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ABSTRACT: Current bulk microphysical parameterization schemes underpredict precipitation intensities and drop size
distributions (DSDs) during warm rain periods, particularly upwind of coastal terrain. To help address this deficiency, this
study introduces a set of modifications, called RCON, to the liquid-phase (warm rain) parameterization currently used in
the Thompson–Eidhammer microphysical parameterization scheme. RCON introduces several model modifications, moti-
vated by evaluating simulations from a bin scheme, which together result in more accurate precipitation simulations during
periods of warm rain. Among the most significant changes are 1) the use of a wider cloud water DSD of lognormal shape
instead of the gamma DSD used by the Thompson–Eidhammer parameterization and 2) enhancement of the cloud-to-rain
autoconversion parameterization. Evaluation of RCON is performed for two warm rain events and an extended period
during the Olympic Mountains Experiment (OLYMPEX) field campaign of winter 2015/16. We show that RCON modifi-
cations produce more realistic precipitation distributions and rain DSDs than the default Thompson–Eidhammer configu-
ration. For the multimonth OLYMPEX period, we show that rain rates, rainwater mixing ratios, and raindrop number
concentrations were increased relative to the Thompson–Eidhammer microphysical parameterization, while concurrently
decreasing raindrop diameters in liquid-phase clouds. These changes are consistent with an increase in simulated warm
rain. Finally, real-time evaluation of the scheme from August 2021 to August 2022 demonstrated improved precipitation
prediction over coastal areas of the Pacific Northwest.

SIGNIFICANCE STATEMENT: Although the accurate simulation of warm rain is critical to forecasting the hydrol-
ogy of coastal areas and windward slopes, many warm rain parameterizations underpredict precipitation in these loca-
tions. This study introduces and evaluates modifications to the Thompson–Eidhammer microphysics parameterization
scheme that significantly improve the accuracy of rainfall prediction in those regions.

KEYWORDS: Rainfall; Cloud microphysics; Cloud parameterizations; Model comparison; Model errors;
Numerical weather prediction/forecasting

1. Introduction

Although microphysical parameterizations in numerical
weather prediction (NWP) models have advanced over the
past decades, there remains considerable uncertainty regarding
liquid-phase (warm rain) microphysics and associated processes.
Many recent studies investigating liquid-phase microphysics
have focused on aerosol–cloud interactions (e.g., Lim and Hong
2010; Mansell et al. 2010; Thompson and Eidhammer 2014;
Sena et al. 2016; Barros et al. 2018; Duan et al. 2019), while

others have developed more physically based representation of
cloud-to-rain autoconversion and rain–cloud collection (e.g.,
Lee and Baik 2017; Ahmed et al. 2020; Zeng and Li 2020).
Observations from the Olympic Mountains Experiment
(OLYMPEX) during winter 2015/16 (Houze et al. 2017) indi-
cate that warm rain contributes significantly to overall precipita-
tion totals when landfalling midlatitude cyclones interact with
the coastal terrain of the Pacific Northwest. Analysis of data col-
lected during OLYMPEX suggested that warm rain periods in
the region are characterized by high raindrop number concen-
trations and small raindrop diameters (Zagrodnik et al. 2018,
2019). Several studies have found underpredicted precipi-
tation accumulation when warm rain is present (Colle et al.
1999; Colle and Mass 2000; Garvert et al. 2005a). More re-
cent work by Minder et al. (2008) showed that precipita-
tion was significantly underpredicted over the windward
slopes of the Olympic Mountains of Washington State dur-
ing heavy precipitation events (mainly atmospheric rivers).
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Other studies along the U.S. West Coast, including Lin and
Colle (2009), Lin et al. (2013), Darby et al. (2019), Conrick and
Mass (2019a,b), and Naeger et al. (2020) demonstrated that
warm rain is underpredicted by mesoscale models using modern
microphysical parameterizations even with increasing horizontal
resolution. Underprediction of warm rain has also been
noted in South Korea (Min et al. 2015; Song and Sohn 2018)
and along the west coast of South America (Garreaud et al.
2016; Massmann et al. 2017; Schumacher et al. 2020).

Recent simulations of weather systems over the Pacific North-
west (Conrick and Mass (2019a,b) demonstrated that current mi-
crophysics schemes underpredict precipitation within the warm
sector of midlatitude cyclones, where melting levels are high and
moisture is abundant}conditions often coincident with warm
rain development. Conrick and Mass (2019b) found that under-
predicted precipitation was accompanied by simulated raindrop
size distributions with larger and fewer raindrops than observed,
implying that models struggled to produce the microphysical
characteristics of warm rain. Naeger et al. (2020) analyzed similar
precipitation events as Conrick and Mass (2019b) using the same
model and noted similar deficiencies during warm rain periods.

Deficiencies in simulating warm rain have been noted regard-
less of which model or bulk parameterization is used. For
example, the studies by Colle et al. (1999), Colle and Mass
(2000), Garvert et al. (2005a), and Minder et al. (2008) used the
fifth-generation Penn State–NCAR Mesoscale Model (MM5),
whereas later studies applied the Weather Research and
Forecasting/Advanced Research WRF (WRF-ARW) Model
with various microphysics parameterizations. Recently, Conrick
and Mass (2019b) and Naeger et al. (2020) examined precipita-
tion and rain DSD characteristics from several WRF micro-
physics schemes, finding that warm rain biases occurred across
models and microphysical parameterizations. Importantly, syn-
optic and mesoscale conditions varied considerably in these
studies. Thus, specific moisture or airflow configurations are un-
likely to cause the precipitation bias, suggesting there may be a
common deficiency in currently available bulk microphysical
parameterization schemes.

To address these liquid-phase microphysical deficiencies, this
study presents and evaluates a series of modifications}called
RCON}to the Thompson–Eidhammer microphysics scheme
(Thompson and Eidhammer 2014). RCON is based on the intro-
duction of a new autoconversion parameterization (Nickerson
et al. 1986) and its requirement of a lognormal cloud water drop-
let size distribution, which is parameterized to be wider than the
gamma distribution used by Thompson–Eidhammer. As a result,
we incorporate two major model changes to the Thompson–
Eidhammer microphysics scheme: 1) the use of a wider lognor-
mal cloud water DSD and 2) enhancement of the cloud-to-rain
autoconversion parameterization.

