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ABSTRACT

A second-order turbulence model is used to study the stable boundary layer (SBL). Over a horizontal
surface, a constant surface cooling rate drives the SBL to a steady state within a few hours. Parameteriza-
tions are developed for eddy diffusivities, the kinetic energy dissipation rate and the geostrophic drag law
in this idealized case. Over a sloped surface, a constant cooling rate produces a quasi-steady-state SBL in
which some flow properties continue to vary but 4(| f|/#«L)} becomes constant; however, this constant is
a function of the wind direction relative to the slope and the baroclinity, as measured by the cooling rate
times the slope. Calculated eddy diffusivity profiles in the baroclinic (sloping terrain) case compare well with
recent data from Antarctica. If a surface energy budget is used rather than a constant cooling rate, the SBL
does not reach a steady state even over a horizontal surface; the nondimensional height slowly decays.
We conclude that equilibrium models of the SBL are likely to be much less applicable to the real world
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than are their counterparts for the convective boundary layer.

1. Introduction

The atmospheric boundary layer is often statically
stable. Over land, a stable boundary layer (SBL)
develops almost every night and in winter it frequently
also exists during the day. Over water, an SBL is
commonplace at high latitudes and over cold currents.

In this numerical study we describe the broad charac-
teristics of an SBL which, although somewhat idealized,
has many of the important features of the real-world
case. We examine the influences of terrain slope, the
feedback between the surface energy budget and the
atmosphere, and the effect of different surfaces. A
principal goal is to assess the applicability of the ideal-
izations often made in planetary boundary layer studies
(e.g., quasi-steady state, barotropic flow) to the stably
stratified case.

There have been several numerical studies of the
SBL, but none has adequately addressed the question
of the existence of a steady state. Some claimed it did
not exist; others claimed it could occur under the
proper cooling conditions; still others simply assumed
its existence and examined its structure.

Deardorff (1972) simulated the time evolution of a
set of SBL observations using height- and stability-
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dependent eddy diffusivities. He concluded that the
depth % of the SBL was time-dependent and could not
be parameterized by a diagnostic equation.

Businger and Arya (1974), also using height-
dependent and stability-dependent eddy diffusivities,
solved directly for the steady-state structure, and
found that % obeyed the diagnostic equation of Zilitin-
kevich (1972); however, they obtained no information
on the approach to steady state.

Using a model in which the eddy diffusivities were
parameterized in terms of the predicted turbulent
energy, Delage (1974) found the SBL. approached
steady state after several hours with a realistic decaying
cooling rate. He concluded that % grew while the
inertial velocity overshoot just above the boundary
layer was growing and hence the velocity shear across
the SBL was increasing, but when the shear decreased
k stopped growing and steady state was reached.

Wyngaard (1975) integrated a second-order turbu-
lence numerical model and demonstrated that the SBL
could approach steady state after 2-8 h, depending on
the specified constant cooling rate at 1 m. He also found
that % obeyed Zilitinkevich’s similarity prediction.

In this study, we simplify the turbulence model of
Wyngaard (1975; hereafter called W75) and reduce it
to a means of calculating eddy diffusivities for heat and
momentum. Because the closure approximations in
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second-order models remain somewhat controversial,
we have chosen not to focus on the details of the
calculated SBL structure, which can be somewhat
model-dependent. Instead, our emphasis is on the gross
dynamics of the SBL and the influences of real-world
features such as sloping terrain and a variable cooling
rate.

2. The model

We consider an infinite, flat, but sloped (at a small
angle 8 to the horizontal) surface of uniform roughness
and temperature. We take the boundary layer thickness
to be constant along the slope, and allow mean
quantities to vary only in the direction normal to the
surface (z) and in time. Following Lumley and Panofsky
(1964), we denote the temperature, pressure and density
values for an undisturbed, adiabatic atmosphere with a
subscript zero. We take these as the values existing
throughout the SBL at transition. Thus, for exam_ple,
mean temperature 7 is written as T0+T' where T is
the deviation from the adiabatic state. We choose the
x and y directions parallel to the surface, and write the
Boussinesq equations for mean wind components U
and V in the x and y directions as

oy 1 0P g _ a_
—=fV—————T1"|8| cosy——uw, (1)
ot Po ox 0 0%

av 1 6P ¢ a__
—=—fU—— —+—T"|8| siny——ww. (2)
ot po 0y Ty 02

Here v is the angle, measured counterclockwise, from
the fall-line vector (the vector perpendicular to the
contour lines and pointing down the slope) to the x axis.
We assume the pressure gradients in (1) and (2) are
independent of z, and define the usual geostrophic wind
components U, and V, by

pofUs=—0P'/3y, pofV,=03P'/dx.

For stable conditions 7" is negative and produces a
katabatic (downslope) acceleration. Thus the terrain-
slope terms in (1) and (2), when added to the pressure-
gradient terms, give an effective pressure gradient that
depends on z; a similar situation exists in the baroclinic,
unsloped case with a horizontal temperature gradient.

