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Abstract: This study investigates the predictability of downslope windstorms located in Santa Barbara
County, California, locally referred to as Sundowner winds, from both observed relationships and a
high-resolution, operational numerical weather prediction model. We focus on April 2022, during
which the Sundowner Winds Experiment (SWEX) was conducted. We further refine our study area to
the Montecito region owing to some of the highest wind measurements occurring at or near surface
station MTIC1, situated on the coast-facing slope overlooking the area. Fires are not uncommon in this
area, and the difficulty of egress makes the population particularly vulnerable. Area forecasters often
use the sea-level pressure difference (∆SLP) between Santa Barbara Airport (KSBA) and locations
to the north such as Bakersfield (KBFL) to predict Sundowner windstorm occurrence. Our analysis
indicates that ∆SLP by itself is prone to high false alarm rates and offers little information regarding
downslope wind onset, duration, or magnitude. Additionally, our analysis shows that the high-
resolution rapid refresh (HRRR) model has limited predictive skill overall for forecasting winds in
the Montecito area. The HRRR, however, skillfully predicts KSBA-KBFL ∆SLP, as does GraphCast, a
machine learning weather prediction model. Using a logistic regression model we were able to predict
the occurrence of winds exceeding 9 m s−1 with a high probability of detection while minimizing
false alarm rates compared to other methods analyzed. This provides a refined and easily computed
algorithm for operational applications.

Keywords: downslope windstorms; Sundowner Winds Experiment; winds and gusts; model
verification; predictability; high-resolution rapid refresh; Weather Research and Forecasting model;
machine learning weather prediction

1. Introduction

In recent years, the frequency of wildfires has increased significantly, particularly in
regions prone to dry and windy conditions, e.g., [1], especially those subjected to downslope
windstorms [2], which are common occurrences in many places around the world [3–12].
Santa Barbara County, situated along the coast of California with the Santa Ynez Mountains
(SYM) running parallel to the coast, is one such region that faces a growing vulnerability to
wildfires. This vulnerability is exacerbated by the prevalence of Sundowner winds, a local
downslope windstorm that strongly influences fire behavior and poses a significant threat
to the region’s residents and natural resources [13–16]. Several major fires in Santa Barbara
County, including the Painted Cave (1990), Tea (2008), Sherpa (2016), and Cave (2019)
fires, were all influenced by Sundowners [16–21]. Commonly, humans are responsible for
wildfire ignitions in the region, which are then exacerbated by the hot and dry downslope
winds [16,22].

Sundowners were named for their typical onset time in the late afternoon and evening
hours [13–15,21]. The National Weather Service (NWS) office responsible for the Santa
Barbara area defines a Sundowner as when winds have a northerly direction in the SYM
foothills with sustained winds (gusts) exceeding 13.4 (15.6) m s−1 [17] but significantly
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faster gusts (exceeding 30–35 m s−1) have been reported [23,24]. The winds are influenced
by the complex interaction of local topography and atmospheric conditions, making it
challenging to accurately predict them using current numerical weather prediction (NWP)
models [15,18,23]. Case studies and climatologies of Sundowner wind events using NWP
have identified three prevailing types [21], including the western “Gaviota” and eastern
“Montecito” types (named for coastal towns located west and east of Santa Barbara, respec-
tively), which have some differences with respect to wind direction and timing, and the
hybrid or “Santa Barbara” type possessing strong winds all along the SYM. The synoptic
scale mean sea-level pressure (SLP) gradients between Santa Barbara Airport (KSBA) and
Santa Maria (KSMX) or Bakersfield airports (KBFL) are often used as a forecasting tool for
Sundowners [13,17,21]. Previous research on Sundowners and SLP gradients has suggested
that the magnitude of the KSBA-KSMX and KSBA-KBFL SLP differences are related to
stronger winds in the western SYM or eastern SYM, respectively [13,17].

The Sundowner Winds Experiment (SWEX) was conducted in the Santa Barbara
area between 1 April and 15 May 2022, to advance our understanding of the mechanisms
controlling, and predictability of, the Sundowner winds [24]. While Sundowners can appear
throughout the year, prior research established that strong events were most frequent in the
March through May timeframe and these events persist for 1–3 days [21,25]. The campaign
included 10 intensive operation periods (IOPs) to investigate Sundowner conditions, and
3 enhanced operation periods (EOPs) designed to sample more quiescent intervals. SWEX
allowed for 21 additional surface observation sites as well as the collection of upper air
observations from radiosonde launches, active remote sensing, aircraft dropsondes, and
additional surface observations from a mobile platform.

The purpose of this study is to evaluate model forecasts of winds in the Montecito area
during the April phase of SWEX made by NOAA’s operational 3-km high-resolution rapid
refresh (HRRR) model, version 4. Fires are not uncommon along the ridge of the SYM and
its south-facing slope in this area (Figure 1), and Sundowner winds can help expand these
fires and push them toward the heavily populated and vulnerable coastal area. However,
as we shall see, there are not many meteorological stations on the slopes where winds
can become intense, making forecasts from NWP models and observations taken during
field programs like SWEX more important. During this month, this area experienced two
notably strong Sundowner events: IOPs 1 and 2 extended between April 4 and 6, and IOP 5
occurred on April 23 and 24. These events featured the two highest sustained wind speeds
recorded by stations in the Montecito region throughout the entire month. We will make
use of routine and SWEX-specific surface observations for winds in the Montecito area.

The structure of this paper is as follows. Section 2 presents the data sources used in
this analysis. Section 3 discusses the climatology of winds and pressure gradients from
April 2022 in the Montecito area. Section 4 focuses on the winds at Montecito and their
relationship to SLP differences from the aforementioned strong IOPs 1 and 2 as well as IOP 5.
Section 5 evaluates the HRRR model performance for all of April 2022, as well as for the
IOP foci. Section 6 explores the role of model resolution on forecast skill. Section 7 presents
a simple statistical model for predicting downslope wind speeds exceeding a specified
threshold for the Montecito region. The final section provides a summary and conclusions.
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Figure 1. Fire ignition points in the Santa Barbara/Montecito area from 1992–2020 from the US Forest
Service Research Data Archive [26]. The final fire size is suggested by the marker size.

