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ABSTRACT

A data sample of optical spectrometer measurements that were obtained in two tropical cyclones is analyzed.
The resultant drop size distributions are normalized and their shape is found to exhibit some curvature—
departure from exponentiality. When the sample, ordered by rainfall rate, is divided in half, the shape (curvature)
of the low-rainfall-rate half is found to be nearly identical to that of the highrainfall-rate half.

Five functional fits to the data are explored in detail; three are exponential fits—Marshall-Palmer, least-
squares and “analytical”—and two are gamma distribution function fits—an analytical and a curvilinear least-
squares. The goodness-of-fit is evaluated based on error squared, and on coalescence growth error and drop
evaporation error. The coalescence growth and drop evaporation are computed using simple microphysical
models. The fits that are based on minimizing squared error do not characterize coalescence growth and
evaporation well. An analytical gamma distribution function fit to the measured distributions provided the
most reasonable compromise between satisfactory squared-error fit and realistic characterization of coalescence
growth and drop evaporation.

With this analytical gamma distribution function fit in mind, modifications to the widely used Marshall-
Palmer-based microphysics parameterizations are proposed. These proposed simple modifications should provide
a more realistic characterization of coalescence growth and drop evaporation in numerical simulations.

Relations between several bulk parameters of the measured distributions and several parameters of the
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functional fits are derived. These relations are compared with those found by other investigators.

1. Introduction

Raindrop size distributions are the end product of
all of the cloud microphysical processes, cloud dy-
namical processes and interactions that affect the for-
mation and growth of liquid precipitation. In addition,
the raindrop distributions, once formed, can interact
with the essential dynamics of the clouds through water
toading, precipitation unloading, downdraft initiation
by precipitation drag and downdraft maintenance
through precipitation evaporation. Warm rain pro-
cesses in warm-base convective clouds, obviously im-
portant in the tropics, also play an important role in
a significant fraction of midlatitude summer precipi-
tation.

Besides being directly important microphysically,
the raindrop size distributions are also important in
the parameterizations of cloud microphysical processes
used in the numerical simulation of clouds and larger
scale systems. Traditionally, microphysical parame-
terizations have followed Kessler (1969), dividing con-
densed water into two categories, cloud water and pre-
cipitation water. In this parameterization, the precip-
itation water is assumed to be distributed exponentially
with drop diameter, as first suggested by Marshall and
Palmer (M-P) (1948):

N(D) = Ny exp(—AD), 8))

where D is drop diameter and MD)D is the concen-
tration of drops having diameters between D and
D + dD. Marshall and Palmer found that the slope
parameter A depends on rainfall rate R and is given
by

A = 41RO, AN

where A has units of cm™' and R is in mm h™'. They
also found that the intercept parameter N, is a constant
Ny = 0.08 cm™*, Nearly all microphysical parameter-
izations in widespread use distribute precipitation water
based on this exponential distribution (1).

If Ny is assumed to be a known constant, the total
precipitation water content M, uniquely determines
A and, thus, the drop size distribution. Here the sub-
script co on M means that the integrations have been
performed up to D = co. Integrating over the distri-
bution to find the total precipitation water content Af
and then solving this expression for A\ gives

1/4
r= (), )

where p,, is the density of the liquid drop. Most prog-
nostic microphysical parameterizations in use assume
that N, is a constant and use (1) and (3) to distribute
the total precipitation water content.

Although the results of theoretical treatments of the
evolution of drop distributions generally have been
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interpreted as supporting the exponential distribution,
the results are not sufficiently definitive to exclude
deviation from the exponential. Srivastava (1971)
modeled the evolution of the warm rain spectra con-
sidering stochastic coalescence and spontaneous drop
breakup. Not surprisingly, these results, which did not
include collision breakup, showed a large deviation
from the M-P distribution, exhibiting a much lower
concentration of small drops and a much higher con-
centration of large drops. Young (1975) and List and
Gillespie (1976) conclude that the M-P semilog lin-
earity (exponentiality) is conserved during the evo-
lution of the drop size distributions in rather com-
prehensive numerical simulations. But, upon close ex-
amination, some nonlinearity (curvature) is present in
their resultant drop size distributions. List and Gil-
lespie’s (1976) collision breakup model produced prac-
tically no drops with D > 2.5 mm, even though it
started with an M-P distribution containing larger
drops. Srivastava (1978) assumed an exponential form
and solved for evolving N, and A. For distributions
of water content > 1 g m~>, he found that binary
interaction processes control the distribution and pro-
duce distributions with a nearly constant A. Carbone
and Nelson (1978), for a rainfall rate of 27.5 mm h™!,
find that their theoretical formulation produces an ex-
ponential form and that the inclusion of collision
breakup makes very little difference in the distribution.
Brown (1981) has shown, from a solution of the drop
breakup equation, that breakup tends to deplete drops
in the larger size categories. Under some conditions,
breakup increases the number of drops in sizes near
D = 1.5 mm, resulting in curvature. However, in this
work the interactions involving both coalescence and
breakup were not included in the same simulation.
Even though theoretical studies generally tend to sup-
port the exponential form, it is clear that deviations
are possible within this framework.