The existence of a height-dependent effective pressure
gradient in the SBL over sloped terrain is well-known.
It is an important component of Lettau’s (1967)
explanation of the nocturnal jet over the Great Plains.
Also, it must be considered in any description of winds
over Antarctic slopes (e.g.; Ball, 1960; Dalrymple ¢ dl.,

1966 ; Mahrt and Schwerdtfeger, 1970) or over the slopes

of Greenland (Schwerdtfeger, 1972).
The mean potential temperature equation is

30  dwb .
—=— 3)
a 0z .
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Our lower boundary condition on potential tempera-
ture is provided by either a constant cooling rate
(3©/at) or a surface energy budget. In Section 3 we
follow W75 and specify the coohng rate at s=1 m.
Later, the ground temperature T, is calculated using
the surface energy budget with one subsoil grid point,
ie.,

aT, K
"'(;= C,'[FL(0) —0T'*—piC Q0] — 1.18w(T;—T,), (4)

where F|(0) is the magnitude of the (specified) down-
ward longwave radiative flux at the surface, 7, the
subsoil temperature, pC;Qo the surface heat flux, w the
angular velocity-of the earth and

AC,\ %5 .
C,,=O.95( ) (5)
2w

with A and C, the soil thermal conductivity and soil heat
capacity per unit volume. Egs. (4) and (5) were
developed by Bhumralkar (1975) and Blackadar (1976)
and tested by Deardorff (1978). The surface fluxes of
heat ‘and momentum are calculated using transfer
coefficients (Sommeria, 1976). !

The turbulence equations are those discussed in
W15, with the following changes:

1) The time derivatives are neglected (see Appendix
B) because they are smaller than the dominant terms.
For example, in the turbulent kinetic energy (¢%/2)
equation the ratio of the production (~¢3/l) and the
time derivative (~g?/7) terms is of order gr/I, where
is a characteristic integral scale (Tennekes and Lumley,
1972) and 7 a time scale characteristic of the SBL
evolution. Taking ¢=~0.3 ms™, /= 10m and r=3X10%s,
we find g7/l=100, so that the time change term can be
neglected. Examination of the other turbulence second-
moment equations indicates that this estimate also
applies there.

2) The Coriolis terms are also neglected in com-
parison to other terms. In the turbulent velocity
covariance equations, for example, the ratio of shear
production terms (~g¢3/l) to Coriolis terms (~ fg?) is
of order g/ (fl). For ¢=0.3 m s, /=10 m and f~=~10~*

s, we find ¢/(fl)=300 so the Coriolis terms are

negligible. -
3) Triple correlations are ignored because surface-

'layer data show they are small under stable conditions

{Wyngaard and Coté, 1971).

4) We parameterize the rate of dissipation of
turbulent kinetic energy per unit mass as e« ¢*//, where
the turbulent length scale l=3(1+42/I5)~. This is an
interpolation between the limits at the wall (J~z) and
at the very stable outer ‘edge of the SBL (I=/p). We
assume that the limiting scale Ip of the energy-
containing eddies in a stably stratified environment is
determined by the balance between inertia forces and
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TasLE 1. Comparison of steady-state values of boundary-layer parameters of the current model and of
Wyngaard (1975) for different cooling rates. G=10m s™, zo=1 cm.

Cooling rate

0.2K h™? 0.5K h! 1Kh 2K h
Current  Wyngaard Current Wyngaard Current Wyngaard Current Wyngaard
model (1975) model (1975) model (1975) model (1975)
g (ms71) 0.25 0.23 0.21 0.20 0.18 0.16 0.15 0.13
Qo (Kms™) —0.0082 —0.0088 —-0.015 -0.013 —0.020 —0.016 —0.024 —0.018
L (m) 150 120 46 52 . 25 25 11 1u
a (deg) 28 33 35 39 38 4 42 49
k (m) 220 130 120 70 85 48 50 25
d 0.36 0.24 0.39 0.22 0.40 0.24 0.39 0.21
h/L 1.5 1.1 2.6 1.4 34 2.0 4.5 2.3
wus/ (| f| L) ’ 17 19 45 38 74 67 130 120

buoyancy forces (Businger and Arya, 1974; Delage,
1974; Zeman and Tennekes, 1977). Requiring these
intertia forces (~o*/I) and buoyant forces [~ (g/To)
X (8©/82)l5] to be of the same order gives

2 2

It =T (©)
14 30 wp? ’
Ty 9z

where wp=[(g/T)(00/32) ]} is the Brunt-Viisili fre-
quency. We used /p=Co./wp, with constant C=1.69
chosen to give critical flux and gradient Richardson
numbers near 0.20 and 0.25, respectively, in agreement
with W75.

While the transformation to coordinates in the plane
of the slope introduces new terms in the turbulence
moment equations, our small-slope assumption insures
that these new terms are negligible. The turbulence
equations are listed in Appendix B, and Appendix C
describes our numerical techniques.

3. Constant cooling rate results
a. Steady-state, horizontal surface

A truly steady-state SBL, in which all parameters are
independent of time, can be established by balancing
the cooling through turbulent heat flux divergence and
the warming through mean advection. In the simplest
such case, with mean quantities varying only with x
and z, and negligible radiative flux divergence and mean
vertical velocity, the mean potential temperature
equation is

30 00 9__
—=0=—U———ud. )
at ox 0z

This situation could be found in flow over cooler water,
for example.

We will use a less stringent definition of “steady
state,” one which allows @ to decrease with time but
requires the other SBL parameters to be time-

independent. This can be approached at night over
land when the surface cools. The W75 study found that

" if the surface cooling rate was constant, the mean

potential temperature equation (3) throughout the
SBL behaved approximately as

—= —— ~-—=constant

8)

and the important parameters of the SBL approached
time-independence. W75 found this quasi-steady-state
structure in 2-8 h, with the shorter times for the larger
cooling rates.

Examination of the terms of the surface energy
budget (4) indicates the requirements for a constant
near-surface cooling rate. Our results and those of W73
indicate that Qo is approximately constant after a few
hours with a constant cooling rate. Furthermore, the
subsoil flux to the surface, which is proportional to
(Ty~T,), must increase with time as the magnitude of
(T;~—T,) increases. To balance these heat inputs the
net radiative deficit of the surface [¢7y*— F|(0)] must
increase with time, so the downward radiative flux at
the surface F|(0) must strongly decrease; this can be
caused by the breakup of a cloud layer or the advection
of drier air aloft. Thus, naturally occurring instances of
a persistent constant cooling rate seem unlikely but not
impossible.