2. Materials and Methods

For this study, we made use of the HRRR gridded surface fields available hourly and
on the hour from Amazon Web Services. The HRRR version 4 is based on the Weather
Research and Forecasting (WRF) model’s Advanced Research WRF (ARW) core [27,28]
and operates on a CONUS-encompassing domain using 3 km grid spacing. Refs. [29,30]
provided comprehensive model descriptions. New HRRR runs were initialized hourly
although only the 00, 06, 12, and 18 UTC runs extended as far as 48 h. Figure 2a shows
the topography of southwestern California, as rendered in the HRRR. We also used the
GraphCast [31] machine learning weather prediction model (MLWP) to make six-hourly
forecasts of SLP during SWEX. GraphCast (hereafter GC) was trained on 39 years of ERA5
reanalyses [32] between 1979 and 2017 and can be initialized with operational products
from ECMWF.

Wind observations for the ≈400 stations shown in Figure 2a came from three sources:
the Meteorological Assimilation Data Ingest System (MADIS), the National Centers for
Environmental Information (NCEI), and the SWEX field program page maintained by
NCAR’s Earth Observing Laboratory. The MADIS observations represented these networks:
ASOS (automated surface observing system) and AWOSs (automated weather observing
stations), primarily located at airports, including KSBA Santa Barbara, KSMX Santa Maria,
and KBFL Bakersfield; RAWSs (remote automated weather stations), sited mainly on
mountain slopes; and CWOP (Citizen Weather Observer Program), contributed by private
citizens and corporations. The MADIS stations labeled “MesoWest” [33] were dominated
by public utility installations placed by Southern California Edison and Pacific Gas and
Electric. Observations from the MARITIME network, mainly buoys, were removed. The
ASOS data from MADIS were replaced with one-minute observations retrieved from the
NCEI archive. We also have 21 ISFS (Integrated Surface Flux System) and ISS (Integrated
Sounding System) sites that were erected for the SWEX program. The observations were
examined for obviously bad and flagged readings. When possible, observations from the
top of the hour were used, otherwise, the record closest to that time was chosen.

It should be appreciated that different observing networks have varying measurement
practices for winds and gusts, which may or may not conform with World Meteorological
Organization (WMO) guidelines [34]. Winds averaged over time periods of a minute or
more are typically referred to as “sustained winds”. Averaging intervals in use include
2 min for ASOS and 10 min for RAWS and most public utilities. Intervals used for some
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observations are unknown but, as emphasized by [35], all produce “equivalent measures
of the true mean wind”. The gust is typically the highest discrete sample recorded in a
specified period. However, gust periods vary enormously among networks—examples
being 1 min for ASOS and 1 h for RAWS—making gust speeds and quantities such as
gust factors (the ratio of gust to sustained wind) difficult to compare [36]. Anemometer
mounting heights and exposures also vary tremendously. In this paper, “winds” is used as
a synonym for sustained winds.

The SWEX campaign was conducted between 1 April and 15 May 2022 [24]. Confining
the study to April simplifies the analysis somewhat while still yielding a very reasonable
sample size of observations and events. All times are in UTC. Local time during the project
was Pacific Daylight Saving Time (PDT), which was UTC-7 h.

MTIC1

AV377 and S10

(a) (b)

(c)

HRRR 3-km topography

HRRR 3-km topography

WRF 222-m topography

KSBA

KSMX

UCSE

KBFL
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AV377

Santa Ynez Mountains

Santa Ynez Valley

Santa Ynez Mountains

Santa Ynez Valley

San Rafael Mountains

S11

S09
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Figure 2. (a) The HRRR 3 km topography with surface weather station locations. The white box
identifies the region shown in (b,c). (b) The HRRR 3 km topography and stations in the Montecito
area; (c) 222 m topography derived from Shuttle Radar Topography Mission data and created using
the WRF Geogrid program. Marker size indicates average sustained winds for April 2022 and color
fill represents a fraction of offshore wind observations from April 2022.

3. Montecito-Area Winds during April 2022

This study focuses on the eastern Santa Barbara area, identified by the white box
centered around the town of Montecito in Figure 2a and being the area shown in the other
two panels. Of the 61 regularly reporting surface stations in that zone, the fastest sustained
wind reports for April 2022 came from CWOP station AV377 (28.2 m s−1) and RAWS station
MTIC1 (25.0 m s−1). The former is situated near the ridge of the SYM at 1210 m MSL and
the latter on its south-facing slope at 494 m elevation (Figure 2b,c). The month’s fastest
gusts also involved those two stations, being 36.7 m s−1 at MTIC1 and 35.3 m s−1 at AV377,
respectively. We note that AV377 observations were missing during IOPs 1 and 2 early
in the month, so potentially faster winds and gusts might have occurred at that location
during that time period.

The zone also had 5 special SWEX (ISFS and ISS) installations, which reported winds
every 1 s (Figure 2b,c). Among those, the fastest 5-min average wind speed (24.1 m s−1)
was at ISFS site S11, located on the ridge directly north of MTIC1, and the fastest 3-s gust
(28.8 m s−1) was recorded at S09, another ridge-top installation. ISFS station S10, located
about 1 km west of AV377, reported a 3-s gust maximum of 25.4 m s−1 for the month.
The scatter plot of monthly maximum sustained winds vs. largest gusts for the Montecito
area (Figure 3a) emphasizes the fact that MTIC1 and AV377 were the only permanent sites
that were particularly windy during the month. Indeed, as shown in Figure 3b, those two
stations contributed the fastest legitimate wind and gust observations among the stations
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shown in Figure 2a, with only SWEX station S17, located well inland in the San Rafael
Mountains (see Figure 2a), being comparable. The MTIC1 and AV377 readings appear to
be of reasonable quality and this emphasizes their role in providing situational awareness
regarding the wind threat in the Montecito area, particularly during Sundowner events.

