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Abstract: We examine the skill associated with sustained wind forecasts in the High-
Resolution Rapid Refresh (HRRR) model, extending and enhancing previous work. Some
utilities use numerical weather prediction models like the HRRR to anticipate electrical
transmission line shutdowns for public safety reasons, increasing the importance of forecast
accuracy and motivating the need to understand sources of bias and differences among
observation networks. We demonstrate that the HRRR forecasts for airport stations are very
good albeit with a tendency to underpredict the highest wind speeds and at the windiest
locations. Forecasts for non-airport networks are much less accurate owing to a variety of
factors, including differences in the way winds are measured and the environments they
are measured in, and this results in predictions with excessive temporal variation relative to
observations. We demonstrate a practical approach to modifying sustained wind forecasts
so that they are more useful proxies for conditions being observed in the field.

Keywords: wind forecasting; model verification; High-Resolution Rapid Refresh; Weather
Research and Forecasting model

1. Introduction
There are many needs and uses for accurate wind forecasts, both of short-period gusts

and sustained winds, which are wind samples averaged over a period of time. High-
resolution numerical weather prediction (NWP) models are employed for wind energy
forecasting e.g., [1–5] and to drive outage forecasting and wildfire spread models e.g., [6],
among many other uses. Public utilities in California such as Pacific Gas and Electric
(PGE), Southern California Edison (SCE), and San Diego Gas and Electric (SDGE) use
NWP forecasts to determine where and when to implement a Public Safety Power Shutoff
[PSPS, [7]], an attempt to prevent the initiation of fires associated with power generation
equipment. Several notable past wildfires in the U.S., such as the 2007 Witch fire [8,9],
the 2017 Thomas and Tubbs fires [10,11], the 2018 Camp fire [12,13], and the 2023 Lahaina
fire [14] may have been sparked or exacerbated by power line failures.

The use of NWP wind forecasts in PSPS decision-making significantly elevates the
necessity of obtaining accurate wind predictions and an understanding of any forecast
biases that might exist. The need for situational awareness has encouraged an enormous
expansion of surface weather networks, including those operated by PGE and SCE and
commencing with the deployment of the SDGE mesonet in 2010 [15]. In the utility mesonets,
many stations represent circuits, and observations and forecasts for those stations determine
when a PSPS event is declared or terminated. The wind energy industry also requires
skillful forecasts to determine resource availability, a prerequisite to keeping energy supply
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and demand synchronized [1]. All of this has motivated the development of comprehensive
field programs such as the two Wind Forecast Improvement Projects (WFIP; [16–18]), which
focused on the wind generation region of the U.S. Great Plains (WFIP1) and on predictions
in complex terrain (WFIP2), and efforts such as the present study.

As the National Oceanic and Atmospheric Administration’s premiere fine-scale fore-
casting system, the High-Resolution Rapid Refresh (HRRR) model [19,20] has been the
subject of numerous validation studies, including [17,21–25], to name but a few. At this
writing, the HRRR employs 3 km grid spacing and is based on the Weather Research and
Forecasting (WRF) model’s Advanced Research WRF core [26]. The HRRR launches new
cycles hourly. As of Version 4 (HRRRV4), which became operational in December 2020,
the 00, 06, 12, and 18 UTC cycles extend to 48 h, while the forecast length is 18 h for the
other cycles.

This study extends our prior HRRR wind forecast verification work. In [27], we com-
pared HRRR version 3 forecasts to observations from radiosondes and ASOS (Automated
Surface Observing System) stations across the conterminous United States (CONUS), focus-
ing on a spring month (April 2019). We demonstrated that sustained wind forecasts were
biased in a manner that led to overprediction of the wind speed at slower wind stations
and underspecification of the wind at windier locations, consistent with our own WRF
model experiments conducted for Southern California [15,28]. The study of [29] examined
ASOS wind forecasts for two April months (2019 and 2021), the latter predictions coming
from HRRRV4. That paper determined that the wind forecasts were quite skillful overall
but had some deficiencies “in both temporal and spatial variability, with significant errors
occurring during local nighttime hours in all regions and in forested environments for all
hours of the day”.

In this work, we expand our focus to include sustained wind observations from non-
ASOS networks, such as RAWS (Remote Automated Weather Stations) and the western
U.S. networks maintained by PGE and SCE, and again examine New York State Mesonet
(NYSM; [30]) observations. The month of October 2021 is highlighted as it included
challenging PSPS-related weather conditions in PGE’s service territory. However, there
are some difficulties involved with making forecast/observation comparisons that are not
routinely appreciated. Models like the HRRR produce sustained wind forecasts valid at
10 m above ground level (AGL), involving the stability-adjusted log wind profile and the
wind speed at the lowest half-sigma (scalar and horizontal wind) model level. Since the
HRRR places that level close to 10 m, this adjustment is small. However, the substantial
majority of near-surface observations routinely reported to MADIS come from anemometers
mounted even closer to the surface. It is well-understood that wind speeds are typically
slower closer to the ground owing to surface drag, so it can be assumed that alterations
to the raw (unmodified) HRRR forecasts are necessary. We will show a straightforward
adjustment for anemometer mounting height does not suffice, and does not fully explain
the differences that emerge when forecasting for stations in various networks, and thus a
different strategy is needed.

