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ABSTRACT

The physical factors which might be expected to control the shape of large raindrops are surface tension,
hydrostatic pressures, external aerodynamic pressure, electrostatic charge, and internal circulation. Each
of these is examined quantitatively, and it is concluded that under most conditions only the first three
play important roles in producing the deformation characteristic of large raindrops. By analysis of high-
speed photographs of water drops falling at terminal velocity, the distribution of aerodynamic pressures
is deduced and is shown to imply that separation in the airflow about a raindrop has very significant effects
on drop shape. The surface integral of the vertical components of the deduced aerodynamic pressures is
found to be in reasonable agreement with the drop weight. The effect of boundary-layer separation on a
number of physical processes occurring at the surface of falling drops is noted briefly.

1. Introduction

It has been known for over half a century that large
raindrops do not possess the streamlined form popu-
larly described as the ‘‘teardrop’’ shape. High-speed
photographs (Flower, 1928; Edgerton, 1939; Blan-
chard, 1950) reveal,instead, that a drop falling through
the air exhibits a marked flattening on its lower sur-
face and smoothly rounded curvature, rather than
conical taper, on its upper surfaces (see fig. 1). This
long-recognized peculiarity of large drops has never
been adequately explained, and only very few attempts
to elucidate this matter have ever been undertaken.

Although Thomson, in 1885, made some observa-
tions on the shape of liquid drops moving through
various fluids, the first serious attempt to examine the
meteorological problem of the shape of large raindrops
appears to have been made by Lenard (1904). Using
a vertical airstream with water drops suspended freely
therein, Lenard carried out a number of experiments
on terminal velocities, deformation, and breakup. He
noted that a finite time, somewhat greater than a
tenth of a second, was required for a large drop to
attain its equilibrium degree of deformation. He sug-
gested that this might be due to centrifugal distortion
set up by internal circulations, which, for inertial
reasons, took a measurable amount of time to become
established by the surface friction of the air rushing
past the drop. To the present writer’s knowledge, no
extension of this interesting beginning of the study of
the drop-shape problem was made for more than forty
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years following Lenard's work. Flower (1928), in a
study of falling speeds, had found it necessary to
appeal to Lenard’s theory of centrifugal distortion;
and even when Laws (1941) carried out his very ex-
tensive measurements of the terminal velocity of water
drops, no other theory of drop deformation was avail-
able to be invoked to account for the marked distortion
of large drops, and this despite the fact that the reality
of Lenard's postulated circulations had never been
demonstrated.

Spilhaus (1948), in a short paper on raindrop shape
and falling speed, has made the only other contribu-
tion to this problem that has come to the writer’s
attention. Spilthaus suggested that the vertical flat-
tening of large drops is due to the combined action of
surface tension and aerodynamic pressures. This was
the first introduction into the raindrop problem of any
consideration of the role of the aerodynamic factor,
although Kluesener (1933) had made very similar
suggestions about the flattening of fuel-spray droplets.
Spilhaus pointed out that, due to the deficit of external
pressure around the waist of a drop, ‘‘the drop must
deform so as to reduce the ratio of its area of cross
section to perimeter in the vertical plane’ in order to
give the surface tension an opportunity to equilibrate
the aerodynamic forces. Spilhaus may not have been
aware of Lenard’s earlier work, for he neither men-
tions it specifically nor gives any consideration to the
centrifugal effects which Lenard held to be solely
responsible for producing drop deformation. Neither
Spilhaus nor Lenard offered any explanation of why
large drops are not symmetrical about horizontal
planes through their centers, and Spilhaus explicitly
omitted this asymmetry from his theory in order to
be able to use experimental data on drag coefficients
of oblate ellipsoids. As will be pointed out below,
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Spilhaus used an incorrect relationship for determining
the surface-pressure increment due to surface tension,
and also overlooked the significant effects of internal
hydrostatic pressure gradients present in a drop falling
at terminal velocity. With this background to the
present problem, it seems appropriate to conclude that
the issues involved are far from settled. In the present
article, some further contributions to this problem
will be made, and the results used to gain an improved
understanding of some important features of the air-
flow about large raindrops.

2. Factors controlling raindrop shape

In the course of the present study, an effort has
been made not only to gain a better appreciation of
the role of centrifugal distortion, surface tension, and
aerodynamic pressures, but also to obtain a clearer
recognition of the possible importance of electrostatic
charges and internal hydrostatic pressure gradients.

The only reason that water drops can exist at all as
mechanically stable systems is that surface forces at
the water-air interface continually try to minimize the
interfacial area. When this effect of surface tension
acts alone, or nearly so, as in the case of cloud drops,
drizzle, and even small raindrops, it succeeds in mold-
ing a drop into the shape characterized by minimum
surface-to-volume ratio, z.e., a sphere. When, how-
ever, other factors than surface energy contribute
significantly to the total energy of the drop, minimum
total energy may become inconsistent with perfectly
spherical shape. One might hope to assemble all of
these other energy factors, express mathematically
their contributions to the total drop energy, and then
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determine the equilibrium shape by minimizing the
total energy with respect to some suitable shape
parameter or parameters. If the gravitational effects
(hydrostatic pressures) were the only additional energy
factor, this might be done here just as it has been done
(by tedious numerical processes) for the case of pen-
dent and sessile drops (Adam, 1949). However, the
very great difficulty of incorporating the aerodynamic
factor into this type of approach precludes any analysis
which treats it as a classical minimal problem. Recog-
nizing this, the writer has sought to approach the
problem simultaneously from two directions in order
to converge ultimately upon a result (deduced aero-
dynamic pressure distribution) whose correctness may
be judged tolerably well by comparison with certain
experimental results in the fields of fluid dynamics and
cloud physics, as well as by a quantitative comparison
of pressure drag and drop weight. The central idea
in this analysis has been to evaluate all the factors
controlling the pressure distribution ¢nside a large drop
and then, with the use of certain surface physical con-
cepts, to determine the surface pressure prevailing in
the boundary layer just outside the drop surface. If
the surface-pressure pattern thus deduced is found to
be in reasonably good agreement with aerodynamic
principles (as will be shown to be the case), some
confidence may be placed in the theory of drop shape
on which the calculations have been based. The logic
of this approach will be further elaborated below.
Surface tension.—As a consequence of the net in-
ward attraction exerted on the surface molecules by
the molecules lying deeper within the drop, the sur-
face tension of the water in a raindrop produces an

FiG. 1. Large water drops falling at terminal velocity (see Magono, 1954). Equivalent spherical diameters and measured fall veloci-
ties as follows: upper left, 6.5 mm and 8.9 m/sec; upper right, 6.0 mm and 8.8 m/sec; lower left, 4.8 mm and 8.3 m/sec; lower

right, 2.8 mm and 6.8 m/sec.
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increase of pressure within the drop over and above
that prevailing in the air outside. This increment in
pressure, Ap;, at a given point on the drop surface, is
given, in general, by

Aps = v(1/R1 + 1/R»), 1)

where v is the surface tension of the water-air inter-
face, and R, and R; are the principal radii of surface
curvature at the point in question (Adam, 1949). The
quantity Aps can be either positive or negative, if one
admits sufficiently arbitrary surface geometry. A prin-
cipal radius will here be regarded as positive for the
case where the water-air interface is convex as viewed
from the air, and Ap, then becomes the water pressure
just inside the drop minus the (aerodynamically con-
trolled) air pressure just outside the interface at the
point in question.

In the special case of a spherical drop, R; = Ry = 7,
where 7 is the drop radius, and then

Ap, = 2v/r. (2)

This restricted equation (2) was inappropriately ap-
plied by Spilhaus to his assumed ellipsoidal raindrops:
he used for » the radius of the circular cross-section
in a horizontal symmetry plane. Since this radius is
only one of the two principal radii of curvature at a
point on the waist of such a drop, and since the second
principal radius is there smaller than the first, Spilhaus
underestimated the pressure increment, particularly
for his large, and hence very much flattened, drops.
At the same time, he neglected to consider the fact
that the surface pressure increment is different, in
general, at each different point of the drop surface,
a matter of fundamental importance in the drop-shape
problem, as will be shown below.

A technique for determining R; and R, from a
photograph of a falling drop will be explained below.

