion from the
hydrostatic models of Green with o = 0.71 (medium
dashes). The drops shapes were placed with the center
of mass at the origin of the polar coordinate diagram
except for the shape from Pruppacher and Pitter which
is a perturbation on the 5 mm sphere (large dashes)
centered at the origin.

Although axis ratios are similar for these models,
distinct shape differences are evident. In particular, the
oblate shape is the only one that is symmetric about
the horizontal plane through the center of mass with
a maximum curvature at the side where the tangent
angle is ¥ = 90°. The sessile drop model is unique for
its flat base with a maximum curvature at the edge of
the base. The model of Pruppacher and Pitter is the
only doubly curved surface and has a broad region of
maximum curvature between the side and the base.
When this shape is seen in profile, rather than as a
cross section, the base appears flat like a sessile drop.
The new model is a singly curved surface with a
rounded base and a distinct maximum in curvature
below the 90° tangent (see also Fig. 7). Shape features
of the new model are closest to those observed for water
drops supported in the air stream of a laminar wind
tunnel (see, Pruppacher and Beard, 1970).

FI1G. 9. Comparison of drop cross sections for d = 5 mm. The
present result for a sessile drop is distinguished by a flat base (small
dashes), whereas the present result for the mean forcing from the
aerodynamic and hydrostatic pressures has a rounded base (solid
line). The shape with a recurved base is the perturbation result of
Pruppacher and Pitter (lighter solid line). Shown for comparison is
an ellipse of axis ratio 0.71 (medium dashes), and circles (large dashes)
scaled to 2.5 and 5 mm diameter with 45 degree sectors.



1520

The various shapes in Fig. 9 reflect the underlying
assumptions of the models. The hydrostatic models of
Green and Beard have an oblate shape constraint and
therefore lack the asymmetry found in the other models
and observed for falling water drops. Of the three
asymmetric results shown in Fig. 9, the sessile drop
model is the most unrealistic representation of raindrop
shape because the net force from the hydrostatic pres-
sure is counteracted by a horizontal support. The height
is diminished by the flat base resulting in axis ratios
that are generally too small.

The model of Pruppacher and Pitter is based on a
linearized form of Laplace’s equation appropriate only
for small distortion of a spherical drop (after Imai,
1953; Savic, 1953). The result is an axisymmetric per-
turbation produced by the aerodynamic pressure dis-
tribution for a sphere. The indentation at the base is a
consequence of a large perturbation, seen to be about
30% of the radius in Fig. 9, from a response to the
maximum external pressure in the region around the
upstream stagnation point. It is not surprising to find
a region of negative curvature in a perturbation model
of drop shape with such a large amplitude distortion.
Similar “dimples™ are obtained using large amplitudes
for the Rayleigh modes of oscillating drops [e.g., see
Fig. 3 in Foote (1973) and Fig. 1 in Beard (1984)].

Model shapes for d = S mm are shown in Fig. 10’
for comparison with profiles from drop photos in Ma-
gono (1954) for d = 4.8 mm (a = 0.76) and Pruppacher
and Beard (1970) for d = 5.3 (@ = 0.71). Digitized
photos and a graphics computer were used to spline
the edges. Since the axis ratio for the drop from Magono
was higher than 0.71, the drop was uniformly stretched
to obtain o = 0.71. The adjustment did not affect par-
ticular details of this shape as characterized by the side-
to-side asymmetry or the relative location of maxima
and minima in curvature. Although both empirical
profiles are slightly asymmetric with respect to the z-
axis, the occurrence of the maxima in curvature in the
lower part of the drops is similar to the profile from

MAGONO
(PHOTO)

PRUP. & BEARD
(PHOTO)

BEARD & CHUANG
(MODEL)

PRUP. & PITTER
(MODEL)

FI1G. 10. Comparison of drop profiles (taken from photos) with
model results for d = 5 mm.
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the new model. A superposition of the profiles shows
maximum differences between the present model and
either of the empirical shapes of only twice the width
of the lines seen in Fig. 10. It is clear from Fig. 10 that
the new model provides a noticeable improvement over
the currently accepted model shape of Pruppacher and
Pitter.