Figure 3. Scatter plot for April 2022 observed maximum sustained wind speed vs. maximum gust for
stations in the (a) Montecito region (Figure 2b,c) and (b) the entire SWEX region (Figure 2a).

The 3-km HRRR (panel b) does not render the topography of the narrow SYM or
the Santa Ynez Valley (SYV) located to the north very well, especially compared to the
higher-resolution rendition shown in panel (c). Both MTIC1 and AV377 possess local
features that could strongly influence the winds measured there. Satellite imagery (not
shown; see Google Earth) reveals that AV377 appears to be placed near some trees that
might be providing some sheltering but also with a slope that might help accentuate the
northerly winds. In contrast, ISFS station S10 was installed at a more clearly exposed site at
a comparable elevation. Despite reporting faster gusts than S10, AV377’s average sustained
wind for the month, 4.8 m s−1, was considerably slower than its better-exposed neighbor
(7.1 m s−1). MTIC1’s location is particularly favorable for offshore-directed Sundowner
winds, not only due to its location on the slope but also because of its sitting atop a small hill
(not shown) that cannot be resolved even on the much finer grid (Figure 2c). At 4.6 m s−1,
MTIC1 had the second-fastest average sustained wind of the regularly reporting stations
shown in Figure 2b,c.

Sundowners consist of offshore, downslope winds that, owing to the generally west–
east orientation of the SYM and coastline in the Santa Barbara area, represent northerly flow
at stations like MTIC1 and AV377. An examination of the meridional component (V) of the
observed sustained winds at MTIC1 and AV377 (Figure 4a) revealed that offshore-directed
flow (V < 0) was not uncommon during April 2022. Like other RAWS stations, MTIC1
reports hourly, and of the 698 observations available for the month, 44% were offshore.
Figure 2c, which also identifies Montecito-area stations by mean monthly sustained wind
speed (marker size) and offshore wind frequency (color shading), shows that most of
the south-facing slope and coastal plain stations experienced a northerly wind compo-
nent about half the time. In contrast, 78% of the 5353 observations taken at AV377, and
about 84% of the 8640 readings at ISFS stations S10 and S11, represented offshore-directed
winds. Generally, stations located closer to the ridge reported northerly wind components
more frequently.
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(a) MTIC1 and AV377 meridional wind speeds

(b) KSBA-KBFL SLP di�erences

(c) KSBA-KSMX SLP di�erences

Figure 4. (a) Meridional components of the wind speed (m s−1) at MTIC1 (red) and AV377 (black) for
April 2022. (b) MTIC1 meridional winds (gray; left axis) with KSBA-KBFL SLP differences (green;
hPa; right axis). (c) MTIC1 meridional winds (gray; left axis) with KSBA-KSMX SLP differences (blue;
right axis). Vertical dash lines indicate official IOP and EOP start times.

Figure 5 examines MTIC1 daytime observations, defined by when solar radiation
recorded at the site was nonzero. Of the 698 available reports, 402 (58%) were daytime,
and 298 (74%) of those were not offshore (including 10 calm reports). Figure 5a suggests a
modest linear correlation (r = 0.65) existed between downward shortwave (SW) radiation
and onshore flow speed, as might be expected for a near-coastal location experiencing a
sea breeze. Many of the less common daylight offshore observations came when SW was
non-zero but quite small, i.e., near sundown, in keeping with the name “Sundowners” and
previous studies, e.g., [21].
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Figure 5. MTIC1 meridional winds (m s−1) observations during daylight hours. (a) Onshore wind
speed vs. downward SW radiation (W m−2). (b) Offshore wind speed against SW radiation. (c,d), as
in (a,b) but using HRRR-forecasted onshore and offshore wind speed and solar radiation interpolated
to MTIC1’s location. Black lines represent least squares fits.

The National Weather Service office in Oxnard, CA, which is responsible for the Santa
Barbara area, uses sea-level pressure differences between ASOS stations KBFL and KSBA
and KSMX and KSBA to inform regarding Sundowner development, strength, and be-
havior [13]. These stations are identified in Figure 2a. Note that relative to [13], our SLP
differences are reversed—calculating KSBA-KBFL and KSBA-KSMX—to conveniently asso-
ciate offshore meridional winds (V < 0) with offshore-directed SLP differences (∆SLP < 0).
Figure 4b,c demonstrate that offshore-directed SLP differences are even more common than
offshore-directed winds at MTIC1 and on the coastal plain; 72% of the 8044 available KSBA-
KBFL ∆SLP values were negative, as were 94% of the 8044 available SLP differences between
KSBA and KSMX. A close examination of these panels, especially (b), appears to support the
expected positive association between meridional wind direction and ∆SLP sign but with the
suggestion of a temporal phase difference at least in the case of KSBA-KBFL.

In Figure 6, we consider the skill of using the ∆SLP sign and magnitude in informing
the strength of the meridional winds at MTIC1, motivated by [17] and related studies. Each
available MTIC1 observation, taken 13 min before the hour, was matched with pressure
differences computed at the top of the nearest hour, resulting in 651 comparisons with
both KSBA-KBFL and KSBA-KSMX (Figure 6a,b). What is also shown is a comparison
with ∆SLP calculated between KSBA and Sedgwick Reserve (UCSE), a station operated
by the University of California, Santa Barbara, and also identified in Figure 2a, which
resulted in 638 successful matches. Each dot is colored red or blue for day and night hours,
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respectively, based on MTIC1 SW readings. Standard skill measures of the probability of
detection (POD), false alarm rate (FAR), and the critical success index (CSI) [37] are also
reported. For each, the slash-separated numbers represent values for all, night, and day
hours. Accurately anticipating the sign of the MTIC1 meridional flow via contemporaneous
∆SLP values is confirmed when the dots fall in the lower left (offshore) and upper right
(onshore) quadrants. The upper left and lower right quadrants respectively represent false
alarms and missed events.