Internal hydrostatic pressure.—In a coordinate sys-
tem moving with a drop which is falling at its terminal
velocity, an observer would regard the drop as being
just supported against gravity by the vertical com-
ponents of the aerodynamic pressure forces and the

TaBLE 1. Values of surface-pressure increment due to surface
tension, top-to-bottom hydrostatic pressure difference, and stag-
nation pressures for spherical drops of various radii, and density
pu, at 0C, falling at terminal velocity V. through air of density p.

Radius, Aps = 2v[r 2puwg? 3oV
(cm) (dyne/cm?) (dyne/cm?) (dyne/cm?)
0.001 150,000 2.0 0.001
0.01 15,000 19.6 34
0.05 3,000 98.0 105
0.10 1,500 196 273
0.20 750 392 506
0.30 500 588 550
0.40 375 784 - *
0.50 300 980 *

* Data on V,, taken from Gunn and Kinzer (1949), do not
include drops of » > 0.3 cm.
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surface shear stresses due to the apparently upward-
rushing air. Consequently, there must exist within the
drop a vertical pressure gradient of exactly the sort
found in any mass of fluid at rest in a gravitational
field. This hydrostatic pressure gradient appears to
have been overlooked by both Lenard and Spilhaus;
yet, in the limit of very large raindrops, the difference
in hydrostatic pressure between top and bottom of a
drop becomes quite important in controlling drop
shape.

Table 1 illustrates the comparative values of the
surface-pressure increment, Ap,, the top-to-bottom
hydrostatic pressure difference, 2p,gr, and the stag-
nation pressure, 3p V2, for a number of different drop
sizes, extending from those in the cloud-particle range
up to the largest stable water drops. Note carefully
that in computing the values of Ap, and 2p,g7 given
in the table, the drops are assumed to be spherical, so
the numerical magnitudes must not be regarded as
exact for drops much larger than about 0.05 cm in
diameter.

It may be seen from table 1 that hydrostatic effects
are negligible compared to surface tension effects for
water drops of radius less than about 0.05 c¢m, but
that the hydrostatic pressure differential is equal to
or greater than the surface-pressure increment for
large raindrops. Table 1 also shows that, for drops of
cloud-particle size, the surface-pressure increment is
so very large compared with hydrostatic pressure
differences within the drop, or compared with the
minute aerodynamic pressures established at terminal
velocity, that each of these factors (and also all others)
may safely be neglected in discussing drop shape.
Hence cloud drops do simply assume the shape imply-
ing minimum surface free-energy, thus accounting for
their well-known spherical form. But in the case of a
raindrop at the upper end of the observed drop-size
distribution, the surface-pressure increments are only
of the same order of magnitude as the pressure effects
due to gravity and aerodynamic factors, so for this case
one must examine the shape problem more thoroughly.

Electrostatic charges.—Since it is known that hydro-
meteors of all sizes, ranging from cloud droplets up
to the largest raindrops, may acquire electric charge,
it is necessary to consider the possibility that the
drop-shape problem might be sensibly affected by this
factor.

By electrostatic standards, the water in a natural
raindrop is a good conductor. It can be shown (e.g.,
Jeans, 1941) that a conductor carrying a local surface
charge-density ¢ experiences an cutward-directed ten-
sion (negative pressure) whose magnitude per unit
area is given by

T = 2702 (3)

This electrostatic tension opposes the surface tension,
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and thus constitutes one of the several destabilizing
factors that control drop morphology. This point
assumes real interest as soon as one notes that, on any
conductor of wvariable surface curvature, there is a
tendency (counteracted only by external fields due to
neighboring charged bodies) for the charge to dis-
tribute itself in such a manner that ¢ becomes largest
where the surface curvature is largest. Hence, as a
charged raindrop begins to flatten out due to aero-
dynamic effects, more of the total available charge
should migrate towards the waist of the drop, and
should there produce a locally exaggerated suppression
of the surface tension effect, which serves to oppose
the effect of low aerodynamic pressures near the waist.
The drop should relax into a state of still greater
deformation, and this further flattening should then
not only further decrease the external air pressure at
the waist, due to continuity and Bernoulli effects in
the airflow, but should at the same time have the
additional unfavorable effect of calling for still further
buildup of surface charge-density near the increasingly
sharply curving waist. This should, in turn, oppose
even more strongly the surface tension effects that are
serving to hold the drop together, and so on, until the
drop becomes so flattened as to be torn apart by
aerodynamic forces. This qualitative picture suggests
a plausible mechanism for the breakup of large rain-
drops in thunderstorm precipitation-currents, but it
will next be shown that this interesting hypothesis is
quantitatively tenable only for quite abnormal degrees
of charging of the drops.

In the region just outside a point on the surface of a
raindrop having local surface charge-density o, the
electric field intensity is

E = 4ro. (4)

Now, the greatest possible value that ¢ can assume is
given by (4) when E is set equal to E,, the dielectric
strength of the surrounding air. Any greater surface
charge will induce corona discharge that will reduce
E to E;. E,is pressure dependent and is also sensitive
to the geometry of the charged conductors involved,
but, for the cloud-physics problem at hand, it will be
conservative (in the sense of admitting rather high
values of ¢ and hence of T') to put E; = 30,000 volt/cm
in (4), solve for the implied surface charge-density,
and then insert this into (3) to determine the greatest
value 7" can assume before corona discharge sets in.
The result is:
2rE# Eg2 10¢
= = — = — = 400 dyne/cm?,
(4m)? 87 8r

for the sea-level value of E; = 30,000 volt/cm = 100
e.s.u. At the 500-mb level, where E, falls to about
15,000 volt/ecm, Ty could be no greater than 100 dyne/
cm? At 700 mb, the limit is about 200 dyne/cm?, It

d
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is to be noted that T, is independent of drop size;
hence, the condition favoring large relative importance
of electrostatic effects as compared to surface-tension
effects will be large drop radius.

This electrostatic effect (decrement of pressure on
passing from the air side over into the water side of
the drop surface) is of the order of magnitude of Ap,
for rather large drops as calculated above, but 7' has
been computed here for a value of ¢ that is substan-
tially larger than any yet observed directly or indi-
rectly. Gunn (1947; 1950) has found, by direct meas-
urement from aircraft flying through precipitating
clouds, that drops seldom bear charges in excess of
0.1 e.s.u. Furthermore, his values were notable in that
they are almost an order of magnitude greater than
those previously reported for raindrop charge as meas-
ured at the earth’s surface (Chalmers, 1949). Gunn
(1949) has given an interesting possible explanation
of why raindrops may not be able to accumulate
charge to such a degree as to produce corona discharge
of the type here tacitly assumed (isolated drops dis-
charging into the air), so that his observation is not
without theoretical support.

Now, a drop of radius r carrying so high a charge
density as to imply E = E; at its surface, bears a
total charge g4 = r2E,. At 700 mb, roughly the pres-
sure level at which Gunn found the highest particle
charges, E; = 70 e.s.u. Hence, for an excessively large
drop of the sort which might conceivably result from
the melting of a hail particle, say r = 0.5 cm, gs =
17.5 e.s.u., or two orders of magnitude greater than
Gunn’s observed maximum charge of about 0.1 e.s.u.
For a precipitation particle of more plausible size, say
r = 0.05 cm, g¢ = 0.17 e.s.u., which is in rough agree-
ment with Gunn’s maximum observed value. How-
ever, for any and all drops charged to the dielectric
limit near 700 mb, Ty = 200 dyne/cm?, and when one
considers drops of radii as small as 0.05 cm, Ap, is
already appreciably greater than 200 dyne/cm?. Table
1 shows Ap, = 1500 dyne/cm? for the spherical ap-
proximation at this drop size. For drops of radii near
0.35 cm, T3 becomes about equal to Ap,, so if cloud
electrical processes are capable of charging such large
drops to the limit g4, electrostatic deformation will be
important. :

It would seem, however, that attractive as the elec-
trostatic factor seems in explaining drop shape and
breakup, such observations of drop charges as do exist
indicate its slight quantitative importance under most
circumstances. The electrostatic factor must be held
in mind as possessing possible significance in processes
occurring in the regions of highest electrical activity
of thunderstorms, particularly if future studies reveal
that drop sizes are excessive in just such regions, but
elsewhere it may be ignored on the basis of existing
drop-electricity measurements. It may be noted that
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in the regions of peak field strength within thunder-
clouds, the shape problem must also be considered in
relation to the Macky effect due to external electric
fields (Macky, 1931), but this case will not be treated
in the present article.