Comparison with photos at smaller sizes (Magono,
d = 2.8 mm; Pruppacher and Beard, d = 2.7, 3.4 mm)
also indicates close agreement with present model. For
larger sizes (Magono, d = 6.0, 6.5 mm; Pruppacher
and Beard, d = 5.8, 7.4, 8.0 mm) the drop photos show
bases noticeably flatter than the present model, al-
though curvature of the bases appears to remain pos-
itive. In several photos the top is rounder, having a
higher curvature, than the model. These variations in
the photos are suggestive of oscillations (as noted for
Magono in the first paragraph of section 5). If we as-
sume that the shapes in the photos of larger drops are
not grossly affected by oscillations, then the model for
d > 6 mm underestimates the flattening of the base
and, possibly, the curvature at the top.

A quantitative and global comparison of shapes can
be.made by considering the model shape coeflicients
given in Table 4 from a cosine series fit to the model
results. A similar table appears in Pruppacher and Pitter
and provides not only a means of comparison but a
way to regenerate model shapes using

r=a[l + 3, ¢, cos(nb)] 24

The undistorted sphere (r = q) is located at the center
of mass of the drop. '

Comparisons can be made by considering differences
between shape coefficients, Ac, = ¢, — ¢},. Since the
shape coefficients are the amplitudes for each cosnf
contribution, the total difference between the two
shapes at any particular angle cannot be greater than
the sum of the absolute values of the differences,

2 |Acy). [The sum of the differences, > Ac,, is just the

difference at § = 0.] The result for 2 |Ac,|, using ¢,
from-the present model and ¢, from the model of
Pruppacher and Pitter, is shown in the first column in
Table 5. [The coefficients ¢, and ¢,o were excluded since
they are zero in Pruppacher and Pitter.] This measure -
of discrepancy between the two models may be inter-
preted as the difference in the perturbations expressed
as a percent of the spherical radius. For comparison,
a measure of the perturbation, 2 |c,|, from the present
model (in percent of the spherical radius) is given in
the second column. Therefore, 2 |Ac,|/Z |c,| provides
a more sensitive measure of discrepancy between two
shapes (given in the third column), since this quantity
shows the discrepancy between the two models ex-
pressed as a percent of the perturbation rather than
the spherical radius.

From the comparisons in Table 5 we conclude that
there are considerable differences in shape for large
raindrops between the new model and the perturbation



1 JUNE 1987 KENNETH V. BEARD AND CATHERINE CHUANG 1521
TABLE 4. Coefficients from cosine series fit to the computed shapes using the mean forcing for d = 0.5 to 6.0 mm.
The shapes are obtained from the polar curve: r = a[l + Z ¢, cos(nf)].
Shape coefficients [¢, X 10%]

d(mm)  n=0 1 2 3 4 5 6 7 8 9 10
20 —131 —-120 -376 —96 -4 15 5 0 -2 0 1
2.5 -201 -172 —-567 —-137 3 29 8 -2 -4 0 1
3.0 —-282 -230 -779 -175 21 46 11 —6 -7 0 3
35 —369 —285 -998 —-207 48 68 13 -13 -10 0 5
4.0 —458 —335 —1211 —227 83 89 12 =21 —-13 1 8
4.5 —549 -377 -~1421 -240 126 110 - 9 =31 —16 4 11
50 - —-644 —416 -1629 —246 176 131 2 —44 -18 9 14
5.5 -742 —454 —1837 ~244 234 150 -7 -58 -19 15 19
6.0 -840 —480 —-2034 -237 297 166 =21 =72 -19 24 23

model. Column 1 shows that the discrepancy is greater
than about 5% of the spherical radius for drops larger
than 4 mm diameter, and that the differences in the
shape perturbations (column 3)is greater than 20% for
these larger sizes. For small raindrops the discrepancy
between the models decreases to a negligible percentage
of the spherical radius (column 1) as the perturbation
decreases (column 2). The errors in the perturbation
model increase with perturbation size, becoming larger
than 10% for perturbations larger than 10%.

The comparison also suggests that the shapes pre-
dicted by the two models converge for small raindrops.
However, good convergence with the perturbation
model of Pruppacher and Pitter was obtained only for
the reduced weight method which yielded an upper
bound on the axis ratio. (Comparison at d = 1 mm
shown in Table 5 is based on the reduced weight
method, whereas at other sizes the comparison is for
the mean forcing method.) We note from Fig. 8 that
the axis ratios of the perturbation model and the upper
bound also converge below d = 2 mm. This apparent
agreement between models at small distortion is con-
sistent with Savic’s finding (based on the linearized
form of Laplace’s equation) that the perturbation shape
depends only on the aerodynamic forcing. The reduced
weight method leaves the aerodynamic forcing unal-
tered and equivalent to the perturbation model. Further
limitations for modeling the shape of small raindrops
from the use of the steady state pressure distribution
of Fage is discussed in sections 3b and Se.