Measurements from many geographic regions and
rain types have shown that the exponential distribution
tends to be the limiting form when individually ob-
served drop size distributions are averaged (Rogers,
1979). But, numerous deviations from a strictly ex-
ponential distribution have been found, particularly
for convective rain situations that involve a significant
depth of warm cloud. Joss and Gori (1978), when
conventionally averaging many 1 min distributions,
found an exponential shape. However, when they av-
eraged the shapes of the same individual 1 min samples,
they found that the resultant average shape deviated
markedly from the exponential toward monodispersity,
1.e., less small and less large drops than either M-P or
the best-fit exponential. The shapes were similar to
those found in this study, but with a somewhat higher
concentration of large drops for the high-rainfall-rate
distributions. Takeuchi (1978) fitted a gamma distri-
bution function to observed drop size distributions.
Ulbrich (1981) also found that the gamma distribution
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function closely approximated the resultant drop spec-
tra for observed individual and combined datasets.
Mueller and Sims (1966) found that a lognormal dis-
tribution fitted a large number of drop size distributions
best. Carbone and Nelson (1978), at cloud base in
summer convective clouds in Texas, found drop con-
centrations an order of magnitude lower than did
M-P at D = | mm and concentrations much higher
than M-P at D > 3 mm, very much at variance with
the results of this study. They attribute these large
deviations to drop sorting by sedimentation. They ac-
cept the extreme spectral forms based on agreement
between radar reflectivities calculated from the drop
distributions and those measured by radar in the same
volume. Even though the M-P exponential fit to ob-
served averaged drop size distributions has attained
widespread acceptance and durability, there are nu-
merous indications that it may be possible to improve
upon this fit. This is particularly true for short-period
samples in convective rain situations.

It is the objective of this study to analyze a dataset
of drop size distributions from clouds that have well-
developed warm rain processes and that span a wide
range of rainfall rates. The shape of the measured drop
size distributions is examined using a normalization
procedure. Five selected functional fits to the observed
data are described. Their performance is evaluated
based, not only on the customary squared-error cri-
terion, but also on the goodness of the estimates of
drop coalescence growth (accretion) and drop evap-
oration provided by the fits. Modifications to cloud
microphysical parameterizations, using an analytical
gamma distribution to distribute the rainwater instead
of the exponential distribution, are discussed in some
detail. Since the same physical processes that shape
the drop distributions are operative in all well-devel-
oped warm rain, the results, which are based on data
from two tropical cyclones, should be generally ap-
plicable to warm-based convective clouds.

2. Method of observation

The imaging optical spectrometer has provided a
significant advance in the ability to size precipitation
particles. The Particle Measuring Systems (PMS) two-
dimensional precipitation optical array spectrometer -
used in this study not only provides images of undis-
turbed particles, but provides the additional advantage
of digitally recording the images. This allows objective
machine data reduction of voluminous quantities of
image data. The precipitation probe used in this study
measures a diameter range of 100-6500 um. The data
were analyzed from 10 s samples (effectively 10 s minus
the overload fraction). Thus, each drop size distribution
represents approximately 1.3 km of flight track and a
sample volume of 2 m>. This volume provides an ad-
equate sample for all but the lowest rainfall rates. Al-
though considerable variation in rainfall rate probably
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does occur over this path length, this is about the length
scale of the convective features involved in the pro-
duction of the precipitation. This sampling is consistent
with the scale of most past observations of drop size
distributions. The image data are reduced by a com-
pletely objective software routine. Details of the in-
strument can be found in Knollenberg (1981) and de-
tails of the observations and data reduction in Jor-
gensen and Willis (1982). The dataset analyzed in this
study consists of 112 distributions that were measured
in Hurricane Anita (3.1 km) and in Hurricane Frederic
(0.5 km).

3. Drop size distributions
a. Typical distributions

Four typical drop size distributions from Hurricane
Anita are presented in Fig. 1. These distributions are
for rainfall rates of 1.85, 15.8, 57.4 and 169.0 mm h~!.
The Marshall-Palmer exponential fit is shown in each
case. While the M-P fits are fairly good, the spectra
appear to be somewhat concave downward, particularly
for the high rainfall rates.

b. Determination of spectral shape

It is impractical to present each of the 112 individual
drop size distributions used in this analysis. Neverthe-
less, to allow a determination of the shape of the entire
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F1G. 1. Four typical drop size distributions and

associated Marshall-Palmer fits.
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sample, the individual drop size distributions were
normalized after the method of Sekhon and Srivastava
(SS) (1970). Normalizing the distributions removes the
dependence on NV, and A in (1), allowing comparison
of the shape of distributions of different rainfall rates.

1) NORMALIZATION PROCEDURE

The normalization method involves the elimination
of Ny and A from (1). First, the precipitation water
content M, is found by integrating over all diameters,
i.e.,

M, =-mp, f NoD? exp(—A\D)dD
o

N -

_ mpwNol'(4) ’ @)

6*
where I' denotes the gamma function. In actual com-
putation, M, was found by integrating over the range
of the instrument. Second, the median volume di-
ameter D,, dividing the precipitation content of the
distribution into two equal parts, is related to the slope
of the distribution by

8
A 3’
where 8 is a constant equal to 3.67, or less, if the

distribution is truncated (Atlas, 1953). Egs. (4) and (5)
can now be used to express (1) in nondimensional

form as
D
o(-65)

Sekhon and Srivastava (1970, 1971) point out that this
normalization provides a “universal” exponential dis-
tribution. A semilog plot of p,MD)Dy*/M,, versus
D/D, will yield a straight line of slope —8 and intercept
B*/x, irrespective of the precipitation rate. Thus, the
shapes of numerous drop size distributions can be di-
rectly compared on the same plot.

In Fig. 2, the normalized data points from 112 drop
size distributions are plotted with In[p, M(D)Dy*/M]
as the ordinate and D/D, as the abscissa. The distri-
bution is noticeably concave downward, particularly
near D/Dy = 1, indicating some departure from ex-
ponentiality. The heavy solid curve was fitted to the
data points by means of a curvilinear least-squares
routine which is described in Section 3c.