Using data from the OLYMPEX campaign, this study shows
that these model modifications improve the representation of
warm rain when compared to observations. The model modifica-
tions increase precipitation over coastal areas and windward slopes
of the Pacific Northwest, regions where previous model evalua-
tions have noted underprediction. The next section, section 2, in-
troduces and describes our model modifications, with subsequent
sections providing an evaluation of its regional performance.

2. Description of the RCON microphysical modifications

In this section, we describe our microphysical parameteriza-
tion modifications, hereafter known as RCON, which are a col-
lection of changes to the liquid-phase (warm rain) portion
of the Thompson–Eidhammer microphysical parameterization
scheme (hereafter TE14) in the WRF-ARW Model (Skamarock
et al. 2008). Appendix A provides a brief overview of the TE14
parameterization and appendix B outlines model configuration
details.

The use of a lognormal cloud droplet size distribution (DSD)
in RCON is a significant departure from the TE14 scheme,
which employs a gamma distribution for its cloud DSDs. A lack
of low-level cloud DSD observations from the OLYMPEX
campaign precludes an observation-based analysis of cloud
DSDs over the region. However, implementation of the lognor-
mal cloud DSD was motivated by evaluating output from the
Hebrew University of Jerusalem Israel (HUJI) bin microphysics
(SBM) scheme (Shpund et al. 2019) during simulations of warm
rain events over western Washington State. Appendix A pro-
vides more information about the SBM.

There is precedent for developing bulk microphysics
schemes based on output from bin model simulations or pa-
rameterizations that are based on the stochastic collection
equation. While not an exhaustive list, examples include the
warm rain parameterization of Khairoutdinov and Kogan
(2000), the parameterizations of Seifert and Beheng (2001,
2006), portions of the Thompson et al. (2008) and Thompson–
Eidhammer schemes (Thompson and Eidhammer 2014), and
bin-based parameterizations of autoconversion (Lee and Baik
2017) and collection (Ahmed et al. 2020; Zeng and Li 2020).

The RCON modifications were developed using data from
two warm rain events: 20 September 2015 and 15 February 2016.
These events produced significant accumulations of warm rain
over the Olympic Peninsula of Washington State over a pro-
longed period and were sampled by a sophisticated network of
ground-based sensors, including disdrometers and vertically
pointing radars. The meteorological and microphysical char-
acteristics of these events are described in supplement 1 in
the online supplemental material.

The SBM produced a more realistic distribution of simu-
lated precipitation than TE14, as shown in Fig. 1, suggesting
that the SBM is producing a more accurate representation of
liquid-phase microphysics, which includes cloud and rain
DSDs. In both cases, the TE14 simulation produced substan-
tially less precipitation than the SBM along coastal areas and
windward slopes of the Olympic Mountains (the dashed anal-
ysis region of Fig. 1; observing locations and terrain shown in
Fig. S1). Significant underprediction by TE14, relative to ob-
served precipitation, was present over the region. During
the 20 September 2015 (15 February 2016) event, the use of
the SBM scheme increased mean precipitation by 8.5 mm
(10.9 mm) over the analysis region compared to the TE14
simulation, corresponding to a mean increase of approxi-
mately 41% (47%) in coastal/windward precipitation. Corre-
lations (r) between simulated and observed precipitation
improved when the SBM was used, increasing from r 5 0.85
(TE14 vs Observed) to r 5 0.93 (SBM vs Observed) during
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the 20 September event, with a similar increase in correlation
coefficient noted during the 15 February event (Fig. 1).

Observed and SBM-simulated mean rain DSDs at two
OLYMPEX disdrometer1 sites (Beach and Fishery; locations
in Fig. S1) exhibited similar shapes and concentrations across
diameter bins (Fig. 2). In contrast, TE14 produced rain DSDs
with significantly fewer drops than observed, except at the
largest diameters where TE142 produced too many large rain-
drops. Previous work by Conrick et al. (2019a,b) and Naeger
et al. (2020) have noted that the rain DSDs produced by
TE14 are more consistent with cold rain than warm rain.

With the above evaluation demonstrating that the SBM
produced more realistic precipitation distributions and rain
DSDs than TE14 during these events, the remainder of this
section is used to outline the model modifications that distin-
guish RCON from the default configuration of TE14, which
were motivated by SBM simulations.

a. Using a wider (lognormal) cloud DSD

The realistic prediction of cloud water DSDs is a necessary
precursor to accurately predicting warm rain. From the SBM
simulations presented above, we collected cloud water DSDs
over coastal and windward regions of the Olympic Peninsula

(dashed region of Fig. 1) and compared them against the gamma
distribution used by TE14 and against the lognormal distribution
used by RCON (Fig. 3). The RCON model modifications utilize
a nontruncated3 lognormal cloud DSD derived from the SBM
DSDs instead of observed cloud DSDs, as none were available
for these events. For the RCON distribution shown by Fig. 3,
bulk DSD quantities (QC and NC) were extracted from the SBM
simulation and used to calculate the necessary distribution pa-
rameters (i.e., width and intercept). For reference, Table 1 pre-
sents the mathematical formulation of gamma and lognormal
distributions as applied to cloud droplet distributions.

The narrow width of the TE14 gamma distribution is a key
result from Fig. 3. To address this, we opt to use a significantly
wider lognormal distribution in our RCON modifications. A
wider gamma distribution will also increase precipitation rates,
but not to the same degree of accuracy as RCON as described
in this section. Specifically, the width parameter of the lognor-
mal distribution (Table 1; s) is optimized by using a method of
moments applied to the SBM data. We hypothesize that the use
of a wider cloud water distribution is more realistic, particu-
larly during warm rain events where cloud droplets grow by
collision–coalescence until they are large enough to precipi-
tate out of the atmosphere.

Simulating the width of cloud DSDs presents a significant
challenge due to a lack of observations of cloud water

FIG. 1. Maps of precipitation (colored contours) from the WRF-ARW Model using (top) the SBM and (bottom)
Control (TE14) simulations compared to observed precipitation (colored circles) for (left) the 20 Sep event and
(right) the 15 Feb event. An inset scatterplot in each panel compares simulated and observed precipitation. The 1:1
line is shown in each inset panel. The coastal/windward region referenced in the text is outlined by a dashed contour.

1 The PARSIVEL2 disdrometers deployed during OLYMPEX
are most accurate for hydrometeors within the 0.3–25 mm. At very
small diameters below 0.3 mm, PARSIVEL disdrometers tend to
undersample raindrops, resulting in the observed decrease in drop
concentrations in those bins (Thurai et al. 2017, 2019).