For the KBFL ∆SLP, there is a modest POD (0.78/0.79/0.74 for all/night/day hours)
but also a very sizable FAR (≈0.60). Additionally, the quantitative relationship between
the strength of the downslope flow and the magnitude of the SLP pressure difference is
quite weak, evidenced by the wide scattering. For KSMX (Figure 6b), the POD is much
higher but false alarms are even more common, making the CSI no better there than for
Bakersfield. There is less scatter in the lower left (offshore) quadrant, but again a clear
indication that the magnitude of this pressure difference is not very informative, at least in
the hour-to-hour comparison. The best relationship is found with the KSBA-UCSE pressure
difference, having the highest POD and CSI of the three ∆SLP calculations. However, false
alarm rates are very high, which occurs because offshore pressure differences were much
more common than downslope flows at MTIC1.

Figure 6. (a–c) Scatter plots of MTIC1 meridional wind component (m s−1) vs. SLP difference (hPa)
for KSBA-KBFL, KSBA-KSMX, and KSBA-UCSE, respectively. (d) HRRR-forecasted meridional
wind component at MTIC1 and KSBA-KBFL SLP difference. Dashed green lines indicate mean
values. Markers are red for daytime (SW radiation > 0) and blue for nighttime (SW radiation = 0)
observations. Values provided for POD, FAR, and CSI represent all/night/day hours.

Figure 7 renders the data from the last figure into composites vs. time of the day
(UTC), having been constructed from between 25–28 samples for each April 2022 hour,
superimposed on MTIC1-recorded SW. The daily average meridional component at MTIC1
was −2.1 m s−1 with mean offshore flow occurring between 01–16 UTC, inclusive. The
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±1 standard deviations (gray vertical lines) demonstrate that either offshore or onshore
flow was possible at every hour of the day although onshore flow was least common
between 08–10 UTC (1–3 AM PDT) and offshore flow rarest around 18 UTC (11 AM
PDT). (Obviously, Sundowner wind events were included in this composite).

The average ∆SLP is offshore-directed for KSBA-KSMX and KSBA-KBFL for all hours
of the day, which helps to explain the large FARs seen in Figure 6. The composite KSBA-
UCSE pressure difference does have onshore-directed gradients between 19 and 22 UTC,
likely contributing to its relatively higher POD and CSI among station pairings (Figure 6).
The KSBA-UCSE and KSBA-KSMX composites were most in phase with MTIC1’s merid-
ional winds. In contrast, the KSBA-KBFL ∆SLP was clearly out of phase, lagging the winds
by about 6 h, which was not expected. Note also the diurnal ∆SLP amplitudes were large
(3.5 hPa for UCSE, 2.6 hPa for KBFL, and 1.9 hPa for KSMX) relative to the magnitudes of
the day-to-day variations seen in Figure 4.
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Figure 7. Monthly composites of observed and HRRR-forecasted MTIC1 meridional wind component
(m s−1) and SLP differences (hPa) between KSBA and KBFL, KSMX, and UCSE. Vertical lines represent
±1 standard deviation for the MTIC1 meridional wind. Color fill represents the monthly composite
of SW radiation.

For Figure 8, the hourly composites have been subtracted from the meridional winds
and ∆SLP values shown in Figure 6, creating diurnal deviations V′ and ∆SLP′. For KSBA-
KBFL, this has dramatically improved the skill, raising POD to 0.90 at night and reducing
FAR to 0.30. The differences in diurnal phasing between this pressure difference and the
winds were limiting its skill in identifying the meridional wind direction. However, for
the other two station pairs, removing the diurnal cycle made the relationship weaker. At
least as far as offshore vs. onshore wind direction is concerned, the KSBA-KBFL station
pair appears to be the best, as long as the substantial diurnal variations are adjusted. There
remains, however, little information regarding the magnitude of the Montecito offshore
flow relative to its mean cycle with this pressure difference.
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Figure 8. As in Figure 6, but expressing meridional wind components (m s−1) and SLP differences
(hPa) as deviations from their respective monthly means.

4. MTIC1 Winds and KSBA-KBFL Pressure Differences during IOPs 1, 2, and 5

The strongest offshore winds in the Montecito area during April 2022 occurred during
IOPs 1, 2, and 5, periods that are examined in Figures 9 and 10. Together, IOPs 1 and 2
constituted an extended, multi-day event during which the winds at MTIC1 remained
directed offshore for 33 consecutive hours. MTIC1 V (thick red line) became stronger
offshore than expected from the composite (thin red line) around 00 UTC on April 5,
just before sundown as is characteristic for Sundowners [15,17,21]. The Montecito winds
remained offshore through the daylight hours of April 5 and 6 did not return to near-
average conditions until around 11 UTC on April 6, and did not turn onshore until a few
hours later. At 04 UTC on April 6, the offshore wind component reached 23.6 m s−1 of a total
wind speed of 24.6 m s−1, with both representing the second fastest of such observations at
MTIC1 for April 2022. KSBA-KBFL ∆SLP values became large and negative, both in raw
values (gray) and relative to its hourly composite (blue), starting well before the offshore
flow developed at MTIC1 and continuing long after onshore flow was re-established,
although negative deviation values peaked prior to the offshore flow maximum. Therefore,
this pressure difference was suggesting an even more prolonged event at Montecito than
actually transpired.
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Figure 9. Time series for period including IOPs 1 and 2 showing MTIC1 meridional wind component
(m s−1) in thick red, with diurnal composite MTIC1 meridional winds and standard deviations
(thin red, from Figure 7). (a) Markers show raw and deviation KSBA-KBFL SLP differences (hPa).
(b) HRRR forecasts in blue to orange lines, with each star, color fill, and line color representing
a different cycle (the star being the cycle’s initialization time). HRRR meridional wind monthly
composite (from Figure 7) is depicted as the maroon dotted line. Background color fill in both panels
shows observed SW at MTIC1 (W m−2).