TABLE 5. Comparison of shape coefficients from new model result
(c,) with Pruppacher and Pitter (¢}) for d = 1.0 to 6.0 mm. Deviations
in percent are computed from Ac, = ¢, — c),.

d (mm) Z}Ac Zlea PALVATDI A
1.0 0.05 1.0 5.0
2.0 0.7 6.3 114
3.0 1.8 13.3 13.3
4.0 438 22.1 22.7
5.0 8.6 29.0 29.6
6.0 13.0 37.1 35.0

c¢. Dimples in the equilibrium shape of large raindrops?

As an additional check on the shape of a large rain-
drop, we tested for the possible existence of a dimple
in the base. The complete form of Laplace’s equation
(10) was used to determine the external pressure dis-
tribution required to produce a dimple using f(X, Z)
and dS/d¢ from the perturbation model result of
Pruppacher and Pitter for d = 5 mm (shown in Fig.
10). The computed external pressure distribution was
of very large amplitude with a difference of Ax = 2.3
between the lower and upper poles. If we assumed a
rear stagnation pressure of x ~ 0.5, consistent with
Figs. 3, 5 and 6, the front stagnation pressure would
be « =~ 1.8. Thus, an unrealistically high base pressure
is required to reproduce the perturbation dimple for a
5 mm equilibrium shape.

Photographs of drops supported by the air stream
in a laminar wind tunnel show that drops as large as
d = 8 mm have a rounded base with positive curvature
(Pruppacher and Beard, 1970). In fact, essentially all
photographs of water drops suspended in wind tunnels
show a positive curvature at the base (Magono, 1954;
Cotton and Gokhale, 1967; Spengler and Gokhale,
1973). One notable exception is a photograph in Koe-
nig (1965) of a dimpled water drop of extreme size
(having a horizontal dimension of 13 mm). A dimple
at the base may be a feature of oscillating drops since
photographic sequences show that the base tends to
flatten at maximum distortion (Nelson and Gokhale,
1972; Musgrove and Brook, 1975). Although we do
not doubt that indentations can occur in drops, it seems
unlikely that they are a consequence of equilibrium
forces on raindrops.

d. Possible effects of internal circulation

Circulation induced by tangential stress from the air
flow around a falling drop can contribute to the equi-
librium shape only through alterations of the normal
stresses in Laplace’s equation, i.e., through changes in
the aerodynamic pressure (p,) from the moving
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boundary, and from the addition of a hydrodynamic
pressure from internal circulation. Viscous flow anal-
ysis demonstrates that alterations from internal cir-
culation in the pressure distribution and drag are of
the order of the viscosity ratio, about 0.02 for water
drops in air (Happel and Brenner, 1965). At moderately
large Reynolds numbers LeClair et al. (1972) showed
that the computed normal and tangential components
of the drag for rigid and liquid spheres were altered by
less than 1% from the effect of a moving boundary for
a water sphere in air. In addition, the local value of p,
was reduced by only a few percent at the largest Rey-
nolds number calculated (Re = 300, d = 1.1 mm).
These findings are consistent with empirical evidence
that the drag on small water drops falling in air is es-
sentially the same as a rigid sphere of the same density.
For larger (deformable) drops the best drag formula-
tions are based on three dimensionless groups that, by
dimensional analysis, apply only to noncirculating
drops (see Beard, 1976). Thus, we can assume that the
aerodynamic pressure distribution around a large rain-
drop is essentially unaffected by the motion of the sur-
face, that is, p, is well represented by the distribution
around a rigid body of the same shape and Reynolds
number.