The structure of this paper is as follows. Section 2 discusses our data sources and
processing. Section 3 presents forecast/observation comparisons for the unmodified HRRR
forecasts and considers some potential adjustments to enhance predictive skill. Some
important influences on observed wind measurements that vary among networks are
considered in Section 4. Finally, Section 5 discusses our proposed adjustment strategy and
a summary is provided in Section 6.
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2. Data and Methodology
2.1. Observation Data and Processing

Information regarding the networks employed in this study is presented in Table 1.
ASOS observations were obtained from the National Centers for Environmental Informa-
tion (NCEI). Each 1-min record consisted of the station’s 2-min average sustained wind
and the fastest 3-s gust sample since the last report. 788 stations across the CONUS were
available for October 2021 (Figure 1a), unsurprisingly oversampling the urban areas of
the CONUS [cf. [29]]. A small subset of ASOS stations are not located at airports and can
be very obstructed (e.g., [29]). As in our prior work, these stations were retained in our
analysis. ASOS installations presently employ sonic anemometers but not all instruments
are mounted at 10 m above ground level (AGL). For comparison with the forecasts, observa-
tions closest to the top of each hour were identified and used. Given the 1-min observation
interval, selected observations were almost always on the hour.

RAWS and public utility observations were downloaded from MADIS (Meteorolog-
ical Assimilation Data Ingest System). There were 2153 RAWS stations available for the
target month, many located in forested areas (Figure 1b). The RAWS reports were hourly,
consisting of the hour’s fastest gust and the sustained wind averaged over the prior 10 min.
Reporting times varied among sites with few coinciding with the top of the hour, so each
observation was assigned to the closest hour. Nominal anemometer mounting height
was 20 ft (6.1 m). Anemometer hardware varied among installations and included cup,
propeller, and sonic instruments.

Table 1. Summary of observation network information.

Network
[Source]

ASOS
[NCEI]

NYSM
[NYSM]

RAWS
[MADIS]

Utility (PGE and SCE)
[MADIS]

Affects
Mean?

Affects
Variance?

Reporting interval
(min) 1 5 [3-s raw data] 60 10 no no

Sustained wind
averaging interval

(min)
2 5 10 10 no yes

Nominal
instrument(s) Sonic Sonic and propeller pairs Cup, propeller,

sonic Propeller yes yes

Nominal mounting
height (m) 10 10 6.1 (20 ft.) Varies (6.1 m target) yes yes

Nominal siting and
situation

Airports, usually flat
and unobstructed Varies

Sloped terrain,
often

obstructed

Varies, often
obstructed yes yes

Starting threshold in
source (m s−1) 0.51

0.1 [5-min data]
1.0 (propeller) or 0.3 (sonic)

[raw data]
0.45 0.0005 yes yes

Percent calm
observations (%) 0.9 1.8 (propeller)

0.1 (sonic) 12.2 0.1 – –

Number of stations 788 121 2138 1278 PGE
1459 SCE

–
–

–
–

Station mean
(median) HRRR

surface
roughness (m)

0.29 (0.28) 0.48 (0.45) 0.39 (0.31) 0.34 (0.25) PGE
0.25 (0.21) SCE – –

HRRR
network-average

slope (m s−1)
1.00 0.64 (sonic)

0.60 (propeller) 0.62 0.57 PGE
0.52 SCE – –
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Figure 1. HRRRV4 model terrain (shaded) superimposed with (a) ASOS, (b) RAWS, (c) PGE, (d) SCE,
and (e) NYSM stations, with marker sizes representing average sustained wind speed for October
2021. For (e) the values for the propeller instrument are shown. Same marker sizing used in all panels.

The utility observations analyzed herein came from the PGE and SCE mesonets. These
two propeller-based networks are very dense, consisting at the time of 1288 and 1459 sites,
respectively, concentrating stations on the mountain slopes of California (Figure 1c,d).
These stations reported 10-min average sustained winds every 10 min. As with ASOS,
observations closest to the top of the hour were used, nearly always representing on the
hour. In these two networks, the anemometers were usually installed on power poles and
mounting height varied among sites. Analyses performed on the SDGE mesonet are not
discussed as the results were not materially distinct.
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The NYSM [30] samples the landscapes of the state (Figure 1e). Observations were
obtained directly from the mesonet, with permission. NYSM stations possess sonic and
propeller anemometer pairs, mounted at 10 m above the surface. These datasets will be
referenced as NYSMS and NYSMP, respectively. For five of the sites, that surface is a rooftop;
these New York City stations were excluded, leaving 121 locations. We obtained both 5-min
and 3-s observations for our target month; unless otherwise indicated, observations closest
to the top of the hour from the former were used. For both datasets, the propeller and sonic
anemometer observations were merged and records missing reports from either instrument
were discarded.

Although we only discuss sustained winds herein, we also gathered observations
for other standard meteorological variables (temperature, relative humidity or dewpoint,
and gust) for each network. Records with missing or invalid data in at least one variable
were excluded. In our most recent relevant study (e.g., [29]), we used the ASOS 1-min
data to compute hourly mean winds centered on the top of the hour. However, at least
with respect to station mean sustained winds, we also reported there was no sensitivity
to the averaging interval adopted. As there is insufficient information among the RAWS
observations to compute hourly means, we reverted to using closest-to-hour observations
in all analyses reported herein, as in [27]. In our other work (e.g., [10,23]) we also considered
Citizen Weather Observer Program (CWOP) observations. Unfortunately, those data were
incomplete in the MADIS database for the target month.