Two exponential curves are also plotted in Fig. 2
for comparison: the M—P curve normalized as above,
and the exponential distribution of SS (1971), which
was taken from vertical incidence Doppler radar data
at 2.1 km elevation in a New England thunderstorm.
Qualitatively, the M-P curve captures the essence of
the overall distribution of data points. However, the
observed concentration of small drops (D/D, < 0.6)

Dy = ()

puN(D)Dy* _ B*
————="—ex

A (6)
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FiG. 2. Sample of 112 drop size distributions normalized after the
method of Sekhon and Srivastava (1971). Included for comparison
are a gamma distribution function and M-P (1948) and SS (1971)
fits.

is considerably less than that indicated by the M-P
distribution. At larger sizes (D/D, > 1.5), observed
drop concentrations appear to be slightly less than the
M-P distribution. It is significant that SS (1971) also
found fewer large drops than indicated by the M-P
distribution. This is of significance because their data
were obtained from vertical incidence radar scan sam-
ple volumes, which should be more than adequate to
sample even the largest drops.

Some discussion of the scatter of the data points in
Fig. 2 is in order. The points are quite tightly grouped
in the middle-sized drop diameters. Part of the scatter
at small and large sizes is caused by the distributions
not being strictly exponential, as incorrectly assumed
in the normalization. In addition, the scatter is caused
by sampling and variance in the physical processes
shaping the distributions. The increased scatter at the
larger sizes is probably due, at least in part, to the
‘minimal sampling volume for large drops. The large
scatter at the small diameters (D/D, < 0.6), which may
seem inordinately high at first glance, is really not
unexpected. These data were taken largely above cloud
base in a wide range of cloud dynamical conditions—
updrafts, downdrafts and neutral or inactive, more
stratiform, cloud regions. The concentration of the
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smallest drops is much more sensitive than is the con-
centration of large drops to the balance between those
microphysical processes that produce drops and those
that deplete drops. For example, the concentration of
small drops can undoubtedly be quite different in an
updraft, where small droplets are growing and being
replenished by condensation, than in a downdraft
where they are being depleted by evaporation. Thus,
the high scatter at small drop diameters in Fig. 2 is
expected.

To determine whether there were substantial dif-
ferences in the shape of the distributions between high
and low rainfall rates, the sample of drop size distri-
butions, ordered by increasing rainfall rate, was divided
roughly in half. The mean rainfall rate of the upper
half was 92.4 mm h™! and that of the lower half was
25.1 mm h™!. The two sets of normalized distributions
are shown in Fig. 3. There is slightly more scatter in
the low rainfall rate set, but the shapes of the two
halves are virtually identical. The fits from a curvilinear
least-squares gamma function routine to the two halves
are nearly identical. The only difference is that the
objective fit to the high-rate half indicates a slightly
higher normalized number density at low normalized
diameters and a slightly lower normalized number
density at high normalized diameters, compared with
the objective fit to the low-rate half. It is somewhat
surprising that the high-rate and low-rate halves of the
sample exhibit essentially the same shape character-
istics. This similarity indicates that the basic physical
processes shaping the spectrum evidently do not change
much with rainfall rate over the range represented here.

2) TRUNCATION EFFECTS

The integrations involved in the normalization pro-
cedure, as well as in the computation of any higher
moments of the distributions, assume that the distri-
butions extend from D = 0 to D = o0. At the small
size end of the distribution, the probe used in this
study measures particles starting at D = 100 um. The
practical effects of starting the integrations at D = 100
um, instead of at zero, are negligible. Sekhon and Sri-
vastava (1970) have covered the modifications required
for.an exponential distribution when the maximum
particle diameter is truncated at D = D,,, instead of
infinity. From the results of SS (1970), which apply
to an M-P exponential distribution, if D,,/Dy > 2.5,
the distribution may, for practical purposes, be con-
sidered to extend to infinity insofar as the values of
M and R are concerned. However, the value of Z/Z_,
for D,,/D, = 2.5 is 0.8 and for D,,/D, = 3.2, it is 0.95.
For the instrument used in this study the maximum
size measured is D = 6.0 mm, or larger, because the
full particle was not required to be within the diode
array. The typical D, was between 2.0 and 2.5 mm,
even for the highest rainfall rates. As a result, if the
distributions are exponential, the effects of truncating



1652

-{100

262 -560D/D
Ny (D) = 4659(D/Dy) " exp N

(5, no10 Y]

= -t
> £°
z
& =
Friiliy =
o OO
g :
Z-24
= _10—|
[~
s
~N
23
=
[*4
[=}
=

-4~

" o

_5_

_6—

8 —10-3

71T T 17 T 17 ' 17 T 17 T 717 T 717
10 15 20 25 30 35 40
NORMALIZED DIAMETER D/D,

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 41, No. 9

100

251 -569(D/Dy)
Ny B, = 5211 O/0,F > exp >

PCINT|
n

= -
> 2
r .
a =z
Z-14 g
[=] OU
& S
= -2
2 10!
[~]
S
S -3
<t
=
o
=}
=
_4—.
._|0-2
_5_
_6—.
b 1073

-7 T T T T T T T T T T T T T T T
0 05 10 15 20 25 30 35 40 .
NORMALIZED DIAMETER D/D,

.F1G. 3. Drop size distribution sample of Fig. 2 divided into (a) low and (b) high rainfall rate halves and normalized.

the distributions at D,, = 6 mm, or slightly larger, are
minor based on the analysis of SS (1970).

For a gamma distribution function with a curvature
parameter of 2.5, one would intuitively reason that
the effects of truncating the distribution at some large
diameter would be less than for the exponential dis-
tribution. This is true because there are fewer very
large drops in this gamma distribution than there are
in the M-P exponential of the same water content.
The analysis discussed next parallels that of S & S
(1970), except that it is for the gamma distribution
function.