2 TE14 assumes an inverse exponential shape for its rain DSDs.

3 A “non-truncated” cloud DSD uses all drop diameters above
0 mm to calculate integral parameters such as mass or number mix-
ing ratio. The majority of currently available WRF bulk micro-
physics parameterization schemes use non-truncated distributions.
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distributions during warm rain precipitation in the region.
Studies such as Wang et al. (2008) have shown that wider
cloud DSDs have higher concentrations of large cloud drop-
lets and are correlated with enhanced warm rain production.
However, observed widths appear to be biased toward smaller
values, possibly due to most observations being obtained
in nonprecipitating clouds or in shallow stratocumulus (e.g.,
Miles et al. 2000; Geoffroy et al. 2014).

In TE14, the gamma DSD width parameter (m) is a func-
tion of cloud droplet number concentration, as shown in
Eq. (1):

m 5 max 15,
1 3 109

NC

1 2

( )
: (1)

This bounds m between 2 and 15 based on the number of
cloud droplets (NC; m

23).

In contrast, the lognormal width parameter (s) used by RCON
is a function of the cloud water mass mixing ratio (QC; g m23)
and the cloud droplet number concentration (NC; m

23), derived
from SBM simulations of 20 September 2015 and 15 February
2016 [Eq. (2)]:

s 5

0:2, if d . 5:5 3 1024,

(21:193 103)d 1 0:815, if 0:9 3 1024 .d , 5:53 1024,

0:7, if d . 0:9 3 1024,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2)

where d 5 (QC/NC)1/3. Appendix C describes the process by
which we produced the above expression for s based on QC

and NC from the SBM simulations.
Because RCON uses a significantly wider cloud DSD than

TE14, it follows to investigate whether optimizing m to match
RCON’s s will result in improved precipitation simulations.
To do this, we related m to s using data obtained from the
SBM simulations. An altered expression for m was then used
in the TE14 scheme (hereafter called the TE14_MU experi-
ment; see supplement 2). Figure 4 shows simulated precipita-
tion from the 20 September 2015 and 15 February 2016 warm
rain events. The TE14_MU simulation did increase precipita-
tion across coastal and windward regions of the Olympic

FIG. 3. Mean liquid water DSDs (cloud and rain) from simula-
tions for the 20 Sep 2015 (transparent) and 15 Feb 2016 (opaque)
events, with data obtained from the dashed area in Fig. 7. The dis-
continuity in the middle of the graph shows the dividing diameter
(80 mm) between cloud and rain in the SBM scheme. Only bins
with concentrations of at least 1 m23 mm23 are included where
parent DSDs haveNC . 103 kg21 andQC . 1026 kg21 kg21.

FIG. 2. Observed (black) and simulated (colors; see legend) mean
rain DSDs during the warm rain periods of (a) 20 Sep 2015 and
(b) 15 Feb 2016 at the Beach (solid) and Fishery (dashed) disdrome-
ter sites. Only bins with concentrations of at least 1 m23 mm23 are in-
cluded and only DSDs withQR . 1026 kg21 kg21.

TABLE 1. Mathematical expressions for gamma and lognormal cloud water distributions, including a description of their terms with
units.

Equation Description of terms

Gamma N(D) 5 N0D
me2lD N(D): No. of drops of diameter D (m24)

N0: Intercept parameter (m24)
l: Slope parameter (m21)
m: Shape parameter (dimensionless)

Lognormal

N(D)5 NT����
2p

√
Ds

exp
2

1
2

ln
D

D̃N

( )
s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

N(D): No. of drops of diameter D (m24)
NT: Total drop concentration (m23)
s: Distribution width (dimensionless)
D̃N : Median droplet diameter (m)
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Peninsula, but increases were generally less than 10 mm
everywhere and were still less than produced by RCON.

Mean absolute errors (MAE) from TE14_MU improved by
approximately 25% compared to TE14 (the Control), though
correlations with observations were comparable between the
two TE14 simulations. In contrast, RCON produced a more ac-
curate simulation of precipitation characterized by lower MAE
and higher correlations than either the Control or TE14_MU
(Fig. 4). While the mean absolute error (MAE), decreased in
the TE14_MU simulations as a result of increased precipitation
(Fig. 4) and was comparable to values from RCON, the correla-
tion between simulated and observed precipitation did not im-
prove relative to the Control when TE14_MU was used. This
was driven in part by an increase in precipitation variance from
TE14_MU.

While the full details and more extensive microphysical analy-
sis of the TE14_MU sensitivity study can be found in supple-
ment 2, the TE14_MU experiment shows that replacing the
relatively narrow gamma DSD in TE14 with a much wider dis-
tribution did not significantly increase precipitation during

warm rain event. Therefore, it appears that RCON’s more real-
istic precipitation simulation results from a combination of a
wider cloud DSD and the use of a reformulated, more active au-
toconversion parameterization that accounts for the modified
cloud DSD. The next section discusses the autoconversion pa-
rameterization used by RCON.

Relatedly, the adequate representation of aerosols and the
nucleation process is important to ensure a realistic simulation
of cloud DSDs. Because the SBM and TE14 schemes differ dra-
matically in their representation of atmospheric aerosols, a com-
prehensive evaluation of aerosols and nucleation processes is
well outside of the scope of this project. However, a series of
sensitivity experiments4 conducted for the 15 February event, in
which we adjusted the SBM’s aerosol size distribution, yielded

FIG. 4. Maps of simulated precipitation (colored contours) from (top) RCON, (middle) the Control, and (bottom) the
TE14_MU experiment simulations compared to observed precipitation (colored circles) for the 20 Sep 2015 and
16 Feb 2016 warm rain events. Each map includes an inset scatterplot comparing simulated and observed precipitation
at the stations shown on each map. The 1:1 line is shown in each inset panel.