2.2. HRRR Model Outputs and Forecast-Observation Comparisons

HRRRV4 model outputs for the month of October 2021 were obtained from Amazon
Web Services. Analyses presented herein represented the 49 forecast hours (including
the 0-h analysis) from the 00 and 12 UTC cycles of the HRRR for days between 1 and 29
October, inclusive, a total of 2842 maximum possible forecast hours. Observations and
forecast comparisons were performed using the Model Evaluation Tools (MET; [31]). MET
provides several ways of spatially interpolating forecasts to station locations, including
the nearest neighbor and least squares fit strategies. We employed both for each network
considered, finding no important differences. Note that because forecast periods overlap,
most observations were used multiple times in the comparisons. Stations with fewer than
100 forecast-observation pairs for the month have been removed, reducing (in particular)
the number of RAWS sites to 2138.

3. Results
3.1. Network Analysis

Figure 2 presents network-averaged results for the two CONUS-spanning networks.
These are “unmodified” forecasts of the 10 m AGL wind speed compared to the closest-to-
hour sustained wind observations. Each marker is a forecast hour, representing an average
of all observations and forecasts across the network valid for that time.

For ASOS (top row), we see a nearly perfect relationship between network-mean
forecast and observed wind speeds among all hours, thereby clearly independent of forecast
hour or time of day (Figure 2a). The coefficient of determination (R2) is 0.96 among the
T = 2837 available forecast times. The remaining panels of the top row (Figure 2b,c) present
mean forecast and observed wind speed vs. forecast bias, defined here as forecast minus
observation. There is no correlation seen in either panel. The model was equally skillful
whether the CONUS-mean wind was predicted or observed to be relatively faster or slower.
These results are consistent with the findings of [29], who showed that, in the mean, ASOS
network-averaged sustained wind forecasts had negligible bias at all forecast hours and
local times of day.
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Figure 2. Network analyses for ASOS (top row) and RAWS (bottom row). Each marker is a forecast
hour, totaling T = 2837 and 2842 for ASOS and RAWS, respectively, representing an average of all
values available for that hour. Red lines show least squares fits. The forecasts were extracted from
HRRR outputs and not subsequently modified.

The situation with the RAWS network (Figure 2, bottom row) is markedly different.
The relationship between network-averaged forecast and observed winds is still very high
(R2 again 0.96) but now there is a pronounced overprediction (Figure 2d), with the slope
of the least squares fit being 0.62 m s−1. As the intercept of the least squares fit is nearly
zero (0.03 m s−1), the HRRR was overpredicting CONUS-averaged RAWS sustained wind
speeds by almost 40%, independent of time of day. As a consequence of this, both network-
averaged forecasts and observations were significantly and positively correlated with bias
(Figure 2e,f).

As summarized in Table 1, there are important differences between the ASOS and
RAWS networks. The HRRR is providing forecasts for 10 m AGL but RAWS measurements
are made closer to the surface (at 6.1 m). In neutral conditions, this can be expected to result
in a 10–20% reduction in wind speed, depending on the roughness of the surface, according
to the logarithmic (log) wind profile (e.g., [15,32]). In the HRRR for October 2021, mean
and median roughness lengths (z0) assigned to grid cells containing RAWS stations (0.39
and 0.31 m) were notably longer than those assigned to ASOS (0.29 and 0.28 m), translating
to a roughly 15% reduction between 10 and 6.1 m AGL.

However, the discrepancies seen here are much larger than can be explained by
mounting height alone. Certainly, the differences with respect to situation and exposure are
important; unlike the generally flat and well-exposed environments characteristic of most
airport ASOS stations, RAWS installations are often placed in complex terrain and in the
vicinity of obstructions, including trees and buildings. This is one of the factors influencing
roughness length. In their study of Hurricane Andrew’s landfall, [32] emphasized the
importance of converting wind observations taken in areas with different roughnesses
to a reference (open) exposure, demonstrating that a z0 of 0.5 m could slow the wind by
about 40% compared to open exposure (defined as z0 = 0.03 m). Additionally, significant
obstacles might be treated via a zero-plane displacement [33], something that is not done in
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the HRRR. The networks also use different reporting and averaging intervals, but these are
not found to affect the mean sustained wind [cf. [10,29,34]].

Before exploring these important differences further, we examine the three regional
networks included in this study (Figure 3). All three also present significant overpre-
dictions, similar to or exceeding that seen in the RAWS results. R2 values are a little
lower, perhaps a consequence of these networks’ smaller spatial extents, but still very high.
Although mounting heights vary among stations in the PGE and SCE mesonets, most
instruments are closer to the ground than 10 m AGL. That being said, the NYSM stations
included in this study all represent 10 m installations and their overpredictions (Figure 3,
bottom row) are comparable to those seen with RAWS. Furthermore, note that despite
time-matched records, the propeller and sonic instruments in the NYSM yielded different
results, with the former (black markers in Figure 3g–i) being about 5% slower than the
sonic (grey markers), thereby resulting in even larger positive wind speed biases. This is
the first indication in this analysis that instrument type, which varies among the networks
examined (Table 1), is also a relevant factor.

Figure 3. Similar to Figure 2 but for the PGE (top row), SCE (middle row), and NYSM (bottom row)
network analyses. For NYSM, results using propeller (black markers, red regression line) and sonic
(grey markers and regression line) observations are shown.