Finally, it is to be noted that the electrostatic factor
is definitely not to be considered in the shape analysis
carried out below, for that analysis concerns uncharged
water drops formed under laboratory conditions.

Internal circulations.—When the boundary of any
airflow is a solid, as in the case of flow over an airfoil,
the “‘condition of no slip” for real fluids implies that
the air in contact with the boundary is at rest relative
to that boundary. But when the boundary is the sur-
face of a liquid, as in the case of a raindrop falling
through the air, the no-slip condition can be satisfied
even if the surface layer of air is slowly moving, for
the interfacial liquid may be drifting downstream at
some slow rate. In the case of a falling raindrop, any
such surface circulation induced by shear stresses ex-
erted by the ambient air would in turn induce some
sort of axisymmetric internal circulation.

Lenard (1904) postulated the existence of such in-
ternal motions, and regarded them as capable of
accounting for the drop deformations which he had
observed; but he made no attempt to demonstrate
their reality experimentally, nor to predict their inten-
sity theoretically. Qualitatively, one can say that at
least a very slow internal circulation is almost inevi-
table, for the dynamic boundary condition pertinent
here is that of continuity of tangential shear stress
across the water-air interface; and since water’s vis-
cosity is not infinite, at least a slight amount of
internal motion seems certain to develop. In the analy-
sis that will be given below, it will be necessary to
know whether the pressure at a point on the vertical
axis of a drop is equal to that at a point at the same
height above the base of the drop but lying just inside
the drop surface. In view of the relatively small radii
of curvature of the water-particle trajectories in any
internal circulations, one can show that horizontal
uniformity of pressure would be noticeably altered if
surface water-velocities of much over one-tenth the
drop’s falling speed can be developed. Consequently,
it becomes indispensable here to obtain some estimate
of the intensity of the internal circulation.

Bond (1927) has examined theoretically the prob-
lem of internal circulations for the case of a liquid
sphere moving through a dissimilar liquid medium for
the case of Reynolds numbers in the Stokes-law range,
and has shown that the development of internal circu-
lations does not depend on simply the external Rey-
nolds numbers, but rather on the relative viscosity of
the interior and the exterior fluids.

Richardson (1950) has made some experimental
studies of the breakup of water drops falling from a
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tower 125 ft high, and has suggested that their breakup
is due to the effects of internal circulation; but he
appears to have obtained no direct evidence to support
this view. He did observe that drops of a very viscous
liquid (thickened methyl salicylate) resisted breakup
far more effectively than did water drops, and argued
that this was due to their resistance to the develop-
ment of internal circulations. One can question this
interpretation on the ground that the increased vis-
cosity may also play an important role in suppressing
breakup by inhibiting the rapid internal motions that
probably accompany breakup in oversize drops (Blan-
chard, 1950).

Blanchard (1949) attempted to observe internal
circulations in water drops suspended in a vertical
wind tunnel. He introduced fine particles of alumina
into the drops to serve as tracers in revealing internal
motions, but reported no evidence for any circulations,
His observations may be inconclusive, due to the fact
that his tracer particles might have been too large
(“300 microns and under”) to be carried along in
currents of the order of centimeters per second. Kinzer
(unpublished) has observed very slow, rolling motions
inside drops containing fine talc particles, but he esti-
mated the velocities involved to be less than a centi-
meter per second, which can be shown to be too slow
to have appreciable centrifugal effect on drop shape.

Because of the importance of settling the question
of whether internal circulations should be important
in the drop-shape problem, the writer has sought a
theoretical basis for estimating the upper limit to the
circulation velocities that could develop within a large
drop falling at the experimentally established limiting
speed of about 8 m/sec. The analysis is based upon the
following assumptions:

1. The shear stress is continuous across the water-air interface;

2. The condition of no slip holds, but the interfacial molecules
ot water and air drift together so slowly downstream that, as far
as the external flow dynamics are concerned, the surface air-
molecules’ speed may be assumed to be negligibly small compared
to the relative airspeed at the outer limit of the laminar layer
(about 12 m/sec at the waist of a large drop falling at 8 m/sec);

3. The drop remains spherical; a corollary to this assumption
is the implication that the stream function inside the drop corre-
sponds to that of a spherical vortex.

Any exception to assumption (1) would imply finite
shear stress acting on an infinitesimal lamina of fluid,
i.e., infinite accelerations would result from any failure
for this condition to hold, so this first assumption is
above reproach. That the surface air-velocity at the
base of the boundary layer may be regarded as zero
compared to that prevailing just outside the boundary
layer [assumption (2)7]is an assumption that can only
be tested a posteriori. 1t will be shown below to be
admissible. Assumption (3) is introduced to simplify
the analysis, even though it fails to hold in the case of
interest here. However, departure from sphericity
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ought not have any large effect on the chances for the
development of internal circulation, since the experi-
mental work of Garner (1950) and Spells (1952) dem-
onstrates that the type of vortices predicted by Bond
(1927) appears in large drops of liquid in liquid despite
a very marked deformation. Assumption (3) simpli-
fies the analysis primarily because of the corollary
implication concerning the nature of the internal
stream function. For a spherical drop, the stream
function for a spherical vortex may be used to describe
the motion to within an approximation that is ade-
quate for the present purposes.

The general form of the stream function ¢ for an
axisymmetric flow, when specialized to the case of
motion within a sphere, reduces to the form

¥ = A(r® — a®)r?sin? 4,

®)

where A is a constant, a the radius of the sphere,
r the radial coordinate measured from the center of
the sphere, and 6 is the meridional coordinate meas-
ured from a polar axis directed towards the pole of
the sphere towards which fluid moves along the polar
axis (see fig. 2 and Milne-Thomson, 1949).

The meridional water velocity #’, at a general point
(7, 0), is given by

179
u'(r,0) = ; (-a—;ﬁ) = A (47 — 2a%) sin?d. (6)
r, 0

Hence,
u' (a, 37) = 2a24.

™

Also, the velocity shear just inside the surface of the
sphere at its waist is, from (6),

(0u'/37)a, 1» = 8aA. (8)
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F1G. 2. Definition sketch of vortical circulation inside
idealized spherical drop.
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So, from combination of (7) and (8) to eliminate A4,
it follows that

u,(a) %7") = %a’(au,/ar)a, iy

(9)

and the problem of determining #’(a, $7) becomes
that of finding du’/dr at the same point. This can be
done next with the aid of assumption (1).

Continuity of shear stress across the water-air inter-
face requires

' (0u'/07)a = u(0u/93r),,

where the primed quantities refer, as before, to the
water, and the unprimed to air. Since u’ = 102y,
one has

(0u’/0r)q =~ 1072(0u/07),. (10)

The velocity shear in the boundary layer of air just
outside the drop is of the order of u:/8, where %, is the
local air speed relative to the sphere at the outer limit
of the laminar boundary layer, and § is that layer’s
radial thickness. Since outside the boundary layer the
flow at raindrop Reynolds numbers will be essentially
potential flow, at least up to about the waist of the
drop, and furthermore since to assume potential flow
is to be conservative here in the sense of admitting
rather large waist velocities in the air flow, %, is taken
as 1.5 U,, where Uj in the raindrop case is the ter-
minal falling velocity. On the other hand, to evaluate
8, the boundary-layer theory of Tomotika (1935) will
be utilized. Tomotika showed that, for a point about
80 deg from the forward stagnation point of a sphere,

4 = (68/%1) (ZU()V(Z)%, (11)

where » is the kinematic viscosity of the air, and a is
the radius of the sphere. For Uy, = 8 m/sec and
a = 0.5 cm, § is found from (11) to be about 0.05 cm.
Hence, near the waist of such a large drop, (9u/97).
~ u;/8 = (1200)/(0.05) sec! = 2.4 X 10* sec™?, and
then from (10), (0%'/87). = 240 sec™.

Combining this last result with (9), one finds that
%' (a, 3r) ~ 30 cm/sec. It is to be noted immediately
that, since this speed is less than 3 per cent of the air
speed (12 m/sec) at the outer limit of the boundary
layer near the waist of a drop falling at the maximum
speed of about 8 m/sec, assumption (2) is rendered
quite plausible @ posteriori. If a similar calculation is
carried out for the more probable value of 2.5 mm for
the radius of a “large’” drop, the circulation velocity
at the waist is found to be only about 20 cm/sec,
which is in still closer accord with assumption (2).