IOP 5 occurred late in the month (Figure 10). The winds shifted sharply offshore
as of the 01:47 UTC observation on 24 April, just before sunset, again characteristic of
Sundowners, and remained directed downslope for a total of 16 h, until the 17:47 UTC
reading. The offshore wind component reached 24.3 m s−1, of a total wind speed of
25.0 m s−1, representing the station’s fastest values of both quantities for the month. As
was the case with IOPs 1 and 2, the KSBA-KBFL ∆SLP values were negative through the
downslope episode, starting before the onset of northerly winds at MTIC1 and continuing
after onshore flow returned. However, the raw and deviation pressure differences were
smaller than during the early April episode, despite the winds becoming stronger during
the event peak, and the MTIC1 winds followed the diurnal composite more closely in phase
(if not in magnitude).
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Figure 10. As in Figure 9, but focusing on the period spanning IOP5.

5. HRRR Forecasts during April 2022

Figure 7 also reveals that the HRRR (maroon dotted line) successfully captured the
diurnal variation of meridional winds at MTIC1 during April 2022 with a correlation of
r = 0.93. This composite made use of a total of 60 simulations starting at 00 and 12 UTC
for forecast hours 1 through 24, inclusive, even though for those cycles the HRRR was
integrated for 48 h. HRRR 10-m V forecasts were interpolated to the station location and a
neutral log wind profile employing the relevant grid box’s surface roughness was used to
compensate for the station’s anemometer mounting height of 6.1 m AGL [6].

This left a forecast bias of about −1.5 m s−1 (offshore). The composite possesses mean
northerly winds for all but 2 h of the day, so simulated winds at MTIC1 were directed
downslope too frequently. This is consistent with Figure 5c,d, which demonstrates that
daytime offshore flow was significantly more common in the model than in the observations.
Onshore flow, when it occurred, was weaker in magnitude than expected from the wind-SW
relationship seen in the station data (Figure 5a) but apparently with the correct timing.

Figure 5c,d also appear to suggest that solar radiation received at MTIC1 was being
overpredicted by the HRRR, by an amount exceeding the time difference between the HRRR
forecasts (on the hour) and the RAWS observations (13 min before the hour) could explain.
Solar radiation can be expected to be influenced by the slope of the surface [38], but MTIC1
appears to be situated atop a hill and the HRRR model does not incorporate slope or terrain
shading effects in its radiation calculations (Joseph Olson, personal communication, 2023).
We note that [39,40] found positive biases in downward shortwave radiation in HRRR
versions 3 and 4, respectively, even on relatively clear days. That being said, the accuracy
of the station observations is not known and the combination of positive shortwave and
offshore wind biases seems odd.
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More importantly, Figures 9b and 10b reveal the HRRR had a relatively limited ability
to anticipate the observed evolution of the winds, especially during strong downslope
events. For these figures, many different HRRR cycles are superimposed, with the initial-
ization time for each cycle denoted by the large star. Strikingly, there was little variation of
the winds, not only with respect to the hour of the day during the offshore events but also
among HRRR cycles.

During IOPs 1 and 2 (Figure 9b), for example, the HRRR forecasted persistently
offshore winds over an extended period, even during daytime hours for which onshore
flow was observed at Montecito. At night, the offshore flow was predicted to be stronger
than the diurnal composite (maroon dashed line) but was still not as strong as was observed.
For the IOP 5 period (Figure 10b), the model captured the daytime onshore flow well but
failed to provide guidance regarding the strength of the offshore flow that appeared during
the night. For most of the event, the HRRR did not signal the development of northerly
winds any faster than would have been anticipated from the diurnal composite (maroon
dotted line), thus failing to identify the strongest downslope winds of the entire month.
Again, successive cycles of the HRRR provided very similar forecasts.

For Figure 11a–c, HRRR forecasts from 00 and 12 UTC cycles were merged with MTIC1
hourly observations and KSBA-KBFL pressure differences. MTIC1 observations (13 min
prior to the hour) were matched with SLP difference forecasts valid at the top of the hour.
Only hours with complete data were retained, numbering 2536 records. For most hours,
there were 4 forecasts for each observation, two each from the 00 and 12 UTC cycles, as
both extended out to 48 h.

Figure 11a reveals that the HRRR was very skillful (r = 0.95) at anticipating the KSBA-
KBFL raw ∆SLP, both during day (red) and night (blue) hours. Regarding the sign of the
SLP difference, the POD was 0.93 for all hours with a FAR of less than 10%. This skill did
not extend to anticipating wind speeds at MTIC1 (Figure 11b), however. While there is a
modest positive relationship overall, forecasts exceeding about 5 m s−1 demonstrate no
useful association with observed wind speed. The HRRR predicted wind speeds in the
range 7–14 m s−1 irrespective of the actual values, which varied over a much larger range.
This is consistent with what was seen in Figures 9b and 10b for IOPs 1,2, and 5.

The large observed wind speeds were mainly offshore-directed and at night (Figure 11c).
However, the model did not provide much useful quantitative guidance regarding wind
speeds during downslope wind periods, again consistent with Figures 9b and 10b. A clear
negative (offshore) bias is also seen in that the mean HRRR offshore flow was stronger than
observed, despite not capturing any of the fastest downslope winds. This is in agreement
with the model diurnal composite presented in Figure 7. Model performance at AV377 was
even more disappointing (not shown).