3.2. Station Analysis

The station analyses for ASOS and RAWS are presented in Figure 4. Each marker
now represents station mean values, averaged over all available (up to 2842) forecasts.
For ASOS (top row), the relationship between mean forecast and observed wind speeds
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for the N = 788 stations (Figure 4a) is very good, albeit with more scatter around the 1:1
correspondence (grey dashed) line than in the network analysis (Figure 2a), and not unlike
the results found for different months and model versions by [29]. There are clearly some
outliers, and they are the same stations flagged by [29]: KGDP (Guadalupe Pass, Texas,
being the windiest site and possessing the largest negative bias), KMEH (Meacham, Oregon,
the least windy location), and KMHS (Mt. Shasta, California, having the largest positive
bias). These installations are not at airports and satellite imagery suggests the latter two are
very obstructed.

As in our prior study, there was no association found between mean forecast wind
speed and bias among stations (Figure 4b) but a sizable negative one (R2 = 0.31, correlation
r = −0.56) between mean observed speed and bias (Figure 4c), indicating that slower
locales were being systemically overpredicted while windier sites were underforecasted.
As described in [15], “the bias was itself biased” (e.g., a “bias-bias”). We note that the
negative correlation was actually smaller in magnitude in this analysis than in the one
presented in [29] (R2 = 0.51; see their Figure 8b ) but is still a matter of concern. Furthermore,
although the mean station bias was close to zero (+0.11 m s−1), 57% of the stations had
positive biases.

Figure 4. Station analyses for ASOS (top row) and RAWS (bottom row). Each marker is a station,
totaling N = 788 and 2138 for ASOS and RAWS, respectively, representing an average of all available
values for that site. Red lines show least squares fits. Grey dashed diagonals in middle and right
columns represent forecast bias limits imposed by the non-negativity constraint of wind speed.
The forecasts were extracted from HRRR outputs and not subsequently modified.

Regarding RAWS (Figure 4, bottom row), the association between station mean forecast
and observed wind was significantly less skillful [panel (a)] than for ASOS. The variance of
the forecasts was also noticeably narrower (by about 40%) than that of the observations.
Despite that, nearly all (90% of N = 2138 stations) of the markers fell below the 1:1 line,
indicating overprediction. The grey diagonal lines in panels (e) and (f) indicate the limits to
forecast bias imposed by the constraint that wind speeds are non-negative. Forecast bias
reaches the upper limit when the observed wind approaches zero, and the lower bound is
attained when the mean forecast wind is calm. There was a sizable number of sites with
mean wind speeds < 2 m s−1 for the target month (12% of all RAWS sustained winds
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during this month were exactly zero; cf. Table 1) but very few forecasts were that slow.
Still, for the subset of windier sites, the mean forecast wind speeds were too low. As a
consequence, there was again a strong, negative relationship (R2 = 0.5, r = −0.71) between
bias and observed wind speed (Figure 4c).

The situation is similar for the regional networks (Figure 5). Despite being spatially
concentrated, the PGE (top row) results resemble RAWS in that this network had a narrower
range of forecast than observed mean wind speed [panel (a)], and there was no correlation
between forecast and bias [panel (b)] but a substantial negative one between observed wind
and bias. The mean station bias was +1.26 m s−1, with 91% of sites being overpredicted in
the mean. The mean bias was even larger for SCE (+1.42 m s−1), with 97% biased positively.
For this network, the correlations between bias and forecast and observed winds were
somewhat different, but again calmer stations were more likely to be overpredicted. For
clarity, only the propeller data for NYSM is being shown (bottom row). The mean bias was
+1.22 m s−1 and all but 4 sites were overforecasted.

Figure 5. Similar to Figure 4 but for the PGE (top row), SCE (middle row), and NYSM (bottom row)
station analyses. For NYSM, only the propeller results (NYSMP) are shown for clarity.

Histograms of all forecasts and observations used in the comparisons for the five net-
works are shown in Figure 6. The coarser precision and higher starting thresholds of ASOS
and RAWS observations are reflected in these histograms, as is the pronounced tendency
for RAWS sites to report calm winds (Table 1). At first glance, the distributions of forecasts
(blue) and observations (red) appear very similar for ASOS (Figure 6a), underscoring the
model’s skillfulness. Closer inspection reveals the standard deviation of the forecasts was
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about 10% smaller than that for the observations. As the means were essentially identical,
this indicates both smaller and larger values appeared slightly more frequently in the
observations than among the forecasts.

For the other networks, the forecast and observation distributions were very differ-
ent. It is notable that these non-ASOS observations shared fairly similar shapes, while
their forecasts resembled those produced for ASOS stations. What is different about the
non-ASOS networks is how their observations were distributed. To a very large degree,
the HRRR was providing ASOS-like forecasts for every location, for every network. This is
clearly inadequate.

Figure 6. Histograms of all observations (red) and unmodified HRRR forecasts (blue) employed in
the network and station analyses, representing the (a) ASOS, (b) RAWS, (c) PGE, (d) SCE, (e) NYSMP
(propeller), and (f) NYSMS (sonic) networks. The vertical solid and dashed lines indicate mean
and median values, respectively. Bin interval determined by observation precision. Each panel
provides information on the number of forecast/observation pairs (P), bias, mean absolute error
(MAE), and standard deviation (σ) of the forecasts and observations.