First, we consider the changes in 8(=ADy) due to
truncation at D,,. The median volume diameter is
defined as the diameter that divides the total volume
of the distribution into two equal parts. For an ex-
ponential distribution, the median volume diameter
is

Do Do

J; D? exp(—A\D)dD = J; D? exp(—AD)dD. (7)

These integrals can be integrated analytically and
the resulting equation can be solved numerically to
give AD, as a function of AD,,, or D,,/D,. For the

gamma distribution with a curvature parameter of
a = 2.5, the median volume diameter is

Do Do '
J(; DS exp(—AD)dD = J; D3 exp(—ADYdD. (8)

Now, because of the non-integer exponents, the in-
tegrations must be handled numerically. The result of
this numerical integration and numerical solution are
shown in Fig. 4a, which gives ADy(f) as a function of
D,,/Dy. Itis seen that AD, reaches its asymptotic value
for D,, = oo of 6.15 when D,,,/D, > 2.0, as compared
with a value of about 2.5 for the exponential distri-
bution. : ]

Next we examine the effects of truncation on the
integrations required in computing higher moments
of the distributions. The appropriate integrals required
were evaluated using a table of the incomplete gamma
functions. The results of this analysis for W/W, and
Z/Z, are compared in Fig. 4b to the curves of SS
(1970) for the exponential distribution. Here, F is the
ratio of the truncated integration to the integration to
D = oo. Even for the sixth moment (Z), if D,,/D,
> 2.5, over 0.95 of the total radar reflectivity factor
of the distribution is accounted for in the case of the
gamma distribution, while for the exponential only
0.80 is accounted for. Thus, for the gamma distribution
and the instrument used in this study, the effect of
truncating the distributions at D,, = 6 mm and not
carrying the integrations of the distribution to D = oo
is negligible.

Now we explore the effects of truncation on the
shape of the normalized distributions. Specifically, can
truncating the distribution at D = D,,, instead of
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FiG. 4a. DyA(B) as a function of Dm/D, for a gamma
distribution function (a = 2.5).
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D = o0, change an exponential distribution into one
with curvature when normalized? An example M-P
distribution for a rainfall rate of 50 mm h™' and A
= 18.03 was normalized based on D,, = o and then
by uvsing D,, = 0.31 cm. For this distribution, M
= 2.378 ¢ m and Dy, = 2.036 mm. For the truncated
distribution, M = 1.933 gm™ and Dy = 1.787 mm.
The distribution was then normalized using these
truncated values. On a semilog plot, the normalized
distribution is linear with an intercept of 8%/7 and a
slope of —@. For § = 3.67, this gives an intercept of
57.7 and a slope of —3.67. For the truncated distri-
bution, the following adjustments apply:

1.0
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This normalization of the truncated distribution gives
a linear relation on a semilog plot with an intercept
of 42.2 and a slope of —3.22. So the only effect of the
rather extreme truncation at a D,,/Dy = 1.75 is a low-
ering of the intercept and a flattening of the slope of
the distribution. A distribution that is exponential does
not have any curvature (on a semilog plot) added by
the extreme truncation of the distribution at D,,
= 0.31 ¢cm. The instrument used in this study does
not truncate the distribution until a diameter is nearly
twice this value.

¢. Exponential and other gamma distribution function
Jits to the observed data

Five functional fits to the observed data were selected
for detailed examination and comparison. These five
were selected because of either previous widespread
application, or because of indications of improved
goodness-of-fit. Three fits were exponential and were
selected largely because of prior application; two were
gamma distribution function fits, included largely be-
cause of the curvature indicated in the normalized
distributions of Fig. 2. Ideally, one would like to have
a functional fit grounded in the physics of drop for-
mation, not only an empirical curve fit.

1) DESCRIPTION OF THE FITS

The first of the fits applied to the observed data was
the classical Marshall-Palmer exponential distribution.
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FiG. 4b. Z/Z, and M/M,, as functions of Dm/D, for the exponential distribution
(SS, 1970) and the gamma distribution function (a = 2.5).
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This fit is based on Egs. (1) and (2) with a fixed intercept
parameter N, = 0.08.

The second fit was an “‘equivalent™ or analytical
exponential fit (AE), as outlined by Waldvogel (1974);
Ny and A completely define an exponential fit to the
drop size distribution. These parameters can be ob-
tained by a simple transformation from two bulk pa-
rameters of the measured distribution. The two pa-
rameters used are the water content M and the radar
reflectivity factor Z, both calculated by integrating the
observed drop size distributions over the range of the
instrument. The transformations are

. 1/6 4/3 4/3
%=1 (E) oo,
T\ V4

SEACE

The third and final exponential functional fit was
a linear least-squares fit to the logarithmic transformed
data (LSE). This fit differs from the M-P exponential
fit in that the intercept N, was not constrained. The
squared error in logN(D) was minimized in the least-
squares fit.

The final two fits involved the gamma distribution
function. The first, termed “analytical gamma” (AG),
is based on a fit to the normalized drop size distri-
butions of Fig. 2. The normalization procedure is sim-
ilar to that outlined in Section 3b. Using a simplified
form of a gamma distribution comparable with (1),

(10)

(1)

N(D) = NgD* exp(—AD), (12)
and the relation Dy, = B/A; then M, is determined as
in (4), i.e.,

w ppwNgI'(a + 4)

g Aa+4

7 pwNeI'(e + 4)D§H

- T ol (ﬁ"'“ L2 (13)
* The normalized relation comparable with 6 is

NDpuD' _6 B (2

M, 7 D(a + 4) B_o) exp[—B(D/Dy)].