The circulation intensities so predicted are substan-
tially higher than those observed by Kinzer (in smaller
drops), and it will become possible below to point out
a very good reason why the actual circulations fail to
reach the intensity just predicted. However, since
this point will depend upon a deduction which hinges
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in part upon the negligibility of internal circulations,
it is here necessary to proceed to show that even a
surface motion of 30 cm/sec in a large drop will not
lead to internal pressure gradients large enough to
alter seriously the hydrostatic balance inside the drop.
Consider the radially inward force that would develop
as a centrifugal reaction to the here predicted vortical
motion. The radii of curvature of the trajectories of
particles moving just inside the boundary of a spherical
vortex near its waist are nearly identical with the
radius, ¢, of the vortex boundary, as may be seen in
fig. 2. Since the speed of circulation falls off rapidly
inward (u’ « 7% as one approaches the ring of stag-
nation points lying in an equatorial circle at 0.71 a
from the axis, and since furthermore the centrifugal
reaction varies as the square of the circulation velocity,
one will obtain a reasonable order-of-magnitude esti-
mate of the centripetal force involved if he assumes
that a lamina of radial thickness equal to about one-
tenth the distance from the surface to the stagnation
point moves meridionally near the waist with the
predicted speed of 30 cm/sec in a very large drop of
0.5-cm radius. The centripetal force per unit area
acting on this lamina is found to be about 30 dyne/
cm? This contribution to the internal pressure field is
only 10 per cent of the surface-tension contribution of
about 300 dyne/cm? for a drop of this size, and is still
a smaller fraction of the hydrostatic pressure differ-
ence from top to bottom of such a drop. For a drop
of 0.25-cm radius (still a very large raindrop), one
finds that the centrifugal pressure effect represents a
still smaller fraction of the surface-tension incremental
pressure. Although the preceding analysis can only be
regarded as a relatively crude approximation, the order
of magnitude of the predicted centrifugal pressure
gradient appears to warrant neglect of internal circu-
lation within falling raindrops, at least as far as such
circulations might affect the shape of drops in the
range of sizes now known to occur in natural rain.
This conclusion will be considerably strengthened be-
low, when the phenomenon of separation is discussed.

Aerodynamic pressure distribution.—In the writer’s
opinion, all the factors capable of influencing drop
shape, with the important exception of the aerody-
namic factor, have now been considered. The next
logical step for completing the drop-shape theory
should thus be a direct evaluation of these aerody-
namic pressure effects. Unfortunately, to carry out
this last step would be extremely difficult. Without
belaboring this fairly obvious point, we may note that
the aerodynamic pressure distribution over the surface
of a drop falling through the air is itself determined
by the very shape one wishes to deduce. One could
only proceed here, in principle, by some method of
successive approximations in which each aerodynamic
pressure calculation (based on the previous iterative
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approximation to the equilibrium shape) would be
used to deduce a modified shape consistent with the
surface-tension and hydrostatic-pressure requirements,
and then this new shape would have to be used in the
next iteration of the aerodynamic calculations, and
so on. Difficult as this would be, one might be ready
to attempt it, were it not for the fact that there exists
no general method for calculating analytically the
pressure pattern about an arbitrary surface. The
method of superposition of a suitable array of sources
and sinks, which is sometimes useful in treating the
flow around revolutes, is only sufficiently convergent
to be practicable in the limit of very elongated revo-
lutes. To proceed with an iterative method in which
each aerodynamic calculation had to be performed
graphically or numerically was one course open to the
writer; but he has instead chosen to proceed at this
point by a different approach: namely, to analyze
photographs of actual drops of known size and falling
speed in order to deduce these aerodynamic pressures
which would be so difficult to calculate directly.

3. Calculation of aerodynamic surface pressures

On the basis of the discussions of drop shape given
in the preceding section, the writer adopts the follow-
ing hypothesis: The equilibrium shape of a large drop,
bearing at most a charge small compared to the limiting
value imposed by the dielectric strength of atr and falling
at terminal velocity, is that particular shape for which
the joint action of the external aerodynamic pressures
and the surface-pressure increments just produces an
internal pressure distribution that satisfies the hydro-
static equation within the drop.

This hypothesis has led the writer to employ the
following method for calculating the aerodynamically
developed external surface pressures. Given a photo-
graph of a drop of known size and falling speed, one
first calculates the stagnation pressure developed at
the lower pole of the drop. It is fortunately one of the
well established facts of fluid dynamics that, regardless
of almost all peculiarities of a given flow pattern
about an object immersed in a fluid stream, the excess
pressure developed at the leading stagnation point is
1pv2 where p is the fluid density and # is the speed of
the fluid far from the object, measured relative to that
object. Hence, this first step involves no approxima-
tions. Next one measures, on the available photograph,
the radius of curvature R, of the drop-surface profile
at the lower stagnation point. For reasons of axial
symmetry, R; = R, = R, at this point of the drop,
i.e., the drop surface is locally a portion of a sphere of
radius R, at the stagnation point. Using this measured
radius in (1) to compute Ap, at the stagnation point,
and edding the result to the computed stagnation
pressure, one obtains the pressure prevailing just inside
the drop at its lower pole. Next, using the hydrostatic
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equation, one may quickly determine the internal
pressure p;{(z) at any height 2, measured upward along
the vertical axis of symmetry from zero at the lower
pole. Then, as long as internal circulations produce
only negligible internal pressure gradients, the pres-
sure just inside the drop surface at height z is equal to
that already determined for the point along the axis
at that height. Finally, if one can determine from the
drop photograph the values R,(z) and R:(z), (1) can
be used to compute Ap(z). Subtraction of this from
pi(2) yields p.(z), the external aerodynamically in-
duced pressure at height 2.

From the preceding discussion it can be seen that
the success of this method hinges upon being able to
determine R;(2) and R:(z) from a single side-view
photograph of a given drop. The technique for doing
this turns out to be quite straightforward.*

One of the two principal radii of a revolute, say
Ry(2), turns out to be simply the radius of curvature
of the meridional profile at the height z. This can be
measured on a tracing made from an enlargement of
a photograph of the vertical cross-section, such as the
one shown here in fig. 1. One constructs normals to
the profile curve at each of a fairly dense series of
points spaced regularly along the profile, and from
these the values of R;(z) can be determined by meas-
uring the distance along the normal at z to the point
of intersection with the normal drawn from the next
adjoining point on the profile. In fig. 3, the distance
R, for point P is shown as PC;.

Ry(z) is even more easily determined, since this
second principal radius, for a surface of revolution,
can be shown* to be simply the distance from the

3 Note that all pressures represent algebraic excesses over the
prevailing barometric pressure, and that the slight variation in
the latter through the height interval spanned by the drop at
any instant is ignorable because it is only of the order of 10-%
times the internal hydrostatic pressure variation in the same
interval.

4 The writer is indebted to Dr. J. M. Keller of Iowa State
College for examining and solving the problem in differential
geometry that underlies the technique for determining the prin-
ctpal radii. His solution is too lengthy to be reproduced here,
and the writer knows of no published solution. However, subse-
quent to Dr. Keller’s solving this problem, the writer came across
a brief statement (Adam, 1949) which agrees with his result and
implies that the same problem has been treated previously.

F16. 3. Definition sketch for method of determining R(z) and
R,(2) for any point P on profile of drop. For point P, Ri(z) =
PC;, and R:(z) = PC..
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profile point at z to the axis of revolution measured
along the local normal to the profile at z. In fig. 3,
R, is shown as the distance PCs. The normals already
constructed in the process of finding Ri(z) facilitate
rapid determination of R(z).

A method for determining p.(z) having been estab-
lished, there remains only the question of availability
of suitable photographs. The writer has succeeded in
obtaining only four photographs from which size and
terminal velocity could be accurately determined for
water drops that had attained a stable configuration.
These photographs, reproduced here in fig. 1, were
taken by Magono (1954). All of the remaining dis-
cussion is necessarily based upon these four photo-
graphs.

Since only the equivalent spherical diameters of the
drops in fig. 1 were known, the exact distance scale of
each photograph had to be determined preliminarily.
On a tracing of an enlargement of each photograph,
the cross-sectional area of the drop was divided into
a large number of horizontal strips of equal vertical
width Asz. Next, for each such narrow strip, the radial
distance 7; was measured from a point on the axis of
revolution (midway between the upper and lower
edges of the strip) out to the meridional profile curve.
Then the quantities #7;% Az were computed for each
of the entire series of strips, and their sum equated
to the actual drop volume as given by Magono. From
this equality, the scale factor of each enlargement was
ascertained for use in converting all subsequently
measured lengths to true lengths.