3.3. Initial Adjustment Attempts

We have seen that the same model that is producing very skillful network-averaged wind
speed predictions for ASOS stations is overspecifying the wind speed in other networks by sizable
amounts (Figures 2 and 3). But, perhaps the forecasts just need a simple adjustment.
Given the very high R2 evidenced in the scatterplots of network-averaged observations
vs. forecasts (Figures 2 and 3), one might be tempted to fashion revised HRRR forecasts
based on the least squares slopes between the forecasts and observations. Multiplying
the unmodified HRRR forecasts by network adjustment factors suggested by those slopes
(0.62 for RAWS and 0.57 for PGE, as reported in Table 1) produced the “naive adjustment”
network and station analyses presented in Figure 7.

For the network-averaged analysis (top two rows), multiplying the forecasts by the
slopes unsurprisingly brought the adjusted values and observations in line, removing
the previously-existing correlations with respect to bias. However, the defects previously
noted in the station analysis have been made much worse (Figure 7, bottom two rows).
The naive network adjustment has further compressed the already too-narrow range of
the forecasts, actually sharpening the negative correlation between observed wind and
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adjusted bias (Figure 7i,l). The compression can also be seen in the histograms (Figure 8,
top row). The forecast distributions look better now relative to the observations, but are
still markedly different.

Figure 7. Similar to Figures 2 and 4 but showing the network and station analyses following naive
forecast adjustment.

Perhaps adjustments should be made to the observations instead. This strategy,
inspired by [32], transformed observations into “exposure-adjusted” equivalents and
consisted of several steps. First, for RAWS and utility stations, the observed wind U
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at anemometer height Z was transformed into a 10 m wind U10 using the neutral log
wind profile

U10 = U
[

ln (10/z0)

ln (Z/z0)

]
, (1)

where Z is 6.1 m for RAWS and varies (but is generally below 10 m) for PGE and z0 was
provided by the HRRR grid cell in which the station resides. No displacement height
was used. The friction velocity u∗ representing this 10 m height-adjusted wind was then
computed, using

u∗ =
κU10

ln (10/z0)
, (2)

where κ is von Karman’s constant. The next step transformed this u∗ to a value more
appropriate for open terrain (u∗S) via the expression

u∗S = u∗

[
z0S
z0

]0.0706
, (3)

in which [following [32]] z0S ≈ 0.03 m was adopted as the open terrain roughness. Finally,
the adjusted 10 m wind observation was obtained from u∗S via the neutral log wind profile.
As discussed in [32], this can produce an increase in the wind speed over that observed
in rough terrain by about 40%, approximately the degree of overprediction seen in our
non-ASOS analyses.

Figure 8. Similar to Figure 6 but after initial adjustment attempts for RAWS (left) and PGE (right)
forecasts and observations. Top row: naive adjustment of forecasts; bottom row: exposure-modified
observations.

Figure 9 presents the comparison of exposure-adjusted, 10 m versions of the RAWS
and PGE observations with their corresponding HRRR forecasts. The top two rows demon-
strate this technique can effectively remove the substantial positive bias with respect to
the original readings. The mean bias is now zero in both networks. Yet the issues with
the station analyses (bottom two rows) remain. There is not much skill in the association
between station mean forecast and adjusted observation [panels (g,j)], particularly when
compared to the ASOS results. The ranges of the observed and predicted winds remain
clearly different, this time because the former was expanded by this adjustment. The expo-
sure correction cannot compensate for the high frequency of calm observations in the RAWS
network, which is partially a consequence of restricted exposure. Furthermore, the negative
correlation between adjusted bias and adjusted observation [panels (i,l)] remains quite
substantial and the histograms (Figure 8, bottom row) are still distinctly different. Adopting
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alternative z0 values for open terrain, including the average value used by the model for
ASOS stations (0.29 m; see Table 1), was not found to resolve these issues.

Clearly, a different approach is needed. In prior work [28,29], we made use of the
gust factor (the gust to sustained wind ratio) as a means of mitigating bias in the sustained
wind forecasts for the purposes of creating more skillful gust predictions. In this study,
we attempt to isolate the root cause of the problem, which turns out to lie in the sustained
wind observations themselves.

Figure 9. Similar to Figure 7 but after exposure adjustment to the observations. In bottom two rows,
this adjustment has caused some station values to fall outside the ranges shown.



Atmosphere 2025, 16, 16 14 of 27

4. Influences on Anemometer Readings
It is well known that there are numerous ways in which sustained wind observations

can vary among observing networks. Among them are averaging interval, anemometer
hardware, mounting height, reporting interval, and situation and exposure. We will
consider the first four in turn, emphasizing their influence not only on the mean wind but
also on its temporal variation, so we can appreciate the influence of situation and exposure
isolated from these other factors.

4.1. Averaging Interval

The averaging interval is the time period over which the sustained wind is computed.
ASOS uses a 2-min interval while NYSM adopted a 5-min period and RAWS and our utility
networks employed 10-min intervals (Table 1). Ref. [29] transformed their ASOS data into
60-min means. The averaging interval length is known to not to influence the true mean
wind but does affect the temporal variance [34]. This is explored herein using the high-
frequency (3-s), quality-controlled propeller observations from the NYSM. As explained
in [29], these observations form a gapless dataset, consisting of 3-s average winds available
every 3 seconds.

From these raw, 3-s samples, averaging intervals of various lengths were constructed,
as illustrated in Figure 10. For each interval considered, the observational record was
divided into overlapping segments of length n-min. Any segment with missing data was
discarded. Each of those segments ended with a 3-s sample, V̄(3-s), which was compared
to that segment’s n-min mean, V̄(n-min). For each segment, the difference Dn = V̄(n-min)−
V̄(3-s) was computed, and compared to both sustained wind estimates. (It is important to
note that a 3-s sample drawn from an n-min segment is not a gust. The gust is the fastest
3-s sample in that segment).