Nonetheless, a constant cooling rate conveniently
produces an idealized, steady-state SBL for study. We
generated five such cases with our model by using
cooling rates of 0.2, 0.5, 1,2 and 4 K h™.

Since our initial conditions are different from those
of W75, we will not compare the detailed temporal
behavior of the two models. Instead, the steady states
for the same cooling rates are compared in Table 1,
which shows that the models give quite similar results
for most properties.

The steady-state values for the friction velocity u4
and the Monin-Obukhov length L are nearly identical.
Thus, for the same cooling rates the two models give
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Fic. 1. Dimensionless wind shear ¢m (V) and temperature
gradient ¢5 (A) for a current model run at %/L=3.4. Curves
are parameterizations of Kansas results (Businger et al., 1971).

~

virtually identical stabilities as

p=1y/(| f|L).

The models differ most in their equilibrium boundary
layer depths. Our model predicts values of depth 4 and
the parameter d=#(| f|/u,L)}? about twice those of
Wis.

The steady-state wvertical profiles of turbulence
quantities from our model are so similar to those of W75
that they will not be presented here.

Fig. 1 compares calculated surface-layer profiles of
nondimensional mean wind shear ¢, and nondimen-
sional temperature gradient ¢, with the Kansas data
(Businger et al., 1971). The agreement of ¢ is excellent
and that of ¢,, is comparable with that found in model
calculations by Mellor (1973), Lewellen and Teske
(1973) and W75.

Fig. 2 shows the evolution of the vertical profiles of
© and w0 for the 1 K h™! cooling rate. The w8 profiles
have a slight curvature and the maximum cooling rate
is near the ground. Note that the cooling between ¢=5h
and ¢{=10 h at 85 m is about half that at the surface.
Thus, while (8) is only crudely satisfied, the SBL is
essentially in a steady state after 5 h.

In this study, as in W75, % is taken as the height at
which the stress is 59, of its surface value. This defini-
tion gives =85 m at 10 h, whereas the potential tem-
perature profile would indicate a greater /; however,
the @ profile is a product of the integrated history of w6
and as Fig. 2 shows, the latter can extend to greater
heights early in the evening. Thus the © profile can be
a misleading indicator of 4.

measured by

1) STABLE BOUNDARY LAYER DEPTH

Several simple expressions for the depth % of the
steady-state SBL were tested against the model results.
One plausible assumption is that the bulk Richardson
number across the boundary layer is a constant, say, a1.
If we take the bulk shear as G/k, with G the geostrophic

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 35

wind speed, and the bulk potential temperature gradient
between 1 m and 4 as AG/A, then we find

01G2T 0

h= .

gA0®
However, for our model the “constant” @, varies from
0.12 to 0.34 with increasing stability. Taking A® be-
tween 2, and % does not significantly improve (9);
however, it is improved somewhat if G? is replaced by
(AV)?, where AV is the magnitude of the difference in
wind velocity between 2 and 1 m. For fixed G, AV
increases with stability because « and the overshoot
at % both increase. Nonetheless, even then ¢, varies
from 0.11 to 0.22, and (9) remains a poor indicator of
steady-state SBL depth. ,

A better steady-state depth equation can be derived
by integrating between the surface and z=#4 the equa-
tion of motion in the direction of the surface wind,

yielding
h= <__u*___>ﬂ‘,
V=V f

where V and V, are the mean and the geostrophic wind
components perpendicular to the surface wind, and the
angle braces indicate averages over k. Since V,=—G
X sina, we assume that (V' —V,)«G sina and find

h=aqu?/ fG sina. (11)

This is a fairly successful expression, in the sense that
according to model results @, has no significant depen-
dence on stability; our model gives a;=1.6 and W75
gives a;=1.1. Fig. 3 shows how @, converges to a steady
state for the constant cooling rate runs.

)

(10)
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Fic. 2. Calculated time evolution of potential temperature and
vertical potential temperature flux profiles for 1 K h™! constant
cooling rate at 1 m.
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Eq. (11) implies that #,/G=C1(f% sina/G)?, where
C1= (a2)7*; the current model gives C1=0.79 and W75
gives C1=0.95. The arctic observations of Carsey and
Leavitt (1977) give C;=0.71, but have a great deal of
scatter.

Our model results show that the assumption that
(V—V,)«G sina becomes very poor under baroclinic
conditions. Even a slight amount of baroclinity seriously
degrades the predictions of (11).

Another expression for & is the similarity prediction
(Zilitinkevich, 1972, 1975)

h=d(uL/| )} (12)
The value of the constant d depends on the definition of
the depth %, but using the 5%, stress criterion W75
found d=0.22; our model gives d=0.40, about the value
found by Businger and Arya (1974). Fig. 3 shows that
(12) correlates well the steady-state % values from the
present model over a wide range of cooling rates.

The steady-state SBL depth can be strongly model-
dependent, perhaps because the height at which
turbulence vanishes depends on a delicate balance
between production and dissipation. As a result, minor
differences in the parameterization of dissipation can
yield major changes in %, and hence d. Therefore, we
should not look too closely at the value of d; instead,
we will emphasize the relative changes in d caused by
terrain slope or the variable surface cooling rate.

2) PARAMETERIZATION OF EDDY DIFFUSIVITIES

The predicted steady-state profile of eddy diffusivity
for momentum K, is represented well by

. 06"
()

Note that for z/A«1 Eq. (13) gives K,=ku,z/
(14-4.73/L), which is the Businger ef al. (1971) surface
layer result for stable conditions. Figs. 4 and 5 illustrate
the good agreement between (13) and the predictions
of W75 and our model.