To determine R;(z) and R:(z) from drop photo-
graphs, it was necessary to find, first, a technique for
graphically constructing the normal at an arbitrary
point of a smooth curve, and second, a method of
faithfully reproducing the drop profile from an en-
largement of the original photograph.

After rejection of several methods of constructing
normals, a simple optical device was selected as the
most precise method for constructing normals, A 45—
90 deg crown-glass-prism of 2.1-cm hypotenuse and
1.5-cm length was cemented, hypotenuse-face down,
into a rectangular hole just the size of the hypotenuse
face, cut in the middle of a 10-cm square sheet of
plastic 2 mm thick. A hairline was scribed on the
underside of the plexiglass sheet, so as to be colinear
with the 90-deg edge of the prism when viewed from
directly above. When such a device is placed over any
curve for which the normal is sought at some arbitrary
point which has been marked with a small dot, one
can, by looking down on the 90-deg edge of the prism,
see two images of the dot and two images of the curve
in the neighborhood of that dot. The geometrical
optics of the arrangement can be shown to be such
that, if the two images of the curve join with no dis-
continuity when the two images of the marking dot
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are equidistant from the 90-deg edge, the latter edge
(and hence also the hairline) is normal to the curve
to within an error which depends only on the rate of
change of curvature near the point of interest.® Ex-
perience quickly reveals that it is essential to employ
a prism having no bevel on the 90-deg edge, and analy-
sis of the optics involved shows that accuracy is
improved by using a prism of small hypotenuse. With
the particular prism used in the present work, the
precision with which normals could be determined was
better than the precision of any other step in the
analysis. In a total of 110 trial determinations of the
normals of circular arcs of several sizes ranging from
radii of 2.5 to 15 cm, the absolute errors and the
coefficients of variation were all slightly below 1 per
cent.

The second graphical problem, that of reproducing
the profile, would seem simpler but actually proved to
introduce the largest source of error in the entire
analysis. The definition of the edges in the highly
(roughly 50-fold) enlarged drop photographs was not
sharp enough to permit use of the prism device directly
on the enlargements. Even the most careful job of
freehand copying of the profile produced far too many
small irregularities that cancelled the precision attain-
able with the prism method, so it was decided to fit a
series of sections of French curves to the photographic
profiles, to obtain at least sectionally smooth curves
for analysis. From a large set of such curves, members
were selected by a purely trial-and-error procedure
until the best fit was secured. It was possible to syn-
thesize all profiles without using more than five sepa-
rate sections in representing any one profile, still
keeping the resultant curve everywhere closer than
1 mm to the photographic profile (order of 1 per cent
of the typical radii of curvatures of the enlarged pro-
files). Although such synthetic reproductions appeared
excellent to the eye before analysis began, the results
of determinations. of the associated normals revealed
that there were frequently appreciable discontinuities
(order of 10 per cent) in the values of R,(2) across the
junction of two fitted sections. Particular examples of
the effects of this type of error will be cited below.

Proceeding in the manner now outlined, the writer
determined p.(z) from the four drop photographs re-
produced here in fig. 1. To obtain an estimate of the
precision of the method, and to determine how sig-
nificantly p.(z) would differ for the two sides of each
drop, the two half-profiles (left and right) were treated
separately for each drop, and for each half-profile two
entirely independent analyses were performed, thus
yielding sixteen analyses in all. For any one half-
profile, the process of fitting French curves to the
photographic profile was done in two wholly inde-

5 No published description of this device is known to the writer.
Mr. K. H. Jehn, of the University of Texas, pointed out the basic
principle to the writer several years ago.
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pendent operations on different days, so that full
opportunity for subjective variations in selection of
particular curves would obtain. It was found, thereby,
that a given half-profile was usually synthesized with
different members of the set of French curves in the
two cases, that the two resultant curves appeared to
the eye to be virtually identical, but finally that the
two calculated sets of p.(2) values exhibited discrep-
ancies which were always most marked at points where
one of the two half-profiles had a junction between
adjoining fitted sections.

A conventional smoothing formula, 1(a 4 2b + ¢),
was applied to the series of'measured values of R; and
R,, to suppress somewhat the occasional fluctuations
caused by junction errors and chance errors in deter-
minations of normals. It will be seen that such smooth-
ing is in order here, by virtue of the fact that a single
normal constructed with a slight error in direction
always raises one R; value and lowers another. This
smoothing did not eliminate junction errors; but from
the absence of marked irregularities within portions
of the profile curves not influenced by junction effects,
it was concluded that it sufficed to remove most of the
random errors associated with the use of the prism
device.

4. Discussion of results

The results of all sixteen analyses are shown in
fig. 4. For each one of the four drops, the mean p,(2)
values obtained from all analyses for that drop are
plotted as dashed curves. The scatter about the mean
curve, and particularly the difference between the two
half-profiles for a given drop, as well as the discrep-
ancies between results of the two analyses performed
on any one half-profile, can be deduced by inspection
of the plotted points.

In every case, the mean aerodynamic pressure pro-
file exhibits three characteristic features. First, there
is a region on the underside of each drop where the
pressure rapidly falls from its large positive value at
the lower stagnation point to a large negative value
at a point lying generally well below the point of
maximum cross-section of the drop. Second, there is
next a short region of the profile within which the
external pressure rises rather sharply to less negative
values, steadying off at about the point of maximum
cross-section (except for the smallest drop). Third,
the remainder of the pressure profile is characterized
by generally irregular variations (random-error effects)
about moderate negative values, tending in most cases
to become more negative near the top of the drop.

Before discussion of the interpretation of these mean
profiles, some of the effects of errors on the individual
analyses will be noted. The greatest dispersion of com-
puted pressures occurs for the 2.8-mm drop (fig. 4, top
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F16. 4. Computed aerodynamic pressure profiles for four drops of Fig. 1. For each drop, results of four independent analyses are
plotted. Abscissa is height above lower stagnation point of each drop. Dashed curves are drawn through means of four computed
pressures at each level z.
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left) on its upper surface. Examination of all the steps
in the calculation for this region on the 2.8-mm drop
revealed that this large dispersion was not due to
serious errors in construction of normals nor to junc-
tion errors, but rather resulted from a peculiar sensi-
tivity of p.(2) to small errors in just this portion of
the profile. For this particular level, it happens that
the internal pressure p;(s) is so nearly equal to the
local values of Ap,(2) that p,(2) = p:(z) — Ap.(2) is
unusually sensitive to any small errors in Ap,(2). Thus,
at the level where one of the calculated external pres-
sures for the left-hand profile rises to about —12 dyne/
cm?, one of the right-hand profiles exhibits a pressure
of —140 dyne/cm?, yet the corresponding values of
Ap, differ by only about 12 per cent. Scrutiny of the
raw data for this part of the 2.8-mm analyses suggests
to the writer that the left-hand profiles are more sus-
pect than their right-hand counterparts; one additional
analysis of the left-hand profile tends to confirm this,
but the original results are presented here as evidence
of the level of error inherent in the method. It is of
interest to note that, under just such conditions of
computational instability as this, there exists very
marked physical stability of the drop profile, for the
drop shape in such a region will be insensitive to rather
wide variations in the external aerodynamically con-
trolled pressure. It is in the regions of great compu-
tational stability (for the method used here) that the
drops themselves must exhibit the greatest configura-
tional instability. _

The several profiles provide some evidence of the
importance of one type of error in normal construction
that was, in fact, anticipated before any pressures
were actually computed. At both the lowest and high-
est point on any profile of a drop which is a true
surface of revolution, R; and R, must converge to a
single value which is very large. In reproduction of
the photographic profiles with the aid of French curves,
it was found difficult to obtain synthetic curves which
crossed the symmetry axis at exactly 90 deg. Several
auxiliary aids designed to assure this were tried, and
the prism device was finally employed in such a way
as to check normality; but as soon as analysis was
begun, it appeared that there may have been a slight
systematic error in curve fitting near the top and the
bottom of many of the profiles. This error was such as
to yield underestimates of the radius of curvature at

the poles of the drop. At the tops of the drops, this

effect would have contributed to the rather marked
dip toward negative pressures that can be seen in the
last few computed points for about half the drops.
At the bases of the drops, the method employed pre-
vents this error from producing fluctuations in $,.(0),
for the latter was set equal to the stagnation-point
pressure in every case. However, if such an error
occurred at the base of any drop, it will be seen that
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it would have had the unfortunate effect of displacing,
by the constant amount of the error in Ap,(0), all of
the remainder of the p;(z) values and hence also all of
the remainder of the p.(z) values. Actually, inspection
of the results does not, in fact, indicate that this
occurred, for the scatter in individual values of p.(2)
nowhere appears removable by a simple vertical dis-
placement of one or more full profiles.