An issue with pointwise forecasts is that they can miss small but potentially irrelevant
shifts in spatial patterns, and this concern has motivated verification strategies such as the
Fractions Skill Score [41]. To assess this, we elected to create an “MTIC1-area” forecast in
the following fashion. If the HRRR predicted V < −5 m s−1 at Montecito, the prediction
was replaced with the most strongly offshore V forecast found in the area marked by the
white rectangle in Figure 2a and shown in the figure’s other two panels, based on the idea
that the strongest offshore flow could have been spatially misplaced. This resulted in only
a slightly improved forecast, as seen in Figure 11d.
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Figure 11. (a) KSBA-KBFL observed vs. HRRR forecast SLP differences (hPa) for April 2022. (b) MTIC1
observed vs. HRRR forecast wind speeds (m s−1). (c) MTIC1 observed vs. HRRR forecast meridional
wind components. (d) MTIC1 observed vs. HRRR “Montecito area” (region depicted in Figure 2b)
forecast meridional wind components. Dashed green lines represent mean values, with black lines
representing least squares fits. Markers are red for daytime (SW radiation > 0) and blue for nighttime
(SW radiation = 0) values. Values provided for POD, FAR, and CSI represent all/night/day hours.

6. Influence of Resolution on MTIC1 Forecasts

The HRRR forecasts for MTIC1 shown above do not exhibit much skill with respect to
identifying periods of particularly strong winds at the Montecito RAWS (e.g., Figure 11).
During IOP5 (Figure 10), for instance, the winds predicted for MTIC1 did not deviate much
from the month-long composites, which included many non-windstorm hours. A possible
explanation is the model’s 3 km grid spacing, which is coarse relative to the spatial scale of
the SYM, but [15,18,23], in particular, have demonstrated that higher-resolution simulations
can still have difficulty making accurate forecasts of Sundowner strength and structure.
Nevertheless, in this section, we examine simulations of IOP5 conducted with a near-
clone of the HRRR, made using its same WRF configuration. Our WRF simulations used
version 4.2.2, employed physics options consistent with HRRR version 4, were focused
on the U.S. West Coast, and featured domains with grid spacings of 6, 2, and 0.667 km
(Figure 12). They were initialized with HRRR forecasts on native model levels from the
12 UTC 22 April 2022 cycle, and this cycle also provided the boundary conditions.
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Figure 12. Telescoping WRF model domain configuration of 3 nested domains at 6, 2, 0.667 km
horizontal resolution respectively with terrain height shaded.

Figure 13 shows vertical cross-sections oriented south-north across MTIC1 represent-
ing the 16 h forecast valid 04 UTC on 24 April, during IOP5 and at the time of peak winds
observed at MTIC1 (e.g., Figure 10). Panels (a), (c), and (d) represent clone runs while (b) is
the operational HRRR forecast interpolated onto our 2 km domain. All four panels reveal
a substantial downslope windstorm in progress, as evidenced by strong winds (colored
field) and downward-sloping isentropes (black contours). When only the outermost (6 km)
domain was active (Figure 13a), the terrain shape was quite smooth but downslope winds
were still predicted across MTIC1. With progressively finer grid spacing, the SYV emerged
and the south-facing slope of the SYM became steeper. The flow also started following the
contour of the SYM more closely but did not become particularly faster.

The latter statement is demonstrated in Figure 14, a modified version of Figure 10b with
MTIC1 meridional wind speed forecasts from the resolution experiments superimposed.
The 6 and 2 km runs (green squares and white circles, respectively) generated very similar
predictions as the operational HRRR cycle that provided the initialization. Decreasing the
grid spacing to 666.7 m (black circles), as was employed in our prior WRF-based windstorm
studies, e.g., [6,42,43], allowed for finer detail in the wind and temperature fields to be
resolved in the downslope flow (Figure 13d) but did not result in significantly stronger
winds above the Montecito RAWS. Again, and importantly, the predicted speeds did not
differ much from the HRRR composite of all hours and, as a consequence, did not raise
alarms. Substantially further refined grid spacing might be able to render the topography
around the station better and may lead to more accurate forecasts, but such fine grid spacing
is currently unfeasible for an operational CONUS-scale model. In the next section, we
pursue a different path towards obtaining useful forecasts from real-time forecasts.
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(a) HRRR-like with 6 km grid spacing (b) HRRR operational forecast (3 km grid spacing)

(c) HRRR-like with 2 km grid spacing (d) HRRR-like with 666.7 m grid spacing

Montecito cross-section 16 h forecasts valid 04 UTC 24 April 2022
H
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Latitude, Longitude
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Figure 13. North−south vertical cross section across MTIC1 of 16 h forecasts from WRF HRRR clone
simulations at (a) 6 km (c) 2 km, and (d) 0.667 km horizontal resolution and (b) operational HRRR
forecast valid at 04 UTC 24 April 2022. Wind speed is shown in color fill and potential temperature in
contours (isentropes). The model terrain is shown in black with the white vertical line denoting the
location MTIC1 along the cross-section.
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Figure 14. Similar to Figure 10b with the addition of MTIC1 forecasts from resolution experiments
described in Section 6.