M, =

(14)

The data of Fig. 2 were then input to a curvilinear
least-squares routine to minimize the error squared
about a function of the form of (12) and (14). This
procedure resulted in

Nyorm(D) = 492.7(D/Do)** exp[—5.65(D/Dy)]. (15)

This curvilinear least-squares fit to the normalized data
with « = 2.5 was used, along with the water content
and median volume diameter calculated from the ob-
served distribution, to determine a fit to each individual
drop size distribution.
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The second gamma distribution function fit and the
final fitting scheme of the five used here, is an uncon-
strained three-parameter curvilinear least-squares fit
(CG), minimizing the squared error in InN(D). This
routine was individually applied to each of the 112
measured drop size distributions.

The routine used is an iterative nonlinear least-
squares grid search routine that minimizes the squared
error about a function of the form of (12). The routine
uses the LSE as a first-guess fit. The routine was adapted
from Bevington (1969). The CG fits have a mean cur-
vature parameter of about 2. The derived least-square
relationships for the three fitted gamma distribution
function parameters as a function of rainfall rate give,
for R = 50 mm h™', Ng = 36, a = 1.9 and A = 32.

2) ERROR CRITERIA AND PERFORMANCE OF THE
FITS

It is common practice to use a squared-error criterion
as a measure of the goodness-of-fit. However, the
goodness-of-fit may be more appropriately measured
by the goodness of the estimate of coalescence growth
and drop evaporation provided by the fit. This is, for
some purposes, a more appropriate measure, since
these are important microphysical processes that are
required to be parameterized in numerical simulations.
So, in addition to judging the goodness-of-fit based on
squared error, we compared the estimates of coales-
cence growth and evaporation rate provided by each
fit with those computed from the original observed
distributions. These calculations were made using sim-

ple microphysical models.

The squared-error performance (D > 300 um) of
the five fits is shown in Table 1. The overall value and
that for each of six class intervals of rainfall rate are
shown. As would be expected, the fits that are based
on minimizing squared error (LSE and CG) perform
the best based on this criterion. The curvature of the
gamma distribution (CG) does provide some improve-
ment over the exponential, particularly at rainfall rates
> 50 mm h~!. Based on this unweighted error-squared
criterion alone, one would choose either the least-
squares exponential (LSE) or, for further refinement,
the least-squares gamma (CG) fit.

d. Drop coalescence growth

We next examine how well these least-square cri-
terion fits characterize drop coalescence, growth and
drop evaporation. Parameterizations based on the
classical Marshall-Palmer fit are in widespread use in
numerical simulations. How well does this particular
functional fit characterize coalescence growth and
evaporation?

To assess the coalescence growth performance of
the fits, a simple coalescence model was used. A
monodisperse distribution of cloud droplets of radius
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TaBLE 1. Total squared error of log-transformed data. TABLE 2a. Total coalescence growth squared error.
Data [(Noss — Ngp)?] (cm™ X 2500) M-P AE LSE AG CcG
R(mmh™) M-P AE LSE AG CG R (mm h™) (droplets s™' cm™3)
fgg 955 1242 707 865 572 %(5)8 2580 091 1379 029 205
100 7.40  14.40 6.27 8.44 5.67 100 8.50 0.51 7.38 0.47 4.29
75 19.59  33.71 17.05 16.45 12.38 75 5.61 0.56 14.10 0.41 4.28
50 49.28 6297 3534  43.80 33.67 50 4.31 0.36 13.13 0.81 7.18
25 1632 21.27 12.40 14.02 11.13 25 0.41 0.07 2.80 0.11 0.72
10 30.20 31.04 20.34 22.73 17.71 10 0.20 0.02 1.30 0.09 0.59
0 51.86 27.20 17.29 29.57 22.02 0 0.16 0.00 0.13 0.02 0.06
Total 184.19  202.71 11577 143.65  108.30 Total 44.99 2.42 52.63 2.20 19.17

r = 10 gm and a concentration of 238.7 cm™3 was
assumed. This gives a typical cloud liquid water content
of I g m™>. If collection efficiency E is defined as the
radius of the swept cylinder (R), squared, divided by
the radius of the large accreting drop (r.), squared,

RZ
E=—, (16)
rr
then the rate of collection of cloud droplets is
dng
= = rEn oL - v,) (17)

where #; is the concentration of small drops and (v,
— vy) is the relative velocity between the collector and
the collected drops. The collection efficiencies used for
precipitation-sized drops collecting r = 10 um drops
were those tabulated by Young (1975), but the exact
values are not critical to the results of these compar-
isons.

For each observed distribution, and each of the five
fits to each observed distribution, the total coalescence
growth was calculated. In each case, the coalescence
growth error was calculated as the difference between
the coalescence growth calculated (D > 300 um) for
the observed distribution minus that calculated for
the particular fit. The resulting squared errors and
average percent coalescence growth error are presented
in Table 2.

These results are surprising in several respects. First,
the two least-square criterion fits provide very poor
estimates of coalescence growth. The exponential least-
squares fit is very poor; in fact, it is worse than the
classical Marshali-Palmer fit! From the standpoint of
total squared error, the analytical gamma is slightly
better than the analytical exponential, particularly at
high rainfall rates. It is also surprising that the analytical
exponential characterizes coalescence growth as well
as it does, particularly since the goodness-of-fit under
an error-squared criterion was so poor. Evidently, this
scheme provides a reasonable measure of coalescence
growth over the middle-sized drops, which are dom-
inant in coalescence growth. Based on these resuits,
both of the analytical schemes, exponential and

gamma, are comparable and both are distinctly su-
perior to the other three fits in characterizing coales-
cence growth.

