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THE DISTRIBUTION OF RAINDROPS WITH SIZE

By J. S. Marshall and W. McK. Palmert

McGill University, Montreal
(Manuscript received 26 January 1948)

Measurements of raindrop records on dyed filter
papers were made for correlation with radar echoes
(Marshall, Langille, and Palmer, 1947). These measure-
ments have been analyzed to give the distribution of
drops with size (fig. 1). The distributions are in fair
agreement with those of Laws and Parsons (1943).

Np (m-3mm!)

10t

10°

D{mm)

Fi1G. 1. Distribution of number versus diameter for raindrops
recorded at Ottawa, summer 1946. Curve A is for rate of rainfall
1.0 mm hr1, curves B, C, D, for 2.8, 6.3, 23.0 mm hr—t. NpsD
is the number of drops per cubic meter, of diameter between D
and D + 8D mm. Multiplication by 1075 will convert Np to the
units of equation (2).

Except at small diameters, both sets of experimental
observations can be fitted (fig. 2) by a general relation,

ND = NQG—AD, (1)

where D is the diameter, NpdD is the number of drops
of diameter between D and D + 46D in unit volume of
space, and N, is the value of Np for D = 0.

It is found that

No = 0.08 cm— (2)
for any intensity of rainfall, and that
A =41 R%% cm™, 3)

where R is the rate of rainfall in mm hr1.

For diameters less than about 1.5 mm, both sets of
observations fall short of the value for Np given by
equation (1), and they disagree slightly with each
other. Laws and Parsons’ observations are better in
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this region, and tend toward a common value of Ny
for all rates of rainfall.

The mass of rain water M per unit volume of space,
and the sum Z of sixth powers of drop diameters in
unit volume (a radar quantity), can be calculated as
functions of A from equation (1), and so correlated
with the rate of rainfall R by equation (3). It is of
interest to compare these correlations with those ob-
tained when M, Z, and R are determined more directly
from the experimental records (table 1). The deficit of

TaBLE 1. M = {#EZNpD3%D and Z = ZNpDtD
as functions of the rate of rainfall R.

M

Reference mgm m™3 mmé m~3

Marshall, Langille and Palmer (1947) 80 Ro-8 190 Rt.72

Revision of the above 72 Ro-88 220 Rt

Z/R correlation by Wexler (1947) 68 Ro-88 320 R-#
(data of Laws and Parsons, 1943)

From equations (1) and (3) 89 Ro-8 296 R4

small drops in the observations, as compared with
equation (1), should make the observed value of M,
and to a lesser extent that of Z, smaller than those
derived from the equations.
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Fi1c. 2. Distribution function (solid straight lines) compared
with results of Laws and Parsons (broken lines) and Ottawa
observations (dotted lines).
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The exponential distribution of equation (1) is the
type that would obtain if growing drops were.in con-
tinual danger of disintegrating, the likelihood of dis-
integration being proportional to the increment in
diameter or in distance of fall through cloud. Such
behavior might be explained by the random accumula-
tion by each drop of electrical charge as more and
more randomly charged cloud drops or smaller rain-
drops are acquired by coalescence, and the resultant
disintegration of overcharged drops. Relevant calcula-
tions and experiments on coalescence are in progress.
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Part of the work reported here was done during
summer employment in the Radar Meteorology Sec-
tion of the Defense Research Board’s Radio Propaga-
tion Laboratory at Ottawa.
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THE PROPAGATION OF PERMANENT-TYPE WAVES IN HORIZONTAL FLOW

By Lieut. Philip Duncan Thompson, USAF!

The Institute for Advariced Study

(Manuscript received 24 November 1947)

1. Introduction.—The propagation of atmospheric
waves in horizontal flow was first considered by Rossby
[5], who showed that waves in an infinitely broad
westerly current travel with speeds less than that of
the current itself.

c=U——:
472
In Rossby’s notation, c¢ is the phase speed relative to
the earth; U, the speed of the current; 8, latitudinal
variation of the Coriolis parameter; and L is the wave
length of the oscillation.

" Although this result is valid only under special con-
ditions, later generalizations of the theory of atmos-
pheric waves have led to similar conclusions. By
linearizing the vorticity equation, Haurwitz [3] has
derived the phase speed of infinitesmal wave dis-
turbances in flows of finite lateral extent, verifying
Rossby’s formula as a special case. The theory has been
extended to waves of finite amplitude through the
solutions of the nonlinear vorticity equation recently
given by Craig [2] and Neamtan [4].

In his discussion of harmonic waves, the latter has
at least qualitatively confirmed the results of Haur-
witz’ perturbation analysis, but failed to recognize in
the unidentified terms of his solution a fundamental
parameter mentioned earlier, though rather sum-
marily, by Rossby. The following investigation of
waves of permanent type reveals that the phase speed
depends not only on those parameters previously found
by Haurwitz, but also on the variation of wind shear
from one lateral boundary to the other.
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2. An integral of the vorticity equation.—The system
of equations governing the two-dimensional motion of
a homogeneous fluid may be reduced to a single differ-
ential equation which involves only one scalar un-
known. This equation, a variant of the vorticity
theorem due to Helmholtz, simply states that the
absolute vorticity of any particular fluid element re-
mains forever the same.

The locally Cartesian plane of motion (x,y) is tangent
to the earth in a point fixed on its surface; the x-axis
is directed eastward. The Coriolis parameter A\, which
expresses absolute rotation of the coordinate frame,
consequently depends on y alone. The stream function
¥ is defined by a pair of relations which, taken to-
gether, satisfy the condition for incompressibility:
u = — oY/dy, v = dY/dx, where # is the eastward
component of velocity, and v the northward com-
ponent. Thus velocity and all other kinematic vari-
ables may be represented by operations on the stream
function; vorticity, for instance, is the Laplacian de-
rivative of the stream function.

The remainder of this discussion will deal with
Y-fields which, traveling with constant speed through
the (x,y) plane, suffer no change of shape—i.e., with
waves of permanent type. To simplify matters con-
siderably, we shall suppose that the y-field is propa-
gated at speed ¢ toward the east or x-direction. In
that case, 8/0t = — ¢ 3/dx, so that the vorticity equa-