As a prominent instance of the discrepant results
that can be obtained in the neighborhood of junctions
between neighboring curve segments, the odd peak in
pressure about halfway up the profile for the 6.0-mm
drop (fig. 4, bottom left) is to be noticed. In three of
the four curve-fitting processes, a junction fell at this
level, and by chance the fitted curves were so chosen
as to give a too-flat section here. The result was to
give erroneously large values of R;{(z) [though, of
course, fairly acceptable values of R;(z)], and hence
too-small values of Ap,(2), and, in turn, values of p.(z)
which were more positive than they should have been.
This happened to be a level within this drop where
the internal pressure was sufficiently close to the corre-
sponding values of Ap, that the sort of abnormal sen-
sitivity to small errors in Ap, noted earlier occurred
again. The result was that some of the computed
external pressures turned out to be positive for this
portion of three of the 6.0-mm profiles. Here, as before,
the results are displayed as they were first obtained,
to illustrate the difficulties that arise in this method of
deduction of the external pressure profile around drops.

Examination of the computation data indicates that
the level of error in determining Ap,(z) values, as
shown by the differences between the eight pairs of
analyses in which each pair represented the same half-
profile, was considerably larger than that which could
be ascribed to the technique for constructing normals.
The latter was found to be both accurate and precise
to within better than 1 per cent, while the differences
in Ap,(2) between members of pairs was of the order
of 10 per cent. The writer sees no way other than
replication to eliminate these errors of curve reproduc-
tion, for the eye does not seem capable of discerning
goodness of fit with an accuracy desired in this prob-
lem. Perhaps more elaborate optical and photographic
techniques might be employed in the original high-
speed photography, in order that sharper definition
of the profile might be obtained, and curve fitting
thereby obviated, but this seems unlikely.

5. Validity of shape hypothesis

To review the logic of the present study, it must
be noted that it has not been found possible here to
predict the aerodynamic pressure effects on drop shape
by proceeding directly from fundamental principles of
fluid dynamics; instead, the aerodynamic pressures
have been deduced from the writer's hypothesis of drop
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shape. Therefore it follows that the test of the correct-
ness of the shape hypothesis must involve a compari-
son between the results shown in fig. 4 and any
available and pertinent experimental data.

Experimental evidence for separation.—It is under-
standable that the literature of experimental aerody-
namics does not contain any data on observed pressure
patterns around objects of raindrop shape, since this
is a quite unusual shape. Furthermore, it would not
be easy to set about securing precisely the data de-
sired, because of the following considerations. If a
“‘model” of a large raindrop were to be fabricated with
an array of static pressure orifices distributed over its
surface, the necessary internal tubing would probably
preclude use of a model smaller than 4 or 5 cm in cross
section, 1.e., the model would have to be six or seven
times larger than the prototype. To preserve dynamic
similarity between model and prototype in the Rey-
nolds sense, the experimental velocity could be only
one-sixth or one-seventh of the prototype velocity of
fall (about 8 m/sec) if air were used as the model
medium ; but at such low air speeds, the uncertainties
in measurement of the slight static pressure changes
involved would pose very serious difficulties.

In view of the lack of precisely the type of observa-
tional data needed for comparison with the present
results, it becomes a next-best substitute to use data
on spheres. Even for spheres, one finds a gap in the
experimental results for Reynolds numbers lying be-
tween the upper limit of the Stokes-law range and the
lower limit of the region of critical Reynolds numbers
for transition to a turbulent boundary layer. Drag
data were found to be abundant for the entire range,
but not surface pressure data. Thus, it has only been

10~=3, —

* Pofential flow

o8r {no uporafion)\ ,

06}
o4t

oz2p

0 3‘.‘

LY Re# 1.6x105
-o2r \.‘\

04t

N 2
-06 \ - I

-08f A\ !

SURFACE PRESSURE —>

Re #2.5x 105
(Fage)

12 —_ L

0 20 40 80 80 100 120 140 160 180

O (degrees) ~—»

F1G. 5. Aerodynamic pressure distributions over surfaces of
spheres for three different flow conditions. Pressure units on
ordinate represent excess of actual pressure over free-stream
pressure and are plotted non-dimensionally in terms of multiples
of stagnation pressure, 32

JAMES E. McDONALD

489

possible to make a comparison with pressure profiles
for spheres at Reynolds numbers (denoted below by
Re) of the order of 10° (Fage, 1937).

Two of Fage’s curves for the profile around a sphere
(for Re = 2.5 X 10% and R =~ 1.6 X 10%) are plotted
here in fig. 5. The similarities between these curves
and those of fig. 4 are sufficient to provide considerable
assurance that the present drop-shape hypothesis is
at least fairly close to the truth. The pressures around
the downstream hemisphere of Fage's sphere, like
those deduced here for the upper surfaces of the large
drops, fail to return to positive values (as do the
pressures in potential flow, dotted curve of fig. 5) after
starting to rise fairly rapidly just ahead of the region
of maximum cross section. Now, it is well known that
this feature, in curves such as those of fig. 5, is due
to the occurrence of ‘‘separation’” in the boundary
layer. At Reynolds numbers below those for which
the boundary layer becomes turbulent (Re =~ 4 X 10%)
but above the Stokes-law range (Re = 1), the stream-
lines fail to close in downstream from the sphere; and
by this failure to create a downstream stagnation
point, the pressures remain low beyond the zone of
separation. The fact that the pressures deduced here
for large water drops do exhibit this behavior may be
regarded, then, as constituting fairly strong evidence
in favor of the shape hypothesis used to determine
these pressures. In still further support of this conclu-
sion, there exist two experimental observations on
actual water drops which will next be shown to be
quite consistent with the present deduction of separa-
tion in the air flow around large raindrops.

First, Gunn (1949) has reported a curious tendency
for drops of one certain size (about 0.5-mm radius)
to undergo marked side-slipping as they fall. Gunn
has shown very convincingly that this must be due to
a resonance phenomenon involving the natural fre-
quency of mechanical oscillation of the drops and the
frequency with which eddies are shed from the upper
surface of the falling drop. Gunn invoked Moeller’s
(1938) extensive results on eddy frequencies for spheres
to show that a sphere of 0.5-mm radius sheds eddies
at a frequency of about 300 cycle/sec, almost exactly
the natural frequency of ellipsoidal vibration of a
water sphere of that size. Gunn’s detection of this
eddying phenomenon really constitutes experimental
evidence for separation, since eddies can only be shed
from a ‘“‘deadwater” region bounded by a separating
stream surface extending downstream from an object.
Furthermore, Gunn’s observations concerned a drop
size much smaller than the ones here analyzed; so at
the higher Reynolds number at which the 2.8- to 6.5-
mm drops fell, separation should almost certainly be
expected (and this the more so because of the sharper
curvature on the upper surface of the larger and more
flattened drops).
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Second, Blanchard (1950) reported that, when one
drop of appropriate size is inserted into the air stream
above another drop which is aerodynamically sus-
pended in a vertical air stream, the upper descends
upon the lower along a peculiar spiral path. Winny
(1932) has, by means of photographs of the flow be-
hind spheres at which separation was occurring, illus-
trated what appeared to be a spiral eddy pattern in
the interval Re = 2 X 103 to 8 X 10%, so Blanchard’s
observations may be taken as further evidence for
separation in the flow around water drops. A very
complete discussion of the wake phenomena behind
solid spheres has been given by Moeller (1938), who
concluded that separation first appears at about Re =
150 and that periodic eddy detachment begins at
about Re = 450 for solid spheres. For a somewhat
deformed drop, these phenomena would be expected
to appear at even lower Reynolds numbers.