That the dimensionless K. should depend on only
z/h and k/L is consistent with similarity reasoning in
the steady-state case (Zilitinkevich, 1975). The simi-
larity hypothesis would allow u=wu,/(] f| L) to be used
instead of A/L, since they are related in steady state
through 4/L=du} [see Eq. (12)]. However, the good
fit of our K, expression (13) to both sets of model
results would not have occurred if x had been used as
the stability index, since the two models give different
proportionality factors between A/L and u? (ie,
different ¢ values). The use of /L as a stability index
for stably and unstably stratified boundary layers has
been suggested by Melgarejo and Deardorff (1974) and
by Zilitinkevich and Deardorff (1974).

(13)
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Fie. 3. Calculated time evolution of two dimensionless SBL
depths. The convergence to steady state is shown for various
cooling rates, along with the steady decay that results when a
surface energy budget is used.

Our model results also show that K,/K.,, where K, is
the eddy diffusivity for temperature, averages about
1.25 in the SBL. In the surface layer it is nearer 1.35,
the value implied by the lower boundary conditions,
while near % it is about 1.2. The W75 results show
somewhat more height dependence, with Ki/Kn=1.0
above 2~0.5 h. Thus our parameterization (13) works
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Fie. 4 Comparison of Wyngaard’s (1975) predicted dimensionless steady-state K, (dots) and parameterization
(13) (curves) for three cooling rates (0.5, 1 and 2 K h™?).

as shown in Fig. 6. For /<1, Eq. (14) implies that
e=[u,3/(k2) J(1+3.72/L), which as discussed in W75
is the result implied by the Businger ef al. (1971) data

about as well for K, if a factor of 1.2 is inserted on the

right side.

3) PARAMETERIZATION OF DISSIPATION

Our model’s steady-state e profile is fit well by

and the negligible turbulent transport of energy found
by Wyngaard and Coté (1971) in the stable surface

layer. -

1.5
ekh C)[ 7(})( )](1-—-0.853) (14) We can easily derive an integral constraint for .
Uy W’ Multiplying the x eouation of motion (1) by U, the
1.0 [+ 1 — T T T 1
o Km (z/h)(1 —z/n)® = ] ]
kush ~ 1+4.7(z/h)(h/L)
— . — - — _.*
L L |
z/h h/L=26 | '\ h/L=34" | h/L =45
05(— ‘ — — =
~ . ] a0 \ 7
, AR 1L s §
— . 0. — — .I —
. 7/
| | . ] __J/‘/l. g l
0 001 002 003 004 005 0 001 002 003 004-0050 001 002 003 004 005
K /(kuxh) Km/(ku=h) Km /(kuxh)

F1c. 5. As in Fig. 4 except for current model’s predicted dimensionless steady-state Km.
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y equation of motion (2) by V, adding, and integrating
between the surface roughness height 24 and % gives in
the steady, horizontally homogeneous, barotropic case

h o___ Jd_\" h
/ (U——uw+V——vw)dz= fG / Vdz, - (15)
20 0z 0z 20

where we have here chosen the x axis along the geo-
strophic wind. The left side of (15) can be evaluated by
integrating by parts and using the turbulent kinetic
energy equation, yielding

by 9. 3. g
f (U——uw+V——1fw z=—f (——wB—e)dz. (16)
20 ) z0 TO

0z 9z
The right side of (15) can be evaluated by integrating
(1), yielding

h
fG / Vdz=Gu,2 cosa. an
29

Combining (15)-(17) gives a kinetic energy balance for
the entire layer:

— (b/u3) {8/ To)wB)— (1= (G/uy) cose. (18)

This constraint, with the buoyant term neglected, is also
discussed by Kuhn et al. (1977).
If we evaluate the left side of (18) using our ¢ parame-

terization (14) and a linear w8 profile, we find
(G/uy) cosa=Fk[In(h/20)—1.142.2(k/L)]. (19)
Combining (11) and (12) yields, for the current model
(G/uy) sina=10(k/L). (20)

a
1.0 T T T T T7TT] T T

1 17

——— ekh/u»3 =(h/2)(1-0.85 z/h}1-5]
x{(1 +3.7 {z/h) (/L))
v 0.5 K/h

* 1.0K/h —
4 20K/h

z/h

—
0s-

1 10 100
€kh/u,3
Fi1e. 6. Comparison of current model’s predicted dimensionless

steady-state ¢ and parameterization (14) (curves) for three
cooling rates (0.5, 1 and 2 K h™).
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Egs. (19) and (20) comprise a geostrophic drag law
which fits our model results (Table 1) well.

. The geostrophic drag law is usually written as
(Businger and Arya, 1974) |

(G/uy) cosa=k[In|u,/ fz,| — A], (21)
(G/uy) sina=k"'B sgn(J), (22)

where A and B depend on stability. Our model gives,
from (12) and (19)-(22),

A=In(k/L)—2.2(h/L)+2.9=1 lnu—0.943+2.0, (23)
B=3.5(h/L)=14u}, (24)

which agrees fairly well with W75, Zilitinkevich (1975)
and Arya (1977).

b. Sloped surface

The “drainage’ acceleration over a flat but slightly
inclined surface depends on the deviation 7" from the
adiabatic temperature profile and hence is time-
dependent. In general, this acceleration can cause L,
4y, the surface temperature flux Qy, the angle « between
the geostrophic wind and the low level flow and 4 to
change with time. However, this acceleration is im-
pressed throughout the SBL directly as a body force,
rather than diffused from the lower boundary (e.g., as
is the acceleration due to changing surface friction). The
model results indicate that the SBL over sloped terrain
can reach a quasi-steady state in which d=h(] f| /u,L)?
is approximately constant; however, d depends on the
wind direction relative to the slope and the magnitude
of the baroclinity.