7. A Statistical Model for Strong Offshore Flow at Montecito

The documented difficulty of numerical models in representing strong winds in
the Montecito area motivates a closer examination of using SLP differences to anticipate
Sundowner wind episodes. As noted above, the National Weather Service office that covers
the Santa Barbara area uses these pressure differences in their Sundowner wind forecasting,
and Figure 11a shows that the HRRR is very skillful in predicting them. We will soon
show that MLWPs, such as GraphCast [31], are also good at prognosing SLPs and their
gradients. As noted above, GC provides six-hourly forecasts of SLP (among other variables)
on a global 0.25◦ latitude/longitude grid, and it can generate 10-day forecasts in a matter
of minutes.
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Thus, we reconsider Figure 6a’s naive classification of offshore flow at MTIC1 based
on the sign of the KSBA-KBFL pressure difference with logistic regression, one of many
strategies that could be applied, emphasizing hours having faster northerly winds. Results
are summarized in Table 1. For Model no. 1, the binary variable STRONG was defined as
zero unless the offshore component at MTIC1 for the hour exceeded 9 m s−1, representing
a sustained wind of at least 20 mph and associated with gusts averaging about 17 m s−1

or 38 mph. This threshold isolated 98 (15%) of the 651 available hours during April 2022,
which seems a reasonable balance between the strength of winds and the frequency of
events. The logistic regression model predicting STRONG from observed values of KSBA-
KBFL ∆SLP, SW radiation recorded at MTIC1, and UTC hour of day (HOD), yielded the
receiver operating characteristic (ROC) curve shown in Figure 15, which had an area under
the curve of 0.90 (from a maximum value of 1.0). All three regressors were found to be
highly significant by the standard Wald test.

Figure 15. ROC (receiver operating characteristic) curve showing the performance of Model no. 1. y-
axis represents true positives (“Sensitivity”), and the x-axis represents false positives (“1-Specificity”).
Each step in the curve represents a different threshold value for the model.

The predicted values of STRONG are probabilities ranging between 0 and 100%. At
this point, a threshold probability is selected to assess POD, FAR, and other skill measures.
There is no single choice for the optimal threshold, as it depends on one’s need for awareness
(high POD) vs. tolerance for false alarms. We adopted the frequently employed Youden
index [44], which tends to penalize missed events and false alarms. For Model no. 1, the
Youden cutoff of ≈18% resulted in a POD of 0.93 and a FAR of 0.22. This model applies
to all hours and is thus superior to the naive classification (Figure 6a) based solely on SLP
difference and is more useful as it focuses on the most concerning offshore winds. The
common “top left” criterion yielded very similar cutoffs (not shown); other metrics such as
the Critical Success Index (or threat score), F1 score [45], and proportion correct, pointed to
thresholds yielding lower values of both POD and FAR (not shown).

Of the three independent variables in this model, obviously the most important is
KSBA-KBFL ∆SLP. A model with this term alone produced an ROC area of 0.83, a POD of
0.92, and a FAR of 0.38 at the Youden-identified threshold of 13%. However, about 64% of
that version’s false alarms occurred during daytime, versus 38% for the full model. Adding
either the HOD or SW variables to the model increased the POD to 0.96 and reduced the
FAR to ≈0.28, both yielding ROC areas of about 0.89. As one would suspect, HOD and SW
are moderately correlated (r = 0.57). Thus, the Model no. 1 result shows that incorporating
one or both terms serves mainly to suppress the false alarm rate, especially during daylight
hours, at least for the model employing the Youden cutoff probability. A case could be
made for excluding one of the non-SLP variables from the model if POD is to be prioritized.
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Model no. 2 predicts meridional deviations (V′) from the month’s diurnal composite
instead, and the STRONG threshold was redefined to be V′ < −5 m s−1, which also
occurred for 98 h (15%) during the month. Stepwise regression selected deviation ∆SLP′

and SW, excluding HOD, which did not contribute significantly to the 3-regressor model.
The results were quite similar to Model no. 1, yielding a nearly identical ROC area (0.91)
and curve (not shown), along with POD = 0.95 and FAR = 0.22 for the Youden-identified
threshold (15%). Without SW in the model, the FAR was considerably higher (0.42). Recall
from Figure 7 that the KSBA-KBFL ∆SLP and MTIC1 V were out of phase. The HOD term
in Model no. 1 appears to have adequately compensated for this phase difference in Model
no. 1, resulting in an equally skillful but more easily applied algorithm.

Table 1 also presents versions of Models no. 1 and no. 2 employing HRRR-generated
forecasts for ∆SLP and SW at MTIC1 in place of observed values. The predictions are only
slightly less skillful than their counterparts using observations, indicating that the HRRR’s
forecasts can provide useful guidance regarding the development of strong offshore flow in
the Montecito area via either logistic model. At this writing, HRRR forecasts only extend as
far as 48 h but we note the algorithm could also be applied to longer-range forecasts from
other operational NWP models (such as the GFS and GEFS) and even machine learning
models like GC to gain situational awareness. Model resolution is a potential limiting factor
but, given the ≈130 km distance between Bakersfield and Santa Barbara, it is probably not
a very serious one.

Indeed, Figure 16 demonstrates that GC provides KSBA-KBFL SLP differences that
are just as skillful as those from the HRRR. One GC run per day was created at 12 UTC,
initialized with operational analyses from the ECMWF IFS, and integrated for 60 h, resulting
in the overlapping forecasts shown in the figure. While the MLWP model does not capture
the very largest differences this did not severely impact the logistic model’s performance, as
revealed in Table 1, which shows that the algorithm applied to GC forecasts is competitive
with the other models and data sources. That being said, there are limitations. In addition
to only providing forecasts at 6 h intervals, GC neither predicts SW radiation received at
the ground nor provides sufficient fields to estimate it, so radiation information must be
provided by another source. For the predictions evaluated herein, we used the SW forecasts
provided by the HRRR.

To assess the robustness of this approach, and recognize that Sundowners are year-
round phenomena, including severe summer and winter events [13,14], we applied Model
no. 1 to observations collected during other months and years. Included were the months
of November in 2008 (Tea fire), 2019 (Cave fire), 2022, and Sundowner peak (March-
May) months from other years, among others. Among the approximately 6000 additional
hours tested, the logistic model predictions attained a still-reasonable POD of about
0.76 against a similar FAR of 0.22 (not shown). An even more skillful statistical model
could likely have been obtained had it been trained against observations other than April
2022 and/or through the incorporation of other variables suspected to be relevant (i.e.,
cold air advection, winds aloft, and/or the presence and character of temperature inver-
sions; [13]) to Sundowners. For our purposes, it suffices to demonstrate this procedure we
have outlined has merit, and the KSBA-KBFL SLP difference, as modulated by solar radia-
tion and hour-of-day information, yields a skillful model for anticipating strong offshore
wind threats at this RAWS station.
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Table 1. Results of logistic regression model for strong offshore flow at MTIC1. ROC = receiver
operating characteristics; POD = probability of detection; FAR = false alarm rate; CSI = critical success
index; PC = proportion correct; and F1 = F1 score.