10-min average wind (RAWS/Utility)
5-min average wind (NYSM)
2-min average wind (ASOS)
3-sec average wind (raw data)

time >>>

V(3-s)
V(2-min)
V(5-min)

V(10-min)

Figure 10. Strategy employed in the averaging interval experiment.

Table 2 and Figure 11 present an example assessment conducted for the station in
Penn Yan (PENN), one of the NYSM’s windiest sites during October 2021. The table
reveals that, as expected, the mean was unaffected by the length of the averaging interval.
However, the standard deviation (σ) decreased with interval length. We form the standard
deviation ratio (SDR) by dividing the interval’s σ with the 3-s data’s value. By the 60-min
averaging period, the SDR for this station had decreased to 0.90, representing a variance
reduction of about 19%. The maximum wind speed remaining in the dataset also decreased,
substantially, as the interval lengthened, from about 15 m s−1 in the 3-s dataset to 10 m s−1

in the 60-min version.
Thus the right, or high wind speed, tail of the distributions was being progressively lost

as the averaging interval increased. That is very obvious in the plots of V̄(3-s) vs. V̄(n-min)
displayed in the left column of Figure 11. The 12 m s−1 value is highlighted on the ordinates
of those scatterplots to emphasize the loss of information occurring at higher wind speeds.
Contraction of the high tail is also very obvious when distributions are viewed in histogram
format (Figure 12a). There are relatively few observations in the high wind tail but the
shrinkage is not negligible.
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Figure 11. Scatterplots illustrating influence of averaging interval on sustained wind speeds using
NYSM Penn Yan (PENN) propeller observations. Left column compares segments representing n = 2-,
10-, and 60-min averaging intervals with the 3-s sustained winds. On the ordinate, the 12 m s−1

value is highlighted for reference. Middle column compares the same averaging intervals to Dn,
the difference between the n-min and 3-s wind speeds, with the grey dashed diagonals representing
maximum possible values. Right column presents these differences against 3-s wind speeds, with the
grey dashed diagonals being minimum possible values. Regression lines shown in red.

Although more difficult to discern, even in the histogram, the slow wind (left) tail
was also shifting away from zero (calm) as the averaging interval lenghtened, which is
important owing to the large number of low wind observations in the dataset. Figure 12b
shows the differences between the 60-min and raw distributions as a function of wind
speed. Speeds slower than about 2 m s−1 were much less common in the V̄ (60-min)
dataset; the averaging pushed those observations towards the mean (vertical dashed line).
There were also fewer instances above 6 m s−1. The consequences of this are clear: longer
averaging intervals do not affect the mean, but do decrease the variance, forging narrower
frequency distributions.

Because wind speed is non-negative, Dn has an upper bound of V̄(n-min) as the 3-s
reading approaches zero and a lower bound of −V̄(3-s), these bounds being illustrated
in Figure 11 with dashed grey lines. As a consequence, the distributions of V̄(3-s) and
V̄(n-min) with respect to Dn (middle and right columns of Figure 11) also differ. These
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constraints contribute to the tendency for segments with low V̄(3-s) values to be associated
with faster V̄(n-min) winds and those with higher V̄(3-s) readings to occur alongside slower
V̄(n-min) values. Thus, the constraints contribute to forging the negative correlation seen
in Figure 11’s right column, which strongly resembles the aforementioned “bias-bias”. The
SDR therefore decreases as the averaging interval lengthens, as documented in Table 2.

Figure 12. PENN propeller observations: (a) histograms of 3-s and 2-, 10-, and 60-min wind speeds;
(b) differences between the 60-min and 3-s distributions, expressed on a per-bin basis (bars) and as a
cumulative total across wind speeds (curve).

As noted above, PENN was one of the windiest stations during October 2021. Regard-
ing SDR, it had one of the network’s smallest decreases with lengthening averaging interval
(again, 0.90 for an averaging period of 60 min). In contrast, the network’s smallest SDR for
the hourly averaged wind was about 0.60. That the largest reductions tended to occur at the
most obstructed sites is demonstrated in Figure 13a, in which the stations are color-coded
by the WMO classification [35] determined by Mesonet staff. The classification system runs
from 1 (most exposed, blue) to 5 (most obstructed, red). More obstructed locations tended
to be less windy, so SDR was also correlated with station mean wind speed [panel (b)].
Also unsurprisingly, temporal σ was also well-associated with the mean wind; since speeds
are non-negative, measurements at less windy locations cannot vary as much. Forecast
bias, which was positive for nearly all of the sites, was negatively correlated with station
temporal standard deviation [panel (e)] and the association with SDR was even stronger
[panel (c)].

This is relevant to the subject of model-observation comparisons if the model forecasts
have an inherent temporal variation (which is influenced by spatial and temporal filter-
ing) that is different than that of the corresponding observations (which is impacted by
averaging interval) to which they are being compared. The bias can even be zero without
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the distributions of the forecasts and observations being the same, which can result in the
“bias-bias”.