In all, there seems to be very good reason for be-
lieving that separation occurs in the air flow around
all raindrops with diameters greater than about 0.5
to 1.0 mm. The fact that the present shape hypothesis
has led to the deduction of a pressure profile of a type
entirely different from that obtained with potential

TaBLE 2. Computation of pressure drag from Left-A profile
for 6.0-mm drop. Surface zones are numbered in increasing order
from lower stagnation point to upper pole of drop. Each zone
is 0.15 mm in vertical thickness for this drop, but vertically
projected area of surface of each zone varies as shown in column 2.
Zonal area is regarded as negative here if its outward normal
has an upward component. Product of corresponding entries in

columns 1 and 2 is zonal contribution to pressure drag and
appears in column 3.

Projected Upward
External area of force on
Zone pressure zone zone
no. (dyne/cm?2) (cm?) (dyne)
1 460 6.0 X 1072 27.4
2 349 9.3 32.6
3 143 7.1 10.1
4 - 74 5.3 -39
5 —159 2.3 -3.7
6 —239 2.6 —6.2
7 —326 1.6 —35.2
8 —421 1.3 —-5.0
9 311 0.6 —1.9
10 —124 0.0 0.0
11 — 61 0.0 0.0
12 - 76 —04 0.3
13 - 97 —0.2 0.2
14 —112 —0.7 0.8
15 —111 —0.9 1.0
16 —~120 —0.9 1.1
17 —135 —1.3 1.6
18 —~128 —1.1 1.4
19 —119 —1.5 1.8
20 —148 —1.7 2.5
21 —~163 —1.9 3.1
22 —~157 —2.1 3.3
23 —164 —2.2 3.6
24 —-157 —-29 4.5
25 -179 —2.8 5.0
26 —172 —2.8 4.8
27 ~144 —3.0 4.3
28 —150 —-3.0 4.5
29 ~199 -3.4 6.8
30 —284 —3.2 9.1

Total upward pressure drag 103.9 dynes
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flow, but quite similar to that characteristic of viscous
flow at high Reynolds number, provides one reason for
accepting the shape hypothesis adopted here. Quan-
titative reasons for accepting the hypothesis will now
be discussed.

Comparison of drag and weight of drops.—A quanti-
tative test can be based upon the fact that the weight
of a drop falling at terminal velocity must be exactly
counterbalanced by the vertical components of all the
pressure forces and shear-stress forces acting over its
surface. The weight of each drop studied here is known,
the vertical components of the previously computed
aerodynamic forces can be determined, their surface
integral can be calculated numerically, and finally the
contribution of the integrated shear stresses can be
found approximately. With these, an approximate
quantitative check can be carrried out.

To compute the resultant, in the vertical direction,
of all the aerodynamic forces on the drop, the surface
zones already employed in the earlier calculations (see
section 3, above) were used. A representative compu-
tation is presented in table 2 for the pressure values
found in one of the four analyses of the drop of 6.0-
mm equivalent diameter (fig. 4, bottom left). For
each of the 30 zones into which the drop was divided,
table 2 shows the computed external pressure, the
vertically projected area of the surface of the zone,
and the upward force on the zone due to the external
pressure.

A number of interesting features of the distribution
of pressure drag over the surface of a raindrop is
revealed by computations such as that displayed in
table 2. The total upward pressure drag of 103.9 dynes
for this particular calculation is the difference between
a positive (upward) contribution of 129.8 dynes from
the region just around the lower stagnation point and
the region above the level of maximum cross section
(between zones 10 and 11) and a negative contribution
of —25.9 dynes made by the fourth to ninth zones.
In the latter portion of the drop, the aerodynamic
pressures have already gone negative while the out-
ward normals to the surface zones still possess down-
ward components. Of the 129.8 dynes positive upward
drag, 70.1 dynes are the contribution of the region
just around the lower stagnation point, while 59.7
dynes are contributed by the deficient pressures estab-
lished over the upper surface of the drop by the effects
of boundary-layer separation. This general pattern
appeared in each of the sixteen drag computations
carried out here and is only to be expected as soon as
separation is recognized to exist.

In addition to this upward force due to the vertical
components of the pressure forces acting over the drop
surface, there is a force due to shear stresses acting at
the base of the boundary layer. It has not been pos-
sible to compute this force with any degree of accu-
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racy, but a rough estimate can be obtained. Consider
once more the drop of 6.0-mm equivalent diameter.
Replace the actual drop by a sphere of 0.3-cm radius,
and introduce spherical coordinates (r, 6, ¢), where 8
is the colatitude measured from the lower stagnation
point, and ¢ is the azimuthal angle. The shear stress
will necessarily be axially symmetric here, and will
vary with 8; so, calling this stress T, the tangential
frictional force in the direction of the air flow acting
on an element of surface area is Tyr?sin 0 df d¢, and
the vertical component of this is obtained by multi-
plication by sin 8. This cannot be integrated until T
is given as a function of 6. It is known from wind-
tunnel studies on spheres (Goldstein, 1938) that 75 is
zero at the stagnation point and increases with 6 up
to a point a short distance ahead of the separation
point (in a flow characterized by this phenomenon).
Since separation normally occurs near 6 = 80 deg for
spheres, one will overestimate the total shear stress
effect if he takes as a crude approximation, Ty = ksin 6,
where % is a dimensional constant to be determined.
Such a representation for T permits one to integrate
the expression for the shear stress. The result, for the
lower hemisphere of a sphere of radius 7, is (4/3) (wkr?).
To evaluate % approximately, the boundary layer the-
ory-of Tomotika (1935) may be used. For a drop of
0.3-cm radius falling at about 8 m/sec, the boundary
layer thickness is about 0.5 mm at 6 = 90 deg. As-
suming that the shear stress at this point is given
simply by the absolute viscosity multiplied by the
average velocity gradient through a boundary of such
thickness, one finds that 2 must equal about 6 dyne/
cm?, an estimate that the writer feels to be in error by
no more than a factor of two or three. Putting this
estimate of % into the integral of the upward compo-
nents of the shear stresses, one finds that these stresses
total only about 2 dynes over the lower hemisphere of
the drop. Since the vertical resultant of the pressure
forces has been shown above (table 2) to be about 100
dynes, this estimate of the total vertical shear-stress
component could be off by a factor of two without
affecting the conclusion that shear stresses contribute
only slightly to the total drag on large drops, a con-
clusion which might have been anticipated from aero-
dynamic experience, since form drag due to separation
effects usually assumes much more importance than
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skin-friction drag for Reynolds numbers in the rain-
drop range.

Addition of this crude estimate of 2 dynes due to
frictional drag to the previous estimate (for profile
Left-A) of about 104 dynes due to the vertical pressure
drag gives 106 dynes as the computed total upward
force on the drop. The actual weight of the 6.0-mm
drop is 110 dynes, so the present shape hypothesis has
led, in this one case, to computed drag forces equal to
about 96 per cent of the actual drag forces that must
have been acting on this drop as it fell at terminal
velocity. This discrepancy of —4 per cent is smaller
than most of the other fifteen drag-weight discrep-
ancies. A complete summary of the sixteen computa-
tions is shown in table 3. Because the surface frictional
drag is smaller than the inherent error of the analytical
method and difficult to estimate with accuracy, no
allowance has been made in any of the drag-weight
comparisons for the contribution of friction.

Table 3 shows that the discrepancies between pres-
sure drags computed on the present drop-shape hy-
pothesis and the known weights of the drops average,
in absolute value, about 10 per cent. This level of
error is very close to that found for the discrepancy
in principal radii of curvature as measured from two
independently reproduced profile curves, suggesting
that most of the mean error for all sixteen analyses
may be accounted for in terms of curve-reproduction
errors. As further evidence of this, the percentage
difference between pressure drags computed for the
two members (A and B) of each pair of profiles traced
from a given half-drop averaged 7 per cent for the set
of eight pairs. It has already been pointed out that
the optical technique used to determine normals intro-
duces an error of slightly less than 1 per cent, so curve
tracing must account for most of this 7-percent mean
difference between members of pairs, and hence must
also explain most of the mean error of about 10 per
cent in drag forces. The mean coefficient of variation
within sets of four pressure analyses is found to be
about 8 per cent, so once again curve-tracing errors
suffice to explain most of this variability.