4 For these sensitivity experiments, the two smallest modes of the
tri-modal maritime aerosol distribution used by the SBM were modi-
fied independently by a multiplier of either 0.5 or 2 in order to de-
crease or increase the number of simulated aerosols, respectively.
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cloud DSDs that were similar in shape to the SBM DSDs
in Fig. 3, indicating a lack of sensitivity to specific environ-
mental aerosol conditions (not shown). Additional infor-
mation about aerosols in TE14 and SBM can be found in
appendix B.

b. Autoconversion and other ancillary changes

RCON applies the Nickerson et al. (1986) parameterization
for autoconversion, which is an adaptation of the Berry and
Reinhardt (1974) autoconversion parameterization that requires
use of a lognormal cloud DSD. The Berry and Reinhardt (1974)
parameterization is presently used in TE14. Appendix D de-
scribes the modified autoconversion parameterization in greater
detail, including how it was tuned to improve warm rain predic-
tion. Compared to Berry and Reinhardt (1974), the Nickerson
et al. (1986) parameterization increases autoconversion for all
combinations ofQC and NC, resulting in a significant increase in
the quantity of cloud water that is converted to rain (Fig. 5). As
highlighted by Fig. 4 and as will be shown by our evaluations of
RCON in the following section (section 3), the increased cloud-
to-rain autoconversion rate plays a critical role in the ability of
RCON to simulate warm-rain precipitation more accurately
when it is coupled with a wider cloud water DSD (gamma or
lognormal). Of course, it may be possible to adjust or tune pa-
rameters within the TE14 implementation of the Berry and
Reinhardt (1974) parameterization to produce more warm rain,

though such a sensitivity experiment is generally outside the
scope of this paper.

Other differences between TE14 and RCON include changes
to calculations of cloud effective radii, droplet sizes, and number
concentrations to be consistent with the revised cloud DSD
(Table 2). The process rate calculations governing rain–cloud col-
lection, cloud droplet evaporation, and the freezing of cloud
droplets were also modified by replacing the pre-existing gamma
cloud DSD with a lognormal distribution.

Finally, cloudwater sedimentation is allowed to contribute to sur-
face precipitation accumulations in RCON, similar to drizzle. Cloud
water sedimentation results in only a slight increase in precipitation
at the surface. For the 20 September 2015 and 15 February 2016
events, this change only slightly increased domain-averaged pre-
cipitation by 2.6% and 1.5%, respectively, mostly offshore of
the Olympic Peninsula. The current TE14 scheme does not al-
low cloud water sedimentation to contribute to surface precipi-
tation accumulations, though it can be easily modified to do so.

Regarding liquid precipitation, the RCONmodifications re-
tain the inverse exponential rain DSD from the TE14 scheme.
This choice can be justified by observations that found
precipitation-sized raindrops were generally well represented
by an inverse exponential (e.g., Abel and Boutle 2012; Thurai
et al. 2017, 2019). We recognize that other rain DSD shapes
might improve warm rain prediction but defer the examina-
tion of such impacts to future work.

FIG. 5. The rain production rate due to autoconversion (dQR/dt; gm
23s21) from (a) RCON (Nickerson et al. 1986)

and (b) TE14 (Berry and Reinhardt 1974) as a function of cloud water mass mixing ratio and cloud droplet number
concentration.

TABLE 2. Comparison of various microphysical properties of the gamma and lognormal cloud water distributions. Symbols not
explained in the table are D̃N is the median droplet diameter, m is the shape parameter of a gamma distribution, s is the width
parameter of a lognormal distribution, rW is the density of water, l is he slope of a gamma distribution, and G(x) is the complete
gamma function.

Units Gamma Lognormal

Mean droplet diameter m
11m

l
5

prw
6

NTG(41 m)
QCG(11 m)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
21/3

D̃N exp
s2

2

( )

Median volume diameter m 3:671m

l
D̃N exp(3s2)

Cloud effective radius m 1
2
31m

l
1
2
D̃N exp

5
2
s2

( )
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3. RCON performance evaluation

This section assesses the performance of RCON for a vari-
ety of meteorological conditions by first applying it to the
20 September 2015 and 15 February 2016 warm rain events.
Subsequently, we simulate and evaluate an independent ex-
tended period (1 November–15 December 2015), and finally
evaluate performance of RCON as a member of a real-time
regional WRF ensemble forecasting system over a 1-yr pe-
riod. In this section, simulations using TE14 microphysics are
referred to as the Control simulation.

a. Performance during the 20 September 2015 and
15 February 2016 events

During both warm rain events, RCON produced precipitation
accumulations over windward and coastal areas of the Olympic
Peninsula that were larger in magnitude and more realistic
than the Control (Fig. 6). For the 20 September 2015 event,
mean simulated precipitation over the coastal/windward analy-
sis region was 11.9 mm (RCON) and 4.5 mm (Control). For

the 15 February 2016 event, RCON mean precipitation was
14.4 mm compared to 13.0 mm from the Control over coastal/
windward areas. The SBM and RCON simulations greatly in-
creased precipitation accuracy over coastal areas. Indeed, the
mean absolute precipitation error (MAE) from RCON during the
20 September 2015 event was 2.31 mm compared to 2.22 mm from
the SBM and 3.26 mm from the Control. For the 15 February 2016
event, MAE from the RCON was 5.62 mm, the SBM MAE was
5.18, and the Control had a larger MAE of 7.05 mm. Correlations
between observed and simulated precipitation also improved in
RCON (0.87–0.93) compared to the Control (0.78–0.85). From
these simulations, it appears that RCON is able to simulate precipi-
tation that is qualitatively and quantitatively similar to the SBM,
but at the computational cost of a bulk scheme.

Simulated rain DSDs at the Beach and Fishery sites, shown
in Fig. 7, offer additional evidence that RCON is appropriately
producing greater quantities of warm rain. Indeed, rain DSDs
from the SBM, RCON, and observations exhibited quantita-
tively similar drop concentrations across diameter bins, with
rain DSDs from RCON appearing more characteristic of warm

FIG. 6. Maps of simulated precipitation (colored contours) from (top) the SBM, (middle) the Control, and (bottom) the
RCON simulations compared to observed precipitation (colored circles) for the 20 Sep 2015 and 16 Feb 2016 warm rain
events. Each map includes an inset scatterplot comparing simulated and observed precipitation at the stations shown on
each map. The 1:1 line is shown in each inset panel.
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rain than those simulated by the Control, i.e., there were sub-
stantially greater concentrations of small raindrops in RCON
that were not simulated by the Control. Integrated quantities
(i.e., number concentration, drop diameter, and liquid water
content) from RCON also agreed well with observations, as did
those from the SBM.

b. Extended period performance

Extended period simulations were performed using RCON
and TE14 microphysics (the Control) for 1 November–
15 December 2015, a subset of the anomalously wet OLYMPEX
campaign. A 36- to 12-km domain configuration was used
for this simulation, with results presented from the 12-km
domain. Model configuration details can be found in
appendix B, while supplement 3 documents the model’s
ability to realistically simulate synoptic conditions during
this period.