Figure 13. NYSM propeller network averaging interval analysis: (a) standard deviation ratio (SDR)
vs. averaging interval for each of the N = 121 stations; (b) 60-min SDR vs. mean wind speed;
(c) 60-min SDR vs. bias; (d) standard deviation vs. station mean wind speed; and (e) standard
deviation vs. bias. Markers are color-coded by WMO site classification for wind: 1 = blue, 2 = green,
3 = orange, and 4 and 5 = red. However, in (a), PENN is indicated by the white squares. In (b–e), red
lines/curves indicate least squares fits.

Table 2. Summary of averaging interval assessment of NYSM PENN propeller observations.

Averaging Interval 3-s
[Raw]

2-min
[ASOS-like]

10-min
[RAWS-like] 60-min

Number of segments (P) 891,765 891,165 888,765 873,765

Mean (m s−1) 3.13 3.13 3.13 3.13

Standard deviation
σ (m s−1) 1.94 1.86 1.82 1.75

Standard deviation ratio
(SDR) – 0.96 0.94 0.90

Maximum value (m s−1) 15.12 11.92 10.85 10.00

First quartile (m s−1) 1.73 1.78 1.79 1.84

Third quartile (m s−1) 4.18 4.21 4.19 4.15

4.2. Anemometer Hardware

Among our networks, the most common anemometer types are sonic and propeller.
These instruments have different characteristics [cf. [36–39]] that can influence the wind
speeds being recorded as already hinted by Figure 3g–i. In this subsection, we more
closely compare 5-min data from the NYSM’s sonic and propeller instruments, which were
mounted side by side at 10 m AGL. This analysis involves the N = 121 non-rooftop sites.

Figure 14 presents a comparison of P = 88,772 time-matched, on-the-hour sonic and
propeller pairs in the dataset. As expected, there was a very high correlation between the
two (R2 = 0.99 in Figure 14a). Perhaps owing to the absence of moving parts, however,
the sonic wind speeds were nearly always faster. The mean difference was about 5%,
consistent with that seen in the network-average comparison (Figure 3g) and the findings
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of [40] (see their Figure 3). Also consistent with [40], the propeller-sonic differences became
more clearly negative as the propeller wind speed increased (Figure 14b). This can influence
the “bias-bias” via right tail contraction. The standard deviation of the sonic data was also
about 5% larger (1.62 vs. 1.54 m s−1).

Figure 14. Comparison of 5-min observations from sonic and propeller anemometers representing
N = 121 NYSM stations spanning P = 88,772 reports, plotting propeller wind speeds vs. (a) sonic
wind speeds, and (b) the difference between propeller and sonic speeds. Regression lines shown
in red.

4.3. Mounting Height and Reporting Interval

It is well appreciated that wind speed decreases towards the surface owing to drag, so
anemometers mounted closer to the ground should yield slower readings, other factors
being equal. For completeness, we demonstrate the effect of mounting height with fixed
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tower data. The National Wind Technology Center (NWTC) Flatirons Campus, located
south of Boulder, Colorado, operates a tower with anemometers placed at 2, 5, 10, 20, 50,
and 80 m AGL. Figure 15a presents October 2021 mean wind speed (black) and temporal
standard deviation (red) computed from 1-min average wind observations (S = 44,640).
The mean 5 m wind speed was about 9% slower than the 10 m average and the standard
deviation was 11% smaller. As anticipated, temporal standard deviation increased with
height above the ground [panel (a)]. A least squares fit to the mean wind profile (Figure 15a
black dashed curve) suggests a surface roughness of 0.013 m, considerably smaller than
the value extracted from HRRR forecasts (0.094 m). Compared to 10 m winds, readings
taken closer to the surface resulted in speed distributions with slower means and narrower
ranges (and thus thinner high wind tails) as illustrated in Figure 15b.

Figure 15. Observations from the National Wind Technology Center (NWTC) Boulder tower for
October 2021, showing (a) vertical profiles of monthly mean wind (black) and temporal standard
deviation (red), and (b) histograms of 10 m (blue) and 2 m (red) sustained wind speeds. In (a),
the black dashed curve represents a logarithmic fit using least squares. In (b), the vertical solid and
dashed lines indicate mean and median values, respectively.

The reporting interval adopted for a particular network or station does not appear
to influence either the mean or the variance of the sustained wind. This was assessed
again using the raw, 3-s PENN propeller data. The full record of 891,765 observations was
sampled at intervals ranging from 1 to 60 min, creating subset datasets. These revealed no
trends in either subset mean or σ as a function of reporting interval.

5. Network-Agnostic Forecast Corrections
We have demonstrated that the HRRR produced forecasts of 10 m AGL sustained

wind speed for the ASOS network with high skill with respect to network- and station-
average means albeit with a tendency to overpredict at less windy sites and underpredict
at locations with faster winds. With other networks, overpredictions were much more
common, even if the anemometer measurements were made at 10 m, and the “bias-bias”
was even more pronounced. In prior work (e.g., [28,29]), we used station gust information
to mitigate the flaws in the sustained wind forecasts to produce skillful and unbiased gust
predictions. However, we also wish to improve the relationship between the sustained
wind forecasts and the predictions. That is the goal of this section.

As summarized in Table 1, instrument type and mounting height have been deter-
mined to influence the mean wind and thus cause forecast errors if left uncorrected. Both
also impact the temporal variance as can the averaging interval. We considered making
adjustments to the forecasts to compensate for each of these factors separately but have
elected instead to pursue a different strategy, one that also results in an effective correction
for situation and exposure.
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Figure 16 presents distributions of the temporal standard deviation (σ) computed from
observed and forecast winds for ASOS (top row) and non-ASOS (bottom row) stations for
the target month. Among the N = 788 ASOS stations (Figure 16a), the two distributions
look quite similar, with the mean σ for the observations (red) and forecasts (blue) being 2.08
and 1.92 m s−1, respectively. Forecasts are somewhat overrepresented at smaller values of
σ and underrepresented at larger values. A local minimum around 2.5 m s−1 appears in
both distributions for unclear reasons.