Fig. 7 illustrates the evolution of several significant
properties of the SBL over terrain with a slope of 0.002
and a cooling rate of 2 K h™. For comparison, the
results are also shown for the same cooling rate over a
horizontal surface. The sloped case is shown for four
geostrophic wind directions relative to the fall line
vector. As an example, for the Great Plains, where the
surface slopes downward going from west to east, 0°
represents a geostrophic wind from the west, 90° is a
wind from the south, 180° is east and 270° is north. Not
surprisingly, the horizontal (barotropic) case is almost
always intermediate between the baroclinic extremes.

Note from Fig. 7 that L, u, and Qo are strongly
affected by the orientation of the terrain slope. The 0°
and the 270° cases are the least stable (largest L)
because they represent downslope upper-level and low-
level flow, respectively, and therefore have stronger
winds near the surface. The 90° case is the most stable
(smallest L) because its low-level flow is opposed by
the downslope acceleration. This tends to minimize
wind shear and turbulence production.

The SBL depths shown in Fig. 7 vary less with time
than any of the other quantities we have just examined,
and the dimensionless depths are even more nearly
constant. At least up to 9 h, there is a perfect corre-
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spondence between % and the angle a, where o is a
crude measure of velocity shear and hence turbulence
production. However, by 9 h the much greater low-level
wind, and hence #,, of the 270° case makes up for its
smaller directional shear and the 270° height curve
overtakes the 180° curve. Delage (1974) also noted a
strong correlation between wind shear across the SBL
and boundary layer growth.

Kuhn et al. (1977) integrated observed vertical pro-
files of geostrophic departure to obtain stress and hence
eddy diffusivity profiles for five stability and wind
direction classes over sloped terrain in Antarctica.
Using the observed mean winds and temperatures at
0.5 and 1.0 m we estimated the gradient Richardson
number Ri and inverted Ri=[0.74s/L+44.7(3/L)*]/
(14+4.7z/L)? (Businger et al., 1971) to obtain z/L and
hence L, using 2=0.75 m. We compare our horizontal-
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F16. 7. Time evolution of key SBL parameters for a 2 K h™
cooling rate over a horizontal surface, and for four values of the
angle (y) between the fall line vector and geostrophic wind for a
surface with slope 0.002.

surface parameterization of K,, in Eq. (13) with these
sloped surface observations in Fig. 8. (One class is not
shown because the observed Ri at 0.75 m exceeded
1/4.7.) To see if the consistent overprediction of (13)
is due to terrain slope, Fig. 9 compares (13) and the
model predictions for the four sloped cases of Fig. 7.
The wind directions of Kuhn ef al. (1977) vary by only
40° and, considering the different hemispheres, the
270° case in Fig. 9 should be most similar to the observa-
tions (Fig. 8), which is the case. (We are ignoring
differences in slope and latitude and only making a
qualitative comparison since our estimates of L for the
Kuhn et al., observations are relatively crude.)

The baroclinic terms in the mean horizontal momen-
tum equations (1) and (2) depend on the product of
the temperature deficit T' and the terrain slope 8. Other
things being equal, 7" is proportional to the near-surface
cooling rate. A baroclinic parameter B might be defined
as

90 ,
B= ——) B[Kh1]. (25)
at 1m

Fig. 10 depicts the time evolution of several key
boundary-layer parameters for three different runs that
have the same slope orientation, y= 180°, and the same
baroclinic parameter, B=0.004 K h~. The runs have
slopes of 0.004, 0.002 and 0.001, and cooling rates of
1, 2 and 4 K h, respectively. We notice that runs with
the same B value can have significant differences in
some properties, so B is not an adequate indicator of
slope effects.
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We can look more closely at terrain-slope effects by
considering the ratio (S) of the magnitudes of the mean
drainage and friction forces

YTIT'8
st/ h

and we ignore the effect of the orientation of the slope.
This ratio depends on z, so it is not directly useful as a
bulk index, but it can give us some insight. Note first
that if 3=0.001, 7'=3 K, /=100 m and #,=0.1 m s,
then S=1; thus with a seemingly mild slope of 0.001 and
typical SBL conditions, the drainage forces are of the
same order as the turbulent friction. This explains why
the results in Fig. 10 are so slope-dependent. Although
the runs in Fig. 10 have the same value of B, which is
proportional to 78, their representative values of S
differ enough to make their flow properties evolve
differently. '

Fig. 10 shows that some properties (e.g., L, uy, k)
fairly quickly establish quasi-steady values, while «,
for example, continuously increases. This flow cannot
attain a true steady state, even though some of its

1.0 ] T T T
Class 86 ] Class 54 —

— h/L=~3 —
z/h [ : ; -

. ]
05— . 7 — J

h/L~12

k I

% 001 002 003 004 0 001 002
Kpn/(kuxh)
10 1 I T T
Class 64 — Class 44 1
L h/La5 — hiL a7 —{

z/h —

osl- ° j

003 0
Ko/ tku £h)

0.01 0.02 0.03

F1c. 8. Comparison of observed dimensionless K (dots) over
sloped terrain (Kuhn ef al., 1977) with parameterization (13)
(curves), for four stability classes.
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Fi1c. 9. Calculated dimensionless K profiles (dots) for the
four cases of Fig. 7. Curves are from (13).

properties seem to, because the parameter S contin-
uously increases with time. However, in all runs d con-
verges to about the same value (0.8). Evidently d is
more sensitive to vy than to S.