A detailed example serves to illustrate the reason
for these results. In Fig. 5, the fits to an example dis-

"tribution and the corresponding coalescence growths

are shown for each drop size interval. The exponential
fits are shown in Fig. 5a. The M-P underestimates
coalescence growth. The LSE underestimates the co-
alescence growth even more severely than the M-P.
This underestimate is caused by the equal weight given
to all drop sizes by the least-squares fitting routine.
The fit at the very small and the very large drop di-
ameters causes an underestimate of number concen-
trations through the size range responsible for the bulk
of the coalescence growth. This results in a severe un-
derestimation of total coalescence growth. The AE fit
describes the total coalescence growth (area under the
curve) very well, but the peak is near D = 1 mm
instead of at the observed peak near D = 2 mm. The
AE fit matches the total coalescence growth through
compensating errors caused by too high a number con-
centration of drops at the smaller sizes and too low a
concentration over the middle sizes. The two gamma
distribution function fits are presented in Fig. 5b. The
AG fit estimates the coalescence growth very well. The
CG fit underestimates the coalescence growth at sizes
of D > 2 mm. So, based on the examination of nu-
merous such examples, as well as the overall result, it
is concluded that the AG properly estimates the total

TABLE 2b. Average percent coalescence growth error.

R@mmh') M-P AE ISE  AG cG
f‘s)g 2695 525 1988 248 6.36
1o 1638 426 1583 407  10.05
9 1066 451 2102 394 1160
I 880 354 2008 545  14.41
B 902 358 2266 460 1251
> 1105 287 2710 769  16.69
o 3934 161 1972 858 1503
Average 1632 341 2109 572 1343
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FIG. 5a. Example observed (upper) drop size distribution and
exponential fits and (lower) associated calculated coalescence growth
rates.

coalescence growth and matches the observed contri-
butions of the individual drop size intervals as well.
Of course, all that is really required of a parameter-
ization is that it correctly estimate the total coalescence
growth. The AE is comparable with the AG in this
regard, but, as seen in the next section, has serious
shortcomings in describing drop evaporation.

e. Drop evaporation

As in the case of coalescence growth, a simplified
model of drop evaporation was applied to assess the

performance of the five fits in characterizing drop .

evaporation. When the evaporation of freely falling
drops is described, the convective enhancement of the
evaporation rate is paramount. The mean ventilation
coefficient £, is defined as the ratio of the water mass
from a moving drop (dm/dt) to that of a motionless
drop [(dm/dt)o]):

[ = dm/dt

= amidng” (18)

The steady-state rate of change of mass for a motionless
drop of radius g is

(dm/dt), = 4maD(py,co = Pua)s (19)
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FiG. 5b. Example observed (upper) drop size distribution and
gamma fits and (lower) associated calculated coalescence growth
rates. .

where D, is the diffusivity of water vapor in air, p,
the environmental vapor density and p,, the vapor
density at the drop surface. An alternative expression
in terms of vapor pressure ¢ and temperature 7 is
found by substituting the equation of state, i.e.,

dm M,(e, e,
i 4maD, R ( T. Ta) , (20)
where R is the universal gas constant and M,, the mo-
lecular weight of water.

Kinzer and Gunn (hereafter, KG) (1951) experi-
mentally determined the evaporation rate of freely
falling drops. Their results reportedly were plagued by
inaccuracies in the experimental setup and the assumed
or determined values for the vapor diffusivity, drop
surface temperature and terminal velocities. Prup-
pacher and Rasmussen (hereafter, PR) (1979) and
Beard and Pruppacher (1971) have more recently ex-
perimentally determined the evaporation rate of freely
falling drops. They find that the following relation ap-
plies for drops from D = 120 um to D = 5 mm:

Jo = 0.78 + 0.308X, 21

where X = N{3 N¥2, Ng. is the Reynolds number and
Ns. is the Schmidt number, which is defined as N,
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TABLE 3a. Total drop evaporation squared error.

M-P  AE LSE  AG G
R (mm h™) gs™'y
200 3203 4939 0622 0061  0.387
2% . . ) . .
o 0915 3221 0334 0036 063
o 0499 4530 0892 0064 0412
H 1054 3614 0921 0089 0735
> 0.117 0989 0197 0038 0070
- 0.165 0379 0144 0025  0.070
0 0.152 0043 0024 0007 0014
Total 6103 17710 3.135 0321 2320

= u/pD,, where u is the dynamic viscosity of air and
p the air density.

The evaporation calculations were performed using
both the results of KG and the more recent experi-
mental results of PR. Both evaporation formulations
gave the same qualitative results, so only the results
from the more recent PR (1979) formulation of evap-
oration are reported here. The total rate of evaporation
was calculated for each observed size distribution (D
> 300 pm) and, in addition, for each of the five fits

to each observed distribution. The assumed environ-

mental conditions were surface pressure, T = 20°C
and 70% relative humidity.

The error-squared and average percent drop evap-
oration error results are presented in Table 3. Of par-
ticular significance here is that the AE fit, which did
well in characterizing coalescence growth, is a very
poor estimator of drop evaporation. The AG fit esti-
mates drop evaporation very well. The two least-square-
criterion fits are better estimators of drop evaporation
than they were estimators of coalescence growth. The
M-P is a poor estimator of evaporation at low rainfall
rates. This analysis shows that the analytical gamma
distribution has considerable potential for parameter-
izing drop evaporation, as well as coalescence growth.,

Details of the evaporation calculation for the ex-
ample distribution of Fig. 5 are presented in Fig. 6.
This example clearly indicates that the small drop re-
gion is the problem area for the analytical exponential
fit. The evaporation rates calculated from the analytical

TABLE 3b. Average percent drop evaporation error.

PAUL T. WILLIS

R (mm h™)

M-P  AE ISE  AG G
fgg 2710 3531 1168 348 9.24
o 1344 3239 932 283 1305

o 952 3650 1423 363 1049

o 1349 3088 1485 469  13.54

o 1282 3556 1546  6.25 8.56

- 2655 3557 2133 860 1355

: 88.64  27.82 1681 971 1337
Average 2843 3274 1547 590 1232

1657

3B

]
13
I

OBSERVED

EVAPORATION g sec™ em™*x10°
& S
1 T

S
=2

DIAMETER {mm)

FI1G. 6a. Calculated drop evaporation rate for observed distribution
and exponential fits of Fig. 5.