To examine the impact of the RCONmodel modifications on
warm rain over the extended period, we isolated periods of
warm clouds by considering two parameters: 1) the height of
the melting level and 2) the depth of cloud above the melting
level. Warm rain processes are most likely when the melting
level is higher in altitude (e.g., when temperatures in the lower
troposphere are warm; Zagrodnik et al. 2018; McMurdie et al.
2018) and when the depth of cloud extending above the melting
level is minimized (i.e., minimal or no ice present). At each of
the ASOS/AWOS surface observing sites shown in Fig. 8, we
determined the melting level height and the depth of cloud
above the melting level from the extended-period simulation.
To compute cloud depth, we applied a threshold of 90% to

relative humidity5 interpolated on 100-m height levels. Mean
values of several microphysical variables in the lower atmo-
sphere (0–2 km AGL) were examined as a function of the melt-
ing level height and cloud depth above the melting level. Clouds
were considered warm if they extend less than 1 km above the
melting level (AML). Observed precipitation is acquired for
times when warm rain occurred in the Control simulation, as de-
termined from the above method.

Observed warm rain accumulations during the extended
period were compared against the RCON and Control simu-
lations (Fig. 8). In general, RCON produced more precipita-
tion than the Control and, therefore, significantly alleviated
the rain underprediction that previous studies had noted dur-
ing OLYMPEX. The largest benefit was noted along the Pacific
coast, with more modest improvements around Puget Sound
(western Washington) and in the Willamette Valley (western
Oregon). The mean precipitation error from the Control and
RCON simulations, calculated at all stations, was 214.1 and
24.2 mm, respectively, representing a significant improvement
to regional precipitation prediction. Furthermore, if only sta-
tions within 50 km of the Pacific coast are considered, precipita-
tion from RCON was nearly unbiased (0.6 mm) compared to
223.8 mm from the Control simulation. Non–warm rain periods
experienced only minor changes, with mean errors of 57.9 mm
from the Control simulation and 46.4 mm from RCON.

Consistent with the results from Fig. 8, simulated warm rain
rates were heavier from RCON than the Control, with the
largest differences coincident with melting levels greater than
2000 m AGL (Fig. 9a). Rain rate enhancement also occurred
for mixed-phase clouds with high melting levels, where warm
rain processes are also known to contribute to precipitation.
Similarly, rainwater mixing ratio from RCON was larger than
the Control in warm clouds with additional, but lesser, en-
hancement when cloud depths were 1000–2500 m above the
melting level (Fig. 9b). Greater raindrop number concentra-
tions were also simulated by RCON, resulting in smaller rain-
drop sizes compared to the Control (cf. Figs. 9c,d). This effect
was particularly pronounced for clouds below the melting
level, indicating that RCON produced precipitation that was
more characteristic of warm rain compared to the Control. One
might expect smaller raindrops to decrease precipitation rates
since the sedimentation rate is a strong function of diameter.
However, the larger concentration of small drops compensates
for the smaller drops, therefore increasing warm rain rates.

Warm rain microphysical process rates involving cloud water
are examined in Fig. 10. RCON increased rates of cloud-to-rain
autoconversion (Fig. 10a) and rain–cloud collection (Fig. 10c).
The greatest autoconversion enhancement occurred with moderate-
to-high (.1500 m) melting levels and cloud extension less than
1000 m AML, both characteristic of warm rain environments. On
the other hand, differences in rain–cloud collection were greatest
in deeper, mixed-phase clouds (.1000 m AML; Fig. 10c), with
lesser enhancement noted for liquid-phase clouds. Changes to

FIG. 7. Observed (black) and simulated (colors; see legend)
mean rain DSDs during the warm rain periods of (a) 20 Sep 2015 and
(b) 15 Feb 2016 from the Beach (solid) and Fishery (dashed) disdrom-
eter sites. Only bins with concentrations of at least 1 m23 mm23 are
included and only DSDs withQR . 1026 kg21 kg21.

5 Relative humidity was chosen as a mostly independent mea-
sure of atmospheric moisture so that we were not using direct
RCON output to evaluate the model.
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process rates affecting cloud and raindrop number concentrations
mirrored their mass mixing ratio counterparts, with more cloud
droplets removed through autoconversion or coalesced into rain-
sized particles than the Control (Figs. 10b,d).

c. Real-time RCON performance

RCON has been used operationally as a member of the Univer-
sity ofWashington real-timeWRF ensemble forecast system6 since
mid-August 2021. The ensemble system comprises 24 members of
varying physics and initial conditions. All ensemble members
have 4-km grid spacing. Twenty-three of the 24 members
use the Thompson et al. (2008) or Thompson–Eidhammer
(Thompson and Eidhammer 2014) microphysics schemes,
both of which use the same set of parameterized warm rain
processes. The RCON member uses GFS initial and boundary

conditions. Appendix B provides more information about the
WRF configuration.

In Fig. 11, we provide an evaluation of real-time 24-h accu-
mulated precipitation forecasts over the Pacific Northwest
from the 12-month period from August 2021 to August 2022.
Mean precipitation error (forecast minus observed) from RCON
is compared to that of the ensemble mean over five climatic and
geographic regions of the Pacific Northwest (Washington and
Oregon). While the use of RCONmicrophysics improved the ac-
curacy of simulated precipitation across all regions, coastal areas
experienced the greatest benefit. Indeed, the mean error along
the Pacific Coast was reduced by approximately 75%}a signifi-
cant improvement over the ensemble mean. In addition to more
realistically simulated coastal precipitation, inland areas also ex-
perienced a reduction in mean error when RCON was used.
Even over eastern Washington and Oregon, far away from the
Pacific coast, RCON produced slightly more realistic quantities
of simulated precipitation.

FIG. 8. Maps of simulated and observed warm rain accumulated during the extended period (1 Nov–15 Dec 2015). (a) Observations,
(b) RCON, and (c) the Control. (d),(e) The difference between observed and simulated precipitation; red squares and blue circles denote
over- and underprediction, respectively. Mean error (ME) is noted in (d) and (e).