Although the hydrodynamic pressure distribution
from internal circulation is unknown at the Reynolds
number for raindrops, scale analysis based on observed
circulation velocities suggests that its magnitude is sig-
nificant compared to the aerodynamic pressure. [The
Weber number based on the maximum surface velocity
for large water drops in air (LeClair et al., 1972) is
about 30% of the Weber number based on the corre-
sponding maximum airflow.] The hydrodynamic pres-
sure distribution should be similar in shape to the
aerodynamic pressure distribution, because the external
and internal velocities are coupled directly through the
stress boundary condition. Thus, as a first approxi-
mation, the effect of internal circulation can be in-
cluded in'Laplace’s equation by a net dynamic pressure
distribution with an amplitude somewhat reduced from
D, by the effect of internal circulation. This type of
adjustment would reduce the distortion in a pertur-
bation model of drop shape since it would reduce the
aerodynamic forcing. However, it would not alter the
drop shape in the present model, because the amplitude
of the distribution is ultimately determined by the par-
ticular balance between weight and pressure drag (i.e.,
the increase drag, reduce weight or mean forcing meth-
ods). Thus, the present model is only sensitive to
changes in the form of the dynamic pressure distribu-
tion. Possible variations from the form assumed for p,
due to internal circulation are unknown at large Rey-
nolds numbers even for the simple geometry of liquid
spheres. Thus, calculations on the effect of internal cir-
culation on drop shape using the present model must
await additional information on the hydrodynamic
pressure distribution within drops.
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6. Conclusions

The model computations of the lower and upper
bounds on axis ratio were based on changes in ampli-
tude of the external pressure distribution without a
change in form. One method increased in pressure drag
to balance drop weight and the other held the pressure
drag constant and reduced the weight. Actual axis ratio
should be intermediate to these results since one
method artificially increases distorting force whereas
the other artificially decreases it. The mean value of
the lower and upper bounds was shown to produce the
same axis ratios as the mean forcing method (whereby
the ‘weight reduction is only half the amount of the
upper bound method). Therefore, it is thought that the
axis ratio of falling drops having a natural balance be-
tween the total drag and the weight would differ only
imperceptible from our model results (excluding in-
accuracies from using an approximate pressure distri-
bution). The uncertainty in the model axis ratios is
relatively small when expressed as a = a = da where
oa =~ 0.01. )

The remaining theoretical uncertainties in the model
is a matter of speculation on the magnitude of errors
from the approximate nature of the dynamic pressure
distribution. First, the hydrodynamic pressure from
internal circulation has not been explicitly included in
the model, but it is thought to play only a minor role
in determining the form of the dynamic pressure dis-
tribution. Thus, the uncertainty in model drop shape
from excluding internal circulation should be relatively
small, since drop shape is insensitive to minor changes
in the form of the pressure distribution. [For example,
we found only a slight change in shape when the pres-
sure distribution was altered from a sphere to an oblate
spheroid—compare the 5 mm drop shapes in Figs. 4
and 7, and the corresponding empirical pressure dis-
tributions in Fig. 5 for @ = 1 and 0.71.]

Second, the aerodynamic pressure has been approx-
imated by the measured distribution around a sphere
at high Reynolds number after using a potential flow
adjustment for the symmetric oblate distortion in the
unseparated flow region and a pressure drag adjustment
in the wake. Uncertainty from the latter adjustment
should be small because the drop shape would be in-
sensitive to the minor pressure variations (and uncer-
tainties) in the wake as revealed by Fig. 3.

The potential flow for the symmetric oblate distor-
tion is a first step in the geometric correction to the
aerodynamic pressure. An adjustment using potential
flow for the asymmetric computed shape should result
in a somewhat better approximation for the shape of
very large raindrop. The shape might be expected to
change in the same sense as the change for symmetric
oblate correction to the sphere, that is, yield a flatter
base. Thus, we expect a small systematic bias in our
shapes (towards a rounder base) for d > 5 mm because
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of the approximate potential flow adjustment for un-
separated flow. However, the model axis ratios are not
expected to be affected appreciably, since good esti-
mates of axis ratio are obtainable for sizes beyond where
models predict accurate shapes (e.g., consider the oblate
spheroid models for d = 2-4 mm.] In fact, the model
axis ratios appear to provide the best approximation
to date for raindrops sizes up to d = 9 mm, because of
the good agreement with wind tunnel observations.