We have shown (Fig. 7) that the greatest d value
occurs for y=180° and the smallest for 0°. For a baro-
clinic parameter B=0.004 K h™', the ratio digo/dp is
predicted to be 4 and for B=0.001 K h™! it is predicted
to be 1.5. This comparison indicates a significant
dependence of d on B.

Predictions for the geostrophic drag coefficient #%,/G
as a function of the stratification parameter x are shown
in Fig. 11. The curve in Fig. 11 is the prediction ob-
tained by squaring and adding (21) and (22), using our
parameterizations (23) and (24) for 4 and B, for a
surface Rossby number G/(|f|zo)=10". The current
model predictions for the horizontal surface case lie on
this curve, while the W75 results are slightly below it.
(The models would have disagreed strongly had k/L
been used as the stability parameter.) Had the sloped-
terrain results been plotted in the normal way, they
would not have followed the curve well. Instead, for
these cases a drag coefficient based on a G calculated
from the depth-averaged “effective” pressure gradient
was used, and these results follow the barotropic
prediction quite well. This use of the layer-averaged
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Fic. 10. Time evolution of key SBL parameters for three
model runs with y=180° and B=0.004 K h™1.,

geostrophic wind in the baroclinic case has also been
suggested for the convective boundary layer (Arya and
Wyngaard, 1975).

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoLUME 35

4. Surface energy budget

We now use a surface energy budget (Blackadar,
1976), rather than an imposed constant cooling rate at
1 m. In the previous sections.this cooling rate was the
key variable determining the stratification. The situa-
tion now is much more complex as the cooling rate is
replaced by several parameters:

1) The temperature difference AT between the initial
adiabatic atmosphere and subsoil slab. We have tested
temperature differences that ranged from —0.5 to
+20 K. .

2) The heat capacity C, (per unit area) of the sub-
soil slab, which enters as the parameter C,/(poC») with
po and C, the density and specific heat of the air. We
have used values of C,/(poCyp) corresponding to a poor
conductor (snow, 10 m) and an excellent conductor
(rock, 221 m). These values of C;/(pCp) were chosen
following Blackadar (1976). From (5), they correspond
approximately to A=0.2X10"3 cal (cm s K)! and
C,=0.09 cal (cm® K)™! for snow and A=10"2 cal (cm s
K)~! and C,=0.6 cal (cm® K)~! for rock (Geiger, 1966).

3) The imposed downward long wave radiative flux
at the surface. We used values of F|(0)/(psCp) from
16t0 24 K m s~

When the surface energy budget is used, the cooling
rate of the surface becomes a strong function of time.
Initially it is large, making the boundary layer very
stable and shallow ; however, after 1 or 2 h, L begins to
increase again as the cooling rate declines. These
variable conditions dre not transmitted directly to the
fluid as is the body force causing downslope acceleration
in the sloping-terrain case. Instead, information about
the changing surface conditions (e.g., #4x and L) must
diffuse into the SBL from below. We can crudely esti-
mate this diffusion time as of the order of #?/K,.. From
Figs. 4 and 5, we take a typical K., value representative
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Fic. 11. Stability variation of geostrophic drag coefficient, from
model simulations with a constant surface cooling rate. Curve,
from Egs. (21)-(24); (A) current model results for horizontal
terrain; (®) W75 model results; (O) current model results,
sloping terrain, G based on layer-averaged effective pressure
gradient. , :
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surface energy budget (4) case using G=10 m s, AT=35 K,
Cy/(peCp) =221 m and F|(0)/ (poCp) =20 K m 571,

of the layer as a whole as K,,~0.03ku,%. If #,=0.1ms™?
and =100 m, we find #*/K,,~10%* s or ~30 h. By
contrast, a convective boundary layer would be ex-
pected to respond to changing surface conditions with
a time scale 4/ Kn=~h/w,, where w,=[(g/To)Qok]! is
the convective velocity scale. Under typical conditions
we might have £~ 10® m, w,~2 m 57}, 50 #/w,=~ 10 min.
Thus, while the convective boundary layer is often
quasi-steady, this suggests the SBL probably only
rarely is. As evidence of this, note the different behavior
of the dimensionless SBL depth in Fig. 3 when a surface
energy budget is used.

As an aside, we note that the slowness of the response
of the current model to changing surface conditions is
not due to the lack of turbulent transport terms in the
turbulence equations because we could find no con-
sistent differences in response time between the current
- model and W75, which has these terms. '

Fig. 12 illustrates the evolution of the potential tem-
perature and potential temperature flux profiles for a
case with G=10 m s™! and AT=5 K. This should be
contrasted with Fig. 2 which shows the evolution of the
same variables under constant cooling rate conditions.
With a constant near-surface cooling rate, the cooling
rate (turbulent heat flux divergence) initially decreases
strongly with height, but by 10 h the cooling is approxi-
mately constant with height. With a surface budget,
the-height of the maximum cooling rate increases with
time, creating a tendency to develop a uniform layer
with a large potential temperature jump at the top.
The ® and w8 profiles are curved instead of quasi-linear
and the curvature changes with time. The relatively
large temporal changes in the magnitudes and curva-
tures of the ® and w# profiles indicate that this case
does not attain steady state.