30

251 AG

ny
(=]
I

OBSERVED

o
T

EVAPORATION g sec™ em *x 109

=
T

DIAMETER (mm)

FIG. 6b. Calculated drop evaporation rate for observed distribution
and garhma fits of Fig. 5.
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gamma fit agree quite well with those calculated from
the observed drop number densities over the entire
size range. Although it is not clear from this particular
example, the CG fit tended to overestimate drop evap-
oration. Thus for drop evaporation, as was the case
for coalescence, the fits which are best from a squared-
error standpoint do not provide the best measures of
drop evaporation. The results are based on simplified
models, but these models do capture the essence of
the physical processes involved.

f. Applicability of results

Although these data were measured in tropical con-
vective systems, the basic physics controlling the shape
of the drop spectrum should be essentially the same
in any high-water-content cloud with substantial depth
- of warm cloud below the level of ice involvement.
Above some threshold of precipitation water content
in the warm cloud, the evolution of the drop distri-
bution is controlled by a balance between raindrop
growth, due to collision coalescence and accretion of
cloud droplets, and contraction of raindrop size, due
to collision breakup. This balance appears to result in
a larger relative decrease in the number concentrations
at the large drop end of the spectrum than at the small-
to middle-sized ranges.

The following evidence is presented to support the
hypothesis that the balance between coalescence growth
and collision breakup shapes the drop spectrum re-
gardless of geographical location or the details of the
microphysical processes that initiated the precipitation.
First, Atlas (1964) examined Z-R data points from a
wide range of conditions and geographic areas on a
rain parameter diagram. He found that all of the Z-
R lines converge at rainfall rates between 20 and 50
mm h~!. He concludes that this indicates that all such
heavy rains are essentially identical in character (and
perhaps origin as well), regardless of climate.

Next, a set of drop size distributions from a con-
tinental location has the same shape. A sample of fairly
high rain rate distributions (Mueller and Sims, 1967)
measured with a drop camera at Franklin, North Car-
olina (35.03°N, 83.47°W) during July and August,
were normalized identically to the data of Fig. 2. The
results of this normalization are presented in Fig. 7.
Although the curvature is not as immediately obvious
as in Fig. 2, the objective fit to the data points is

NMD) = 535.9D%° exp(—5.71D/Dy),  (22)

which is very close to the objective fit to the data of
Fig. 2 [(Eq. (15)]. In this data sample, drops < 0.5 mm
diameter were not measured, but even so there is con-
siderable scatter at the small-sized end of the spectrum.
The low-concentration points are probably due to the
effects of evaporation below cloud base, but the few
high-concentration points are puzzling. The high scat-
ter notwithstanding, the objective fit to these data from
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FIG. 7. Normalized drop size distributions, July—August,
Franklin, North Carolina.

a continental location is the same as the oceanic-trop-
ical sample.

Datasets analyzed by Takeuchi (1978) indicate the
correctness of the gamma fit, but he found a larger
curvature parameter. His data included low-slope dis-
tributions very similar to those of Carbone and Nelson
(hereafter, CN) (1978). Even so, a plot of the entire
dataset normalized the same as Fig. 2 has a shape
similar to that of Fig. 2. As discussed earlier, the cur-
vature in the instantaneous shapes of Joss and Gori
(1978) are similar to the results of this study, although
their high rate distributions are characterized by the
occurrence of larger drops.

The data of this study are in disagreement with the
original data of M-P for the reasons that their data:
1) covered only D > 1 mm, 2) were averages over
many distributions, which would tend to mask any
curvature, and 3) were not from predominantly warm-
based convective clouds. Data at variance with the
data of this study, which are from warm-based con-
vective clouds and should be mentioned here, have
been presented by CN. Their distributions contain very
much lower concentrations of small drops and much
higher concentrations of large drops than either the
distributions of this study or the M-P distributions.
They attribute this disparity to the effects of sedimen-



1 May 1984

tation, although it is difficuit to see how this transient
phenomenon could pervade an entire dataset.

Some disagreement notwithstanding, based on the
data of this study, a gamma distribution function with
a constant curvature parameter of 2.5 is proposed to
characterize the drop size distributions from convective
clouds. This fit models the observed distributions par-
ticularly well over the size ranges important in co-
alescence growth and provides a good estimate of drop
evaporation.

4. Proposed modifications to Marshall-Palmer fits in
cloud microphysical parameterization schemes

The Marshall-Palmer distribution has been widely
applied in parameterizations of cloud microphysical
processes for numerical simulations of cloud-scale and
larger scale processes (Kessler, 1969). In this section,
changes to the M-P based parameterizations of rain-
water are proposed based on the analytical gamma fit.
These changes should result in improved parameter-
izations of coalescence growth and evaporation.

The changes proposed here involve only the distri-
bution of precipitation (rain) water after its initial for-
mation (by autoconversion, or its alternative). We pro-
pose to distribute the precipitation water according to
a gamma distribution function with a curvature pa-
rameter of a = 2.5, based on the observed sample of
normalized distributions. Once the initial conversion
to precipitation water occurs, i.e., when M is deter-
mined, it is proposed to distribute this water as follows:

1) The median volume diameter is computed from
the empirically derived relation (see the Appendix)

Dy = 0.157M°-18, (23)

where M is in g m™> and D, is in cm.

2) Next, M is distributed into a drop size distribution
based on the fit to the normalized data using the fol-
lowing,

N(D) = NgD* exp(—AD), (24)
6.36 X 107*M { 1 \**°
G D04 (DO) s ( )
a = 2.50
A = 5.57/D,, (26)

where NM(D) is in cm™, M is in g m™3 and Dy is in cm.