The model shapes closely fit the profiles of rather
large raindrops (d = 5 mm) with their distinctive
asymmetric shapes. The shape coefficients are thought
to best apply, however, to raindrops in the range from
d =~ 2 to 6 mm. At smaller sizes the results are based
on the pressure distribution of Fage which is not as
appropriate as the numerical results for steady state
flow around a sphere. The axis ratios and shape coef-
ficient for raindrop diameters less than about 1.3 mm
would be improved if based on the distributions LeClair
et al. (1970) as shown in Fig. 3 for Re = 400. We plan
to compare our model with the perturbation model
using the distributions of LeClair in the near future.
We will determine how the present model results for
the mean forcing (applicable for 4 = 2 mm) merges
with the reduced weight and perturbation results (ap-
plicable for 4 < 1 mm). At sizés larger than about 6
mm diameter the empirical shapes have a flatter base
than the model shapes. As a consequence of the above
restrictions for the model shapes, the coefficients in
Table 5 are given only for the range d = 2-6 mm:

It is of interest to note that the axis ratios in the
present study for large raindrops are significantly higher
than those used to fit data in two recent radar polar-
ization studies (Caylor and Illingworth, 1986; Sachi-
dananda and Zrni¢, 1986). For example, the model
value at 4 = 6 mm of « = 0.64 is significantly higher
than either o ~ 0.55 inferred from the aircraft obser-
vations of drop shape by Cooper et al. (1983) or «
= 0.60 observed by Chandrasekar et al. (1984). The
present finding for axis ratios does not support the idea
in the above radar studies that high differential reflec-
tivities originate from raindrop equilibrium shapes,
because it is unlikely that there are enough raindrops
larger than d = 5 mm in the size distributions to yield
radar average axis ratios of less than 0.7. Instead, we
concur with Chandrasekar et al. that such large dis-
tortions should be attributed to raindrops containing
unmelted ice rather than equilibrium shapes.

In the future we will extend our model by using po-
tential flow about the asymmetric shape to refine the
effects of drop shape on aerodynamic pressure distri-
bution. After this improvement it should not be difficult
to obtain the potential for the electric stress on a dis-
torted drop and begin to model the effects of fields and
charges on raindrop shape. In addition, calculations of
the boundary layer will provide an external flow that
can be used to drive internal circulation. It is hoped
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that our model for large amplitude distortions can form
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the basis for additional theoretical studies on forces
that are thought to affect raindrop shape.
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APPENDIX

List of Symbols

dimensionless drop radius [=ba]

radius of equivalent volume sphere [=d/2]

iniverse length intrinsic to Laplace’s equation
[=(Apg/0)'? = a™' Bo'?]

Bond number [=Apga?/q]

dimensionless radius of curvature at the
upper pole [=bR,]

total drag coefficient

pressure drag coefficient

diameter of equivalent volume sphere

acceleration of gravity

distance from upper to lower pole

aerodynamic pressure

D, D;  external pressure, internal pressure

R, principal radius of curvature (radius of

curvature of drop in x-z plane)

>0 Q Q qgj SR

S

R, principal radius of curvature (radius of
curvature of drop orthogonal to R))

R, radius of curvature at top (upper pole)

Re Reynolds number [=pdV/n, where 7 is the
dynamic viscosity of air]

S dimensionless arc length measured from
upper pole [=bs]

V terminal fall velocity

We  Weber number [paV?/20]

X dimensionless x-coordinate [=bx]

Z dimensionless z-coordinate [=bz]

« axis ratio (ratio of height to maximum
horizontal chord)

a', o” lower, upper bound on axis ratio [Aa = a”
—a']

a, @  mean axis ratio [@ = 0.5(a’ + a")], mean
forcing axis ratio («)

r, potential flow adjustment for distortion
around oblate spheroid

Ty, pressure drag adjustment for distortion
around oblate spheroid

Ap pressure difference across drop surface [=p;
- pe]

Ap density difference between water and air

0 polar angle measured from bottom (lower
pole)

k(YY) dimenzsionless pressure around sphere [=2p,/
PVl

K(y) dimensionless pressure adjusted for
distortion around oblate spheroid

A amplitude factor for adjusting pressure drag

with k()
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A, A amplitude factors for adjusting pressure drag
with K(¥) [lower, upper bound]

density of air

surface tension of water in air

amplitude factor for adjusting the drag with
K(y) [mean forcing)

angle between tangent in x-z plane and
horizontal at upper pole

angle between tangent to drop surface and
horizontal at lower pole [=7 — ¢].
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