The algebraic mean error of all 16 analyses is about
—9 per cent, when the drags are compared with the
known weights. If one could make accurate estimates
of frictional drags and add these to the computed

TABLE 3. Summary of pressure-drag computations and comparisons with known weights of drops. Tabulated coefficients of variation
indicate relative scatter of each set of four computed pressure drags about mean of that set. Tabulated errors show percentage
error of mean of each set of four computed drags (frictional contribution neglected) compared to known weight of drop.

Equivalent

drop Pressure drag (dynes) Coefficient Weight

diameter of of drop
mm, Rt-A Rt-B Lft-A Lft-B Mean varijation (dynes) Error
2.8 9.3 8.8 9.7 10.0 9.5 59, 11.2 —159,
4.8 57.5 63.8 53.2 55.0 574 7 56.3 + 2
6.0 93.9 110.0 103.9 97.5 101.4 6 111.0 -9
6.5 135.0 121.5 126.1 108.6 122.8 8 141.1 —13
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form drags, this mean algebraic error would be re-
duced ; but the crude estimate carried out above shows
that frictional drag is only about 2 per cent of the form
drag for the 6.0-mm drop, so residual discrepancy
would almost surely remain. However, it is felt that
the unexplained discrepancy between drag and weight
is small enough here to provide fairly strong evidence
that the present shape hypothesis is substantially
correct.

6. Implications of separation

It should be emphasized that the present calcula-
tions of p.(z) have interest not only in that they pro-
vide a check on the present theory of drop shape, but
also in that they focus attention on the phenomenon
of separation itself. Gunn’s (1949) observations imply
that this phenomenon is already well established in
flow about raindrops of average size (1-mm diameter)
falling at Reynolds numbers of less than 300, which
finding is in good agreement with Moeller’s work on
solid spheres. Hence, separation appears to be a phe-
nomenon to be reckoned with in any theory of micro-
physical processes involving raindrops. The kinematics
of ion deposition on falling raindrops, for example,
must be affected to some slight extent by the failure
for simple potential low to occur on the upper surfaces
of drops. Analyses of heat and water-vapor transfer
to or from water drops must take separation into
account. That this is so can perhaps be best seen by
considering the work of Kinzer and Gunn (1951).
Briefly, the time duration of contact between a packet
of ambient air and the drop surface is roughly halved
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by separation at the boundary layer. Also, as Blan-
chard has found experimentally, the dynamics of a
“fall-on” collision between two drops must be sensibly
affected by the existence of a pulsatory wake set up
behind a drop about which the flow is undergoing
separation. The chance that a small drop may coalesce
with a larger drop that has overtaken it will be reduced
by separation to whatever extent coalescence depends
on non-instantaneous processes occurring in the region
of contact of the two drops, for separation cuts down
the time available for any such rate processes to go
to completion. Finally, the size dependence of the
terminal velocity of raindrops must be largely due to
the well established effect of separation on form drag.
For Reynolds numbers in the approximate interval 10
to 105, the drag coefficient of a sphere is nearly con-
stant, because in this range form drag (due to the
presence of a deadwater region) rather than skin-
friction drag is of controlling importance, and separa-
tion produces a deadwater region whose dimensions
remain roughly independent of Reynolds number until
the latter reaches the critical transition value (mete-
orologically unattainable for raindrops, which break
up well below the critical Reynolds number). One can
see clearly how important separation is in controlling
the form drag on large raindrops by examining the
entries in the last column of table 2. The separation
point falls at about zone 8. The sum of all the upward
forces for zones 9 to 30, 57.8 dynes, is over half of the
net upward drag force for the entire drop, a situation
strikingly different from that found in potential flow.
Altogether, the effects due to separation, whose exis-
tence in raindrop aerodynamics seems quite clearly
indicated, must constitute a significant factor in the
physics of rain.

The recognition of separation sheds further inter-
esting light on the reason for the probable non-existence
of appreciable internal circulation inside raindrops.
The skin-friction drag at the surface of a liquid drop,
about which the flow undergoes separation, is markedly
less favorable to the establishment of internal circu-
lation of the spherical vortex type than is the skin-
friction drag in the non-separating case. Starting from
a zero value at the lower stagnation point, the down-
stream drag of air on water must reach its maximum
value somewhat ahead of the separation point and
then must fall once more to zero at the separation
point, where, by definition, there exists a zero radial
velocity shear right at the drop surface (see Goldstein,
1938, and the suggested flow pattern of fig. 6). Then,
downstream from the separation point, there will tend
to exist an unsteady ring vortex of reversed circulation
concentric with the symmetry axis of the drop. The
presence of such a circulation over the upper portion
of the drop surface will serve to cut down any incipient
internal vortical circulations that do tend to become
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established by the drag forces acting over the lower
surface of the drop. Hence, once one has recognized
that separation is characteristic of the flow around
raindrops, he has available a very strong basis for
predicting that nothing like a spherical vortex of the
Bond (1927) type will occur within large drops, for
there simply does not exist a sustained downstream
traction of surface air on surface water over the entire
surface of the drop. In the analysis of internal circu-
lations carried out above, a surface circulation speed
of about 20 cm/sec was predicted for a 5-mm diameter
drop. That this result is substantially too large to
agree with the observations of Blanchard and of Kinzer
is now understandable in retrospect, for in that analy-
sis it was tacitly assumed that the surface air-flow is
favorable to generation of a vortical circulation every-
where over the surface of a drop. In reality, the
opposing influences of frictional drag at lower and
upper surfaces of a drop must be expected to prevent
any such strong circulation from developing.

Finally, it is to be noted that separation appears to
be responsible for the peculiar asymmetry of a large
raindrop with respect to a horizontal plane through its
center. I't can be shown to be true that, ¢f only surface-
tension and hydrostatic-pressure effects controlled
drop shape, these would produce drops with rounded
bottoms and rather flattened tops. However, because
a stagnation point inevitably occurs at the Jower pole,
while one cannot develop at the upper pole because of
separation of the boundary layer, it follows that the
lower aerodynamic pressures over the upper surface
demand an appreciable larger Ap, there than on the
underside, ¢.e., the curvature of the upper surface must
be greater in order to satisfy the requirement of inter-
nal hydrostatic equilibrium in the face of the con-
siderable aerodynamic pressure difference on upper
and lower surfaces. Hence, the drop becomes rounded
on the top but flattened on the bottom, as revealed
by photographs.

7. Summary

The factors affecting the equilibrium shape of large
water drops falling at terminal velocity — surface ten-
sion, hydrostatic pressure gradients, external aerody-
namic pressures, electrostatic charge, and internal
circulations — have been examined quantitatively,
and only the first three of these have been found to
be significant in controlling drop shape. Adopting the
hypothesis that the equilibrium shape of a raindrop
falling at terminal velocity is that for which the aero-
dynamic pressures and the surface-tension pressure
increments combine to produce just an internal pres-
sure pattern satisfying the hydrostatic equation, the
writer found it possible, by analyzing drop photo-
graphs, to deduce the aerodynamic pressure profiles
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along meridians of the drops. These profiles revealed
clear evidence of separation of the laminar boundary
layer in the air flow around the drops. Since separa-
tion effects could also be shown to exist in certain
experimental observations, it has been concluded that
the working hypothesis for drop shape has been suc-
cessful in explaining the long-recognized deformation
of large raindrops. Furthermore, the drag forces com-
puted from the deduced aerodynamic pressures are in
quite good, though not perfect, agreement with the
weights of the several drops. A number of implications
of separation have been pointed out qualitatively, and
it was noted that the distribution of skin-friction drag
over the surface of a raindrop at which separation
occurs is decidedly unfavorable to the generation of
strong internal vortical circulation.

8. Suggestions for future research

Since the present study is regarded by the writer
as only a first step towards the more significant ob-
jective of understanding the coalescence and breakup
of large raindrops, he wishes to take the opportunity
to urge extension of the sort of laboratory studies so
well begun by Blanchard (1950). The wealth of in-
triguing questions raised by Blanchard’s work, and
the light that could potentially be shed on the dy-
namics of a drop breakup by further studies of this
sort, make a continuation of the research most de-
sirable. In this connection, attention is called to a
brief critical discussion of Blanchard’s work by Mec-
Donald (1951), where a number of suggestions for
improving this type of study have been offered.

It would be desirable to have rather more conclusive
experimental data on the intensities of internal circu-
lation in water drops of various sizes. For drops just
below the size for which separation first appears
(probably around 0.5-mm diameter), it may be pos-
sible that circulation is actually better developed than
for larger drops on whose upper surface a reversed
flow develops.
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