Fig. 13 illustrates the evolution of the surface tem-
perature drop for an initially adiabatic atmosphere at
280 K and a surface initially at 279 K. For a fixed,
imposed downward longwave radiative flux at the
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surface (20 K m s7!) and the same surface character-
istics [Cy/ (poCp) =221 m], there are four curves (I, G,
D, C) corresponding to different temperature drops
(2.5, 5, 10 and 20 K) between the initial adiabatic atmo-
sphere and the subsoil slab. The extent to which the
surface temperature drops below the subsoil tempera-
ture depends on the surface radiative deficit and hence
on the absolute temperature; thus, in the 2.5 K case
(curve I) the surface temperature drops almost 3 K
below the subsoil temperature whereas in the 20 K
case (C) it drops only 0.5 K below. For the 5 K case
(G) the effects of varying the imposed downward flux
and using different surface characteristics are shown.
If a larger downward radiative flux is used (H) the
surface temperature obviously will not decrease as
much below the subsoil temperature. If the soil has a
C,/(psC,) value characteristic of snow (B), the surface
temperature drops well below (15 K) the subsoil tem-
perature. This curve has a bump due to complex feed-
back between the atmosphere and the surface.

Several simple analytical theories have been devel-
oped to predict the surface or shelter temperature fall
at night (Haltiner and Martin, 1957, p. 131). For
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Fic. 13. Calculated surface temperature drop as a function of
time for simulations using surface energy budget (4). Run A,
AT =5 K, C,/(psCp)=10 m, F|(0)/(peCp) =16 K m s7*; run B,
5K,10m,20 Kms?;run C, 20K, 221 m, 20 K m s7; run D,
10K, 221'm, 20Kms;run E, 5K, 10m, 24 Km s!;run F,
5K,221m, 16 Kms?1;run G, 5K, 221 m, 20 Km s7; run H,
5K,221m,24 Kms?;runl 25K, 221 m, 20 Km s™.
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example, Brunt (1939) assumed that the net radiative
deficit at the surface was constant and that this deficit
was balanced by the soil heat flux alone. He found that
the surface temperature drop varied as the square root
of time. The theory was subsequently generalized to
include the atmospheric heat flux, but the functional
dependence on temperature was unchanged if a con-
stant eddy diffusivity was used for heat transfer. [A
comparison with Groen (1947), whose theory is more
realistic than that of Brunt (1939), though less so than
the present study, was not made because it could not
be definitive. This is because the cooling in Groen (1947)
depends on the assumed value of the derivative with
respect to temperature of the net radiative flux at the
surface, while here it depends on AT and F|(0).]

Fig. 13 shows that for C,;/(peC,)=221 m and for a
AT of 5 or 10K (G or D), the surface temperature drop
in our model does indeed follow ¢} for the first 3 or 4 h.
For the same surface and a larger temperature drop of
20 K (C), the initial tendency is slightly greater. For a
smaller temperature drop of 2.5 K (I), the initial tend-
ency is less. For all cases, the present model’s predicted
rate of temperature drop eventually falls below # as the
net radiative deficit at the surface decreases.

The similarity between Brunt’s prediction and ours
should be greatest for a surface where the ratio of the
soil heat flux to the atmospheric heat flux is maximized,
e.g., soil with large thermal diffusivity and heat capac-
ity, as in the surface just discussed. If the surface used
had a low C,/(poC,) value, such as that for snow, then
the fact that the eddy diffusivity in the air was not
constant, as assumed in an extension of Brunt, but was
a function of time, as in our model, would be important.
Thus, our model’s more realistic representation of
atmospheric physics should be more important for
curves A, B and E. These curves depart from #! behavior
sooner and more drastically and have a more compli-
" cated temporal behavior.

5. Conclusions

This study supports the findings of W75 that a
constant cooling rate imposed near a horizontal lower
boundary can drive the boundary layer to steady state
within a few hours. Although the steady-state layer
depth 7%, together with the changes in speed and
potential temperature across the layer, do not give the
same bulk Richardson number for all cases, % is uniquely
related to other SBL parameters. Calculated eddy
diffusivity profiles and drag coefficients agree well with
recent observations in the arctic and antarctic.

The scaled SBL depth d=#A(| f| /usL)* over a sloped
surface with a constant cooling rate has different steady-
state values depending on the wind direction relative
to the slope. The slope effect is strong; for example,
d varies by a factor of 4 for a slope of 0.002 and a
cooling rate of 2 K h™1.
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When the lower boundary condition on temperature
is provided by a surface energy budget rather than a
constant cooling rate, the SBL typically does not reach
steady state. The surface temperature drop behaves
as # for the first few hours, but eventually decreases
more slowly. This failure to reach steady state is due
to the slowness of the SBL to adjust to the changing
surface conditions.

In addition, we conclude that the real SBL is subject
to other influences that greatly complicate its structure
and dynamics. First, our finding that % is very sensitive
to model parameterizations suggests it can also be
affected strongly by turbulence created by unstable
gravity waves. Wave-turbulence interactions and their
influence on SBL structure remain an important but
relatively unexplored problem.

Second, we showed that even slight terrain slopes
have strong effects on the SBL. However, real terrain is
much more complicated than our constant-slope model,
having a spectrum of slopes; the extent to which this
affects SBL structure is also unknown.

Finally, we may have missed important features of
the SBL because we could not model a full diurnal cycle.
We started with balanced, steady-state, slightly stable
initial conditions at transition. A more realistic initial
condition for the wind would be an imbalance or inertial
oscillation dependent on the history of the flow; this
inertial oscillation could be important in the growth of
the SBL. Also, we compared the SBL development
over different soils and with different initial temperature
differences between the adiabatic atmosphere and the
subsoil slab. It would be valuable to compare full daily
cycles over different soils such that the initial tempera-
ture difference would depend on the differing storage
in the soil and the differing heating of the atmosphere.
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APPENDIX A
Table of Symbols

oo

baroclinic parameter [ = — (80/dt)5]

heat capacity per unit area of soil slab [Eq. (5)]

specific heat of air at constant pressure

scaled SBL depth [Eq. (12)]