The resultant fit to an example spectrum where M
= 2.584 g m3 is plotted in Fig. 8.

Once the drop size distribution is defined, the fall-
speed of the median volume drop size, the rainfall rate,
the coalescence growth of raindrops and drop evap-
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FIG. 8. Example observed distribution and functional fit.

oration can be found by appropriate numerical inte-
grations.

Alternatively, analytical expressions can bé used.
The following analytical expressions were derived based
on the analytical gamma distribution, but otherwise
using Kessler’s (1969) approximations and curve fits:

® ACCRETION GROWTH

M NoE
dd—t (@ m3s") = 1.2252 X 10° —%6—'” @7

where E is the number density weighted mean collec-

tion efficiency and m is the cloud water content in
-3

gm .

¢ EVAPORATION

aMm

dM s gy - 39476 X 10N
dr ‘B

AS.I 4

(28)

where m is now the negative cloud water or saturation
deficit.

e VELOCITY OF MEDIAN VOLUME DROP

Vo = 7.543 X 102N/ M3, 29)
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The above analytical expressions were derived with
the terminal velocity expression V= 1300D'? (Kes-
sler, 1969). Uplinger (1981) has fitted Kinzer and
Gunn’s terminal velocity data with the following func-
tion and found <2% error over the normal full range
of raindrop sizes:

Vr = 4854D exp(—1.95D). (30)

When we use this expression for terminal velocity, the
expression for coalescence growth becomes

dM _ 1.0975 X 10°ENgm
dt (A +1.95)%°

The improvement in the parameterization of co-
alescence growth and drop evaporation, as indicated
by Tables 2 and 3, is worth the slight extra complication
of using a three-parameter distribution. Only minor
changes are required to the presently used Marshall-
Palmer-based parameterizations. Further testing will
be required, but it is clear that the proposed functional
fit is superior to the exponential fits in the size ranges
important in coalescence growth. It provides a rea-
sonable characterization of drop evaporation, as well.
Miller and Pearce (1974) found that the details of the
cloud dynamics in a three-dimensional model are quite
sensitive to assumptions made regarding the cloud mi-
crophysics. They noted that significant rapid changes
which occurred at times in the model cloud’s history
were governed primarily by the details of the assumed
cloud microphysical processes.

(31

5. Summary and conclusions

This study presents the results of an analysis of a
sample containing 112 drop size distributions. Each
distribution was measured over approximately 1.3 km
of flight track with-an airborne optical spectrometer.
The data sample is from predominantly convective
clouds in two hurricanes and covers a wide range of
rainfall rates. After normalization, a plot of all the
drop size distributions, now independent of rainfall
rate, indicates a departure from a purely exponential
size distribution. Numerous investigators have con-
cluded that the Marshall-Palmer distribution function,
while fitting overall average distributions, does not
realistically describe individual measurements at both
the smaller and larger size ranges. The present analysis
supports that conclusion; fewer small drops and slightly
fewer large drops are found in comparison with the
M-P distribution.

Three exponential fits and two gamma distribution
function fits were applied to the data and compared.
It was found that unweighted least-squares fits, al-
though they provided the best fits based on squared
error alone, did very poorly in characterizing coales-
cence growth and did not give the best estimates of
drop evaporation. An analytical gamma distribution
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function fit to the measured distributions provided the
best compromise between satisfactory error-squared fit,
and realistic characterization of coalescence growth
and drop evaporation. Relations between parameters
of the distributions were derived and are summarized
and compared in the Appendix. ‘

Based on the improved characterization of coales-
cence growth and evaporation by the analytical gamma
fit, modifications to the Marshall-Palmer based mi-
crophysics parameterizations are proposed. Precipi-
tation water, after its initial conversion from cloud
water, is proposed to be distributed according to a
gamma distribution function (12), the parameters of
which are based on a fit to the normalized data sample.
The method consists of finding the median volume
diameter D, from an empirical Dy—AM relationship
and then letting « = 2.5; Ng and A are calculated from
the fit to the normalized data. Alternate expressions
to the M-P based relationships for coalescence growth,
drop evaporation and terminal velocity of the median
volume diameter drop are derived based on the gamma
distribution function fit. The improvement in the es-
timates of coalescence growth based on the results of
Section 3 indicate that the extra complication of a
three-parameter distribution is worthwhile.

Although the drop distributions analyzed here are
from hurricane clouds, the basic physical processes
shaping the drop spectra are probably the same as for
any warm-based convective cloud. Therefore, these
results should apply to any convective cloud system
with a significant depth of warm rain processes. Ex-
ploration of stratifications of the data by altitude and
vertical wind velocity and further comparisons of data
from oceanic and continental convective clouds are
planned in subsequent work.
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APPENDIX
Equations Relating Parameters of the Distributions -

In this appendix, relationships between measured
parameters of the distributions are derived. These are
linear least-squares lines of best fit between the pa-
rameter pairs. The derived relations are summarized
and compared in Table Al.
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TABLE Al. Summary of derived relations and comparisons.

Parameter Relation M-P (1948) SS (1971)
M-R M = 0.062 R*" M = 0.072 RO% M = 0.052 R*
Z-R Z = 276.7 R"¥® Z =200 R'* Z = 300 R"*
Dy-R D, = 0.097 R3¢ D, = 0.09 R D, = 0.13R%!*
Dy-M Dy = 1.571 MO1%8! — —
A-R A= 3715 R*> A =41 R A =38 RO
No-R N, = 0.038R*%412 Ny = 0.08 Np = 0.07 R%¥7
A-M A = 25.3023 M70%2 A=219 M A=25 M0
No-M Ny = 0.13041 M0472 Ny = 0.08 Np = 0.23 M9
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