6 See https://a.atmos.washington.edu/wrfrt/ensembles/ for addi-
tional information and to view daily RCON performance.
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4. Discussion and conclusions

Contemporary bulk microphysical parameterization schemes
generally underpredict precipitation over the coastal areas and
windward slopes of the Pacific Northwest. This underprediction
has been shown to occur in a variety of bulk microphysics
schemes, with the errors most significant when warm rain is oc-
curring or during periods favorable for warm rain development
(e.g., Minder et al. 2008; Conrick and Mass 2019a,b; Naeger et al.
2020). Past model evaluation studies have shown that these simu-
lated precipitation deficiencies are associated with errors in simu-
lated number concentration, mass mixing ratio, and rain diameter
during periods of warm rain (e.g., Conrick andMass 2019b).

This study presents a series of modifications, called RCON,
to the Thompson–Eidhammer (Thompson and Eidhammer
2014; TE14) aerosol-aware microphysics scheme. The RCON
modifications introduce two major changes to TE14: 1) the
use of a wider lognormal cloud water DSD, and 2) enhance-
ment of the cloud-to-rain autoconversion parameterization.
The introduction of these changes was motivated by analyzing
the behavior of a bin microphysics scheme applied to warm
rain events from the OLYMPEX campaign.

Evaluations of our microphysics modifications show great
promise toward reducing simulated warm rain deficiencies. First,
an evaluation was performed for the two warm rain events used
to develop RCON: 20 September 2015 and 15 February 2016.
Precipitation during both events was sampled by PARSIVEL
disdrometers and rain gauges positioned around the Olympic
Peninsula of Washington State. During both events, warm rain
was observed for more than 12 h and was well simulated by the
SBM and RCON simulations, both of which alleviated a substan-
tial fraction of the coastal underprediction we documented. Rain
DSDs simulated by RCON were more like those observed dur-
ing warm rain events, with large concentrations of small drops.

Further model evaluation was conducted over an extended
period during the OLYMPEX field campaign (1 November–
15 December), encompassing a variety of synoptic-scale precipi-
tation systems that impacted the Olympic Peninsula. By parti-
tioning the period into warm and cold rain events based on
melting level and the cloud depth above the melting level, it
was demonstrated that rain rate, rainwater mixing ratio, and
raindrop number concentration were increased in warm clouds
when RCON modifications were used. The increased rain

FIG. 9. Difference plots (RCON minus Control) for rain characteristics averaged over the 0–2 km AGL layer
during the extended run for the locations shown in Fig. 8. The vertical axis depicts the melting-level height and the
horizontal axis depicts the depth of cloud above the melting level. (a) The difference in rain rate, (b) the difference in
rainwater mixing ratio, (c) the difference in rain number concentration, and (d) the difference in mean raindrop
diameters. Data are only included when precipitation is present.
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number concentration contributed to smaller raindrop diame-
ters, a known property of warm rain, thus reducing the micro-
physical deficiencies documented by Conrick et al. (2019a,b) and
Naeger et al. (2020). Finally, RCON performance was evaluated

relative to the mean of a 24-member real-time WRF ensemble
system over the 1-yr period from August 2021 to August 2022.
Results demonstrated more accurate precipitation forecasts
from RCON across the Pacific Northwest, with the largest

FIG. 10. As in Fig. 9, but displaying difference plots (RCON minus Control) of warm rain process rates: (a) auto-
conversion rain mass tendency, (b) autoconversion rain number tendency, (c) rain mass tendency from rain–cloud
collection, and (d) cloud number tendency from rain–cloud collection. Note the values are adjusted by a constant to
facilitate interpretation.

FIG. 11. (right) Map of observing stations (ASOS, AWOS, and RAWS) used to evaluate the real-time performance
of RCON. Colored icons define different analysis regions. (left) Bar plots of mean error (forecast minus observed;
mm) in each of the five analysis regions. The period considered is 15 Aug 2021–15 Aug 2022.
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increase in accuracy over the Pacific coastal zone. Importantly,
RCON did not degrade precipitation forecasts away from the
Pacific coast.

As with any model development, it is important to note some
sources of uncertainty and potential next steps. The formulation
used for the lognormal distribution width parameter s is a po-
tential source of uncertainty. While our expression for s as a
function of NC and QC was shown to realistically simulate pre-
cipitation, we plan to further investigate this parameter and re-
fine its formulation. Second, numerical diffusion and/or vertical
advection may be contributing to DSD broadening in the SBM
scheme and therefore may be widening the lognormal DSDs
we described in this study (i.e., Morrison et al. 2018, 2020b).
Finally, although only two case studies were used to develop the
microphysical modifications presented in this paper, the utility
of RCON is supported by its successful application during the
extended OLYMPEX period and during a 12-month period as
a member of a real-time ensemble forecast system. While fur-
ther work remains, the RCON microphysical modifications of-
fer progress toward improving the prediction of warm rain over
coastal areas and windward slopes of the Pacific Northwest and
elsewhere.

Acknowledgments. The authors thank Drs. Joseph Boomgard-
Zagrodnik, Daehyun Kim, Greg Thompson, Jacob Shpund, and
Robert Wood for their collaboration, insightful discussions, and
comments on this project; and to the anonymous reviewers for
their comments that helped to greatly improve the manuscript.
Thanks also to David Ovens for his support of this project, com-
ing up with the name RCON, and implementation of the scheme
into the UW WRF ensemble. We also thank the U.S. Forest
Service, National Park Service, and the Quinault Indian Nation
for their support of OLYMPEX. Financial support for the
project was provided by Grants NSF AGS-2042105 and NSF
AGS-1349847. We would like to acknowledge high-performance
computing support from Cheyenne (doi: 10.5065/D6RX99HX)
provided by NCAR’s Computational and Information Systems
Laboratory, sponsored by the National Science Foundation.

Data availability statement. All data used in this manuscript
are freely available from the following sources or by request
from the corresponding author, including WRF Model data, in-
cluding namelists, are available upon request; GFS forecast
grids, used for initial/boundary conditions, are available from
the National Centers for Environmental Information (NCEI):
https://www.ncei.noaa.gov/products/weather-climate-models/
global-forecast; NARR grids can be obtained through the
NCEI at https://www.ncei.noaa.gov/products/weather-climate-
models/north-american-regional; MRR radar data from
OLYMPEX can be obtained from NASA at: http://doi.org/10.
5067/GPMGV/OLYMPEX/MRR/DATA201; PARSIVEL2

data from OLYMPEX can be obtained from NASA at http://
doi.org/10.5067/GPMGV/OLYMPEX/APU/DATA301; rawin-
sonde data can be obtained through the University of Wyoming
upper-air website (http://weather.uwyo.edu/upperair/sounding.
html) or upon request from the corresponding author; and the
RCONmodel code is available from the corresponding author.