Coriolis parameter, taken as 1074 s7* in model

magnitude of the downward longwave radiative
flux at the surface

gravitational acceleration

geostrophic wind speed

height of SBL, i.e., height at which stress
declines to 59 of surface maximum

k von K4irmén constant, taken as 0.35 in model

B

M RAOO

10)

= Qon
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Ko, Ki eddy diffusivity for momentum, temperature

1 integral length scale

Ip asymptotic value of ! [=Coy/ws]

L Monin-Obukhov length [= — %37/ (kgQo)]

P’ deviation of mean pressure from background
state P

q turbulent velocity scale [ = (#;u:)¥]

Qo surface potential temperature flux

Ri gradient Richardson number

g 90 U\  s0V\?
n/1G)+G))
Ty 0z 0z 9z

T, surface temperature

Ty adiabatic background temperature of atmo-
sphere

T, scaling temperature [ = — Qo/u,

T, temperature of subsoil slab

7 deviation from adiabatic background tem-
perature .

AT temperature difference between initial atmo-

. sphere and subsoil slab [=T,—T,]

AT,  surface temperature drop [ =Ty—T,]

U mean velocity (U,V,W)

u; fluctuating velocity (x,v,w)

U surface friction velocity

20 surface roughness length, taken as 0.01 m in
model

a angle between geostrophic and surface winds

B8 surface slope

v angle of geostrophic wind relative to fall line
vector

) mean potential temperature

(] fluctuating potential temperature

A® mean potential temperature increase across
‘SBL

0, mean virtual potential temperature

M stability index [=wu,/(| f|L)]

po density of air in background adiabatic state

v Stefan-Boltzmann constant

Tw root-mean-square vertical velocity

(28 nondimensional potential temperature gradient
[=(k2/T,)(98/8z)]

Om nondimensional velocity gradient [ = (k3/us)
X (aU/d3)]

g 9B\}
wg Brunt-Viisili frequency [= (—— ————) ]
: T o 02
APPENDIX B

The Diagnostic Turbulence Equations

Our turbulence equations are derived from those of
W75 by neglecting the time change, Coriolis and
turbulent transport terms, and by using only some of
the full set of equations. The reader is referred to that
paper for a full discussion of the parameterizations. The
closure constants and lower boundary conditions were
unchanged except in a few instances where slight
modifications were required because of the model
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simplifications. Our equations follow:

Vertical velocity variance

—_aU __93V
0.30(uw———+mv—)
03 0z

=0.67(g/ To)wb—0.093¢/1—0.51¢(w?—¢*/3)/1.

Turbulent kinetic energy

ww(dU/3z)+vw(dV/ 0z)= (g/ To)wd—0.139¢%/1.

Shear stress

0.14w*(dU/ 82) = —0.255(uwq/1)+0.28(g/ To)ub
0.14w(3V/ 82) = —0.255(vwg/1)+0.28(g/ To)v0 }
Heat flux

w430/ 0z)= —1.35wbq/l+(1—C1)(g/ To)0*
0.54+1.5 Riz—Ri?, 0<Ri<1

where Ci=
1, Ri>1

uw(90/92)+0.5w0(8U/ 3z) = —1.35ubq/1,
vw(30/9z)+0.500(3V/dz) = —1.3500g/1.

Temperature variance
2wh(30/dz) = —0.3866%/I.

APPENDIX C
Numerical Methods

The Adams-Bashforth finite-difference scheme was
used to march in time. The vertical grid was equally
spaced in the transformed variable n, where

1 A,

Here A, controls the rate at which the logarithmic grid
expands near the surface, while A; determines the
height at which the grid became linear. Values of
A2=5m and A,=250 m were used. The variables were
staggered in the vertical with the mean and turbulence
quantities calculated on different but interlacing grids.

The computer model was a factor of 10 faster than
that of W75 because we used simpler equations, time
step control (Zeman and Lumley, 1976), and a grid
with variable resolution and vertical extent.

Because spatial rather than temporal resolution
limited the accuracy of our solutions, the full set of
turbulence equations was not solved every time step.
We used the following procedure:

1) We solved the turbulence equations (Appendix B)
to form a quadratic equation for g% The largest root
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always proved to be the desired solution. If Ri exceeded
a critical value both roots were negative and ¢? was set
at a small positive value.

2) All of the vertical fluxes were then calculated in
terms of the known ¢

3) Effective eddy diffusivities for momentum and
heat were formed from these fluxes and the existing
mean gradients.

4) These effective eddy diffusivities were used to
calculate fluxes while ten time steps were taken with
the mean equations.

5) The procedure was repeated.

"~ We tested the accuracy of this procedure by com-
paring two 10 h model simulations. In one, the proce-
dure was used and, in the other, the full turbulence set
was solved each time step. After 10 h, the temperatures
differed at most by 1 part in 10° and all other significant
quantities by no more than 1 part in 103

Our program discarded the top grid point if the
stress there fell below a small threshold value for one
hour. Typically, after 5 h five grid points had been
discarded and the computational domain had shrunk
from 500 to 250 m. Then the grid was doubled to 30
points and the mean variables weére interpolated onto
the new grid. The time evolution of predicted variables
did not show any noticeable effects of this grid change.
Before the grid change the vertical resolution was 2 m
near the surface and increased smoothly to 50 m aloft;
after the change it varied from 1 to 25 m.

A dissipation length scale which behaved as
lz=Co.,/wp at large 3 and the lack of explicit diffusion
terms in the turbulence equations allowed the turbulent
kinetic energy at adjacent grid points to tend to drift
:apart. To avoid this we introduced a small amount of
diffusion by running a Hanning filter over 1(z).

The initial conditions were provided by holding ®
fixed with 90/9z=4X10"* K m~! and mtegratmg toa
steady state.
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