Logistic Models for Model No. 1 Model No. 2 Model No. 1 Model No. 2 Model No. 1
MTIC1 Offshore Flow Observations Observations HRRR Forecasts HRRR Forecasts GraphCast Forecasts

STRONG threshold at MTIC1 V < −9 m s−1 V′ < −5 m s−1 V < −9 m s−1 V′ < −5 m s−1 V < −9 m s−1

Regressors ∆SLP, SW, HOD ∆SLP′, SW ∆SLP, SW, HOD ∆SLP′, SW ∆SLP, SW, HOD

Area under ROC curve 0.90 0.91 0.88 0.87 0.88

Probability threshold 18% 15% 17% 14% 11%adopted

POD 0.93 0.95 0.89 0.92 0.92

FAR 0.22 0.22 0.23 0.25 0.29

CSI 0.43 0.42 0.41 0.39 0.34

PC 0.81 0.80 0.79 0.78 0.74

F1 0.60 0.59 0.58 0.56 0.51

Figure 16. Time series of observed (gray markers) and GraphCast-predicted KSBA-KBFL SLP
differences, at a temporal spacing of 6 h. GC forecasts commenced daily at 12 UTC with IFS analyses
and were integrated for 60 h. Colored circles indicate each GC run’s first forecast. Vertical dash lines
indicate official IOP and EOP start times.

8. Summary and Conclusions

Sundowner winds in the Santa Barbara, California, area are associated with substan-
tially elevated fire danger [16,18]. Predicting the onset of these potentially hot, dry, and
strong downslope winds is crucial for fire preparedness and risk mitigation [16]. In particu-
lar, the fire-prone Montecito area of the eastern Santa Ynez Mountain (SYM) experiences
Sundowners that start just after sunset [17,21]. The fastest recorded sustained winds and
gusts in that area during the SWEX campaign were about 28 and 37 m s−1, respectively, the
latter being reported from RAWS station MTIC1, located on the coast-facing slope of the
SYM. Both occurred during April 2022, the focus of this study.

In Montecito, owing to the west–east orientation of the SYM, downslope Sundowner
winds are north to northeasterly. At MTIC1, which reports hourly, 44% of the winds were
from the north, mainly at night and around sunset in keeping with the “Sundowner” name.
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About 15% of the time, the sustained offshore flow exceeded 9 m s−1, which we adopted as
a threshold for wind speeds of particular interest.

In the past, SLP gradients between coastal Santa Barbara (KSBA) and inland locations—
such as Bakersfield (KBFL)—have been used by skilled NWS forecasters to anticipate
Sundowner occurrence and intensity. However, we have shown that these gradients by
themselves offer only modest predictive skills at MTIC1 with a high false alarm rate (FAR)
for offshore wind occurrence and limited information relating to wind magnitude. For the
two strong Sundowner events we examined in detail, the temporally extensive IOPs 1 and
2 and also IOP 5, the offshore KSBA-KBFL SLP gradients preceded the onset of downslope
winds and/or extended well past their cessation. As could be expected, SLP gradients
manifested a pronounced diurnal cycle, and in the monthly composite, the peak offshore
KSBA-KBFL differences also trailed the maximum northerly winds by roughly 6 h.

We also analyzed wind forecasts for MTIC1 from the operational High-Resolution
Rapid Refresh (HRRR) model. Although the HRRR reproduced the diurnal variation of
the meridional flow at this RAWS station quite well (albeit with a small tendency towards
excessive offshore flow), we found the model’s skill in predicting the magnitude of the
winds at MTIC1 for individual hours and the timing of downslope flow onset and cessation
there to be limited. The HRRR model largely failed to differentiate between a strong
windstorm with sustained wind speeds exceeding 22.5 m s−1 (50 mph) and an average
windstorm with sustained winds at approximately 10 m s−1. Improving upon the HRRR’s
spatial resolution with WRF-based simulations configured similarly to the HRRR did not
improve the wind forecasts. Additionally, and of some concern, the HRRR forecasts of the
windstorm exhibited surprisingly minor variations among initialization times, with trivial
improvement in forecast skill with decreased lead time. However, while the HRRR does
not predict wind speeds at MTIC1 well, it does provide skillful forecasts of KSBA-KBFL
SLP gradients, with high Probability of Detection (POD) and low FAR over April.

Finally, to help provide better situational awareness regarding the development of
strong Sundowner winds, we developed a simple logistic regression model predicting
meridional wind components exceeding a set threshold at MTIC1 using observed KSBA-
KBFL SLP gradients, downward shortwave radiation (SW), and hours of the day (HOD).
This easily applied algorithm (“Model no. 1”) yielded high POD (>0.93) and acceptable
FAR (≈0.22), even when applied to HRRR forecasts of the independent variables, signifi-
cantly improving on the use of the SLP gradient alone. The two additional terms helped
suppress false alarms during the daytime and compensated for the temporal phase differ-
ence between the SLP gradient and the offshore flow noted above. We also successfully
used SLP forecasts from the machine learning model GraphCast [31], which can efficiently
make skillful medium-range predictions, although an independent source of solar radiation
information is necessary.

The robustness of this algorithm was tested against an additional 6000 h, representing
other years and seasons, still yielding reasonable POD (0.76) and FAR (0.22) values. This
represents a proof of concept that, with further refinement, could provide even better
awareness regarding strong Sundowner episodes using either observations or skillfully
forecasted model variables.
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