APPENDIX A

The Thompson–Eidhammer (TE14) and Hebrew
University Of Jerusalem Bin (SBM) Schemes

a. The Thompson–Eidhammer scheme

The TE14 scheme predicts the mass mixing ratios of six mi-
crophysical species: cloud water, cloud ice, rainwater, snow, and
graupel. Cloud water, rainwater, and cloud ice number concen-
trations are prognostic, thus making the scheme double-moment
for those quantities. The scheme assumes exponential size distri-
butions for all species except cloud water (gamma) and snow
(sum of gamma and exponential). TE14 also simulates water-
and ice-friendly aerosol number concentrations, which directly
influence the cloud water and cloud ice number concentrations.
The scheme is currently available in the Weather Research and
Forecasting model (WRF; Skamarock et al. 2008). The prede-
cessor to TE14, the Thompson et al. (2008) scheme, uses the
same warm rain production processes and is employed by the
National Centers for Environmental Prediction (NCEP) High-
Resolution Rapid Refresh (HRRR) model.

b. The Hebrew University of Jerusalem bin model

The Hebrew University of Jerusalem (HUJI) Spectral Bin
Model SBM scheme simulates evolving distributions of liquid
and ice phase hydrometeors. Regarding liquid-phase DSDs,
we use 33 mass-doubling liquid water bins that range in drop-
let radius from 2 mm to 32.5 mm, with the model simulating
the collision–coalescence, break-up, condensation, and evapo-
ration processes of liquid particles. Shpund et al. (2019) offers
an extensive review of the SBM scheme.

Bin microphysics schemes are significantly more complex
than bulk schemes because bin schemes do not assume the
shape of hydrometeor size distributions, instead allowing the
distributions to naturally evolve in response to microphysical
processes (see the review articles of Khain et al. 2015 and
Morrison et al. 2020a). Representing all liquid hydrometeors
within a single, continuously evolving distribution produces
more realistic, but more numerically expensive, microphysi-
cal simulations compared to the simplified integral represen-
tations of bulk microphysics schemes (Khain et al. 2015;
Grabowski et al. 2019; Morrison et al. 2020a).

APPENDIX B

WRF-ARW Model Configurations

a. Configuration details

This appendix describes the model configurations of the sev-
eral WRF-ARW Model simulations conducted in this study.
All simulations used version 4.2.2 of the WRF-ARW Model
applied to different domain configurations (described below).
However, the distribution of vertical levels was the same for
each simulation: 51 vertical levels spaced according to the
model’s hybrid vertical coordinate option (Klemp 2011), with
the sigma-isobaric transition level set at its default of 0.2.
Other model configuration options included the YSU PBL pa-
rameterization (Hong et al. 2006) and RRTMG radiation
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scheme (Iacono et al. 2008). Initial and boundary conditions
for all simulations were from the Global Forecast System
0.258 analysis. In addition to the above configuration:

• Simulations of the 20 September 2015 and 15 February 2016
events, which were used to develop RCON, applied a single
domain with 4-km horizontal grid spacing that was centered
offshore of the Pacific Northwest (Fig. B1a). Simulations of
these events were conducted using TE14, RCON, and the
HUJI SBM microphysics. No cumulus parameterization was
used. For the 20 September 2015 event, simulations were
run for 36 h from 1200 UTC 19 September to 0000 UTC
21 September 2015; simulations of the 15 February 2016 event
were run for 24 h starting at 0000 UTC 15 February 2016.

• The extended simulation (1 November 2015–15 December
2016) used a nested 36- to 12-km grid spacing for its hori-
zontal configuration (Fig. B1b). This simulation was run
using TE14 and RCON microphysics. The Grell-Freitas
cumulus scheme (Grell and Freitas 2014) was applied to
both domains. The simulation was initialized at 0000 UTC
1 November 2015 and integrated for 45 days.

• The University of Washington WRF ensemble forecast sys-
tem has a nested domain configuration, with a 4-km hori-
zontal grid spacing on the innermost domain which covers
all of the Pacific Northwest (Fig. B1c).

Only the innermost domains were used for the analyses
presented in this manuscript.

b. Simulated aerosol information

While a comprehensive evaluation of aerosols is outside
of the scope of this project, it is important to note how
each scheme simulates aerosols as part of the model’s con-
figuration. Aerosols in the Control (TE14) simulation fol-
low that scheme’s climatological aerosol method, whereby
several aerosol species derived from monthly averages of
multiyear GOCART aerosol data were processed and av-
eraged together into a single aerosol type represented by
a single lognormal aerosol distribution. In TE14, those
aerosols are then nucleated into cloud droplets according
to the results of a parcel model that are acquired through

a lookup table. Users of TE14 can select aerosol radius
and hygroscopicity; in this work we apply the default val-
ues (0.04 mm and 0.4, respectively). For more information,
see Thompson and Eidhammer (2014). The SBM scheme
uses a more complex trimodal aerosol distribution with user-
selected chemical properties. The properties of each mode (size,
width, number concentration) can also be selected by the user.
The SBM scheme then explicitly nucleates aerosols based on
the aerosol’s properties and the nucleated mass is placed
into the smallest cloud droplet bin. Spatially, there are different
aerosol distributions for maritime and continental land surfaces.
We retain the default aerosol configuration from the SBM
scheme, though as mentioned in section 2, simulations are not
sensitive to aerosol configuration. Additional information for the
SBM scheme can be found in Shpund et al. (2019). For both
schemes, aerosols are allowed to advect throughout the domain.

APPENDIX C

Determination of the Lognormal Width Parameter

The width parameter of the lognormal distribution, s, is a key
quantity for the cloud DSD. Like its counterpart for a gamma
distribution m, the parameter s must be estimated by observa-
tions or model data. This approach has been used in previous
studies to diagnose the gamma shape parameter m (Brandes et al.
2004; Bringi et al. 2002; Cao et al. 2008; Zhang et al. 2003, 2006).

Our goal was to create an expression for s that is dependent
only on NC and QC, which are available within the bulk scheme.
The process of producing a functional form of s was as follows:
From the SBM scheme, cloud DSDs were obtained from the
20 September 2015 and 15 February 2016 events from offshore,
coastal, and windward regions of the Olympic Peninsula. These
distributions were then integrated to calculate the effective diam-
eters (De) according to Eq. (C1). Next, the median diameter D̃N
can be calculated if De and s are known, as shown in Eq. (C2):

De 5

�
D3N(D)dD�
D2N(D)dD

5 D̃N exp
5
2
s2

( )
, (C1)

FIG. B1. WRF-ARWModel domains for (a) simulations of the 20 Sep 2015 and 15 Feb 2016 events, (b) extended-period (1 Nov–15 Dec 2015)
simulations, and (c) real-time UWWRF ensemble.
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D̃N 5 Deexp 2
5
2
s2

( )
: (C2)

Next, the equation for cloud water mass mixing ratio, QC,
Eq. (C3), is solved for s after substituting D̃N with Eq. (C2):

QC 5
prw
6

NTD̃N
3
exp

9s2

2

( )
: (C3)

The result of this process is shown in Eq. (C4), where LOG
is the natural logarithm:

s 5 2
1
3
LOG

6QC

prwNCD
3
e

( )[ ]1/2
: (C4)

By analyzing the relationships between QC, NC, and s from
the SBM, it was determined that using a simplified diameter
expression, defined as d 5 (QC/NC)1/3, was easily calculable
and produced the strongest relationship between the quan-
tities (Fig. C1). The functional form of s used in RCON is
a linear relationship between d and s, as shown in Fig. C1
and Eq. (C5), which is limited to the range of s 5 [0.2, 0.7]
Future work by the authors will continue to refine the ex-
pression for s:

s 5

0:2, if d . 5:5 3 1024,

(21:193 103)d 1 0:815, if 0:93 1024 ,d , 5:53 1024,

0:7, if d . 0:9 3 1024 ?

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(C5)

APPENDIX D

Autoconversion

This section compares the autoconversion formula we
use (from Nickerson et al. 1986) to autoconversion in the
Thompson–Eidhammer (TE14, Thompson and Eidhammer
2014) microphysics scheme. Both mass autoconversion
equations are derived from the parameterization of Berry

and Reinhardt (1974, hereafter BR74), which has been
used in microphysical parameterizations since its debut.
Interested readers are directed to the review by Gilmore
and Straka (2008), which describes in detail the mechanics
of the BR74 scheme, its many variations, and a number of
its uses throughout the literature.

Relevant to RCON is the lognormal adaptation of BR74
from Nickerson et al. (1986), which adjusts the appropriate
characteristic droplet diameters and other parameters to ac-
count for the lognormal cloud water distribution. We incor-
porate the Nickerson et al. (1986) autoconversion equations
into the WRF Model as follows. The rate of change of rain-
water mass due to autoconversion of cloud water is

dQR

dt
5 0:067rairQ

2
C 1016

rairQC

NC

( )4/3 ������
varx

√
2 2:7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3 104
rairQC

������
varx

√
NC

( )1/3
2 1:2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (kg kg21 s21), (D1)

where varx 5 exp(9s2) 2 1 is a variance parameter for the
cloud DSD, QR is the rainwater mixing ratio (kg kg21), QC

is the cloud water mixing ratio (kg kg21), NC is the cloud
number droplet concentration (kg21), rair is the density of
air (kg m23), and s is the width of the lognormal cloud wa-
ter distribution.

The TE14 microphysics scheme used in Control simula-
tions throughout this study also uses the BR74 autoconver-
sion parameterization, but with a different formulation:

dQR

dt
5

0:027rairQC

1
16

3 1020D3
bDf 2 0:4

( )
3:72
QCrair

1
2
3 106Db 2 7:5

( )21 (kg kg21 s21),

(D2)

where

Df 5
6rairQC

prWNC

( )1/3
, Dg 5

G(mC 1 7)
G(mC 1 4)
[ ]1/3

lC
, and

Db 5 (D3
f D

3
g 2 D6

f )1/6

are various characteristic diameters of the gamma cloud wa-
ter distribution, rW is the density of liquid water (kg m23),
and mC is the shape parameter of the gamma cloud water
distribution. QC and NC have the same units as in Eq. (D1).

The use of Nickerson et al. (1986) autoconversion in-
creases the amount of cloud water that is converted to rain
(see Fig. 5 in the manuscript and supplement 2). Comparing
the functional form of autoconversion from RCON and
TE14 shows that the average autoconversion rate increases
from 2.06 3 1025 g m23 s21 in the TE14 autoconversion
parameterization to 1.35 3 1024 g m23 s21.

Next, the change in rain number concentration due to au-
toconversion is considered. The general bulk formulation
for this process is

FIG. C1. Frequency distribution of s as a function of
d 5 104 3 (QC/NC)1/3, with data obtained from the SBM scheme
over the dashed region of Fig. S1 during the 20 Sep 2015 and
15 Feb 2016 events. A description of d is provided in appendix C.
Data are normalized by d to produce the linear fit shown. The
black line represents the functional form of s used in RCON.
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dNR

dt
5

dQR

dt
a

p

6rw
D3

0

(kg21 s21), (D3)

where dQR/dt is the mass autoconversion rate (kg kg21 s21),
NR is the raindrop number concentration (kg23), D0 is the
minimum raindrop diameter (mm), and a is a constant.

In TE14, D0 5 50 mm and a 5 200mc where mc is the
gamma distribution shape parameter, an integer calculated
as a function of cloud droplet number concentration ac-
cording to mc 5max(15, 13 109/NC 1 2), which bounds the
shape parameter between 2 and 15 with larger NC corre-
sponding to smaller mC. NC in the expression of mC has
units of m23. In the TE14 scheme, when NC ffi 108 m23

(a typical value of NC), the number of raindrops produced
by autoconversion is reduced by a factor of ;600, compared
to a denominator without a, which is partially responsible for
the large rain diameters described in the manuscript.

In contrast, the Nickerson et al. (1986) autoconversion
scheme uses a smaller D0 (32 mm) and a 5 1 in its default
configuration. The selection of these values results in signifi-
cantly too many raindrops of very small size being produced,
causing poor agreement with observations. Consequently, the
RCON retains D0 5 50 mm from TE14 and sets a 5 200. By
neglecting the distribution width in formulating a, more rain-
drops are produced. This combination of parameters was
found to produce the best balance of rain number concentra-
tion and raindrop diameter. Future work by the authors will
investigate whether a should exhibit a functional form.
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