Figure 16. Histograms of station temporal standard deviations from forecasts (blue) and observations
(red) from the (a) ASOS network (N = 788), and (b) non-ASOS (N = 5126) networks. The vertical
solid and dashed lines indicate mean and median values, respectively.

The non-ASOS networks (RAWS, PGE, SCE, and both NYSM instruments) form a
dataset consisting of N = 5126 stations. The standard deviation distribution for their
forecasts closely resembles that seen among the ASOS stations, absent the local minimum
about 2.5 m s−1 (Figure 16b). The distribution for their observations, however, is radically
different. The mean observed σ of 1.44 m s−1 is 30% smaller than the forecast value
(2.05 m s−1). The HRRR is providing quite skillful forecasts for ASOS stations, albeit with
some “bias-bias”, but—again—the important point is that every station is essentially treated
as an ASOS installation. This results in forecasts for non-ASOS sites that are biased high
and have excessively large range and temporal variance relative to the observations.

Whatever distinguishes ASOS from non-ASOS stations is not something the model
is presently resolving or capturing. We believe these unresolved factors are manifested in
the temporal standard deviation, as was also hinted at in Figure 8d of [29]. The stations
of these non-ASOS networks are more likely to be mounted closer to the ground, use
non-sonic anemometers, and construct reports having longer averaging intervals, all of
which encourage smaller temporal variations. These sites are also much more likely to be
situated in less exposed terrain, further reducing σ.

Figure 17 combines all of our observations into a single dataset with N = 5916 sta-
tions, with markers color-coded by network membership. Viewing the station mean
forecast winds vs. the biases (Figure 17a), we again see little correlation superimposed
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upon a positive average bias. When plotted against station mean observations (Figure 17b),
the “bias-bias” emerges, with a aggregate R2 of 0.47 (r = −0.69). In panel (c), we see an
even stronger negative relationship (R2 = 0.69, r = −0.83) between bias and the ratio of
the observed to forecast standard deviation, σo

σf
. Clearly, sites with ratios < 1 were largely

overpredicted and those with ratios exceeding 1 had primarily negative biases. Temporal
variation is reduced when readings are taken closer to the ground and/or in less exposed
locations, and averaged longer and/or recorded with a propeller instrument, and this
contributes to overprediction. That said, some stations are underpredicted and those had a
strong tendency to vary more in time than both other stations in the non-ASOS catalogue
and their model forecasts.

Figure 17. Station analysis of unmodified and σ-adjusted forecasts combining all networks:
(a) forecast vs. bias; (b) observed wind vs. bias; (c) observation to forecast σ ratio vs. bias; and
(d) observed wind vs. bias after adjustment. Markers are color-coded by network membership.
Grey dashed diagonals represent limits imposed by the non-negativity constraint of wind speed.
Regression lines shown in red.

Thus, as a practical corrective, we propose to transform the standard deviations from
the forecasts to match those from the observations, on a station by station basis, to see if that
resolves the problem. This is a postprocessing adjustment that is perhaps similar to what a
machine learning algorithm operating on these data might discover. We applied to the raw
HRRR forecasts at every station and forecast time a correction factor consisting of the σo

σf

ratio computed for the station, producing a variance-adjusted forecast that is guaranteed
to possess the σ observed at the site. Variance-adjusted biases were then computed from
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these revised forecasts. In this transformed dataset, there is no relationship between the
mean station observed wind speed and adjusted bias (Figure 17d). The network and station
analysis for the σ-adjusted dataset (Figures 18 and 19) reveal that some unwanted small
errors and correlations remain but overall there has been substantial improvement and the
model is now providing more useful proxies for conditions being observed in the field,
especially at non-ASOS sites.

Figure 18. Similar to Figure 2 but for the σ-adjusted network analyses.
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Figure 19. Similar to Figure 4 but for the σ-adjusted station analyses.

We emphasize that we did not perform any explicit and individual corrections for
mounting height, instrument type, averaging interval, and/or situation and exposure,
and did not make any direct mean adjustment or bias correction. We simply made sure
the forecasts for a given station had the same temporal variation as observed at that
site. The biases that remain might perhaps be addressed by reconsidering the surface
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roughnesses in some areas of the landscape. It does not seem reasonable that the mean
roughness values that characterize the PGE and SCE networks in the HRRR are actually
smaller than those for ASOS (Table 1). As noted by [32], “roughness estimation is very
much an art”, and z0 has both an empirical as well as theoretical role to play in the
wind simulations.

6. Summary
We have presented a comprehensive verification of HRRR model forecasts against

routinely measured near-surface observations of the sustained wind. Wind speeds are
measured by anemometers of a variety of types and mounted at a range of heights above
the surface. Sustained winds are then created by averaging samples over some temporal
length—intervals from 2 to 10 min are common—and reported at intervals that vary among
networks. Stations also differ enormously with respect to their situation and exposure.
While a subset of observations are taken in the relatively well-exposed environments
that characterize many airports, others are sited in more challenging conditions, such as
on hillsides or in canyons, and/or near trees and buildings, that cannot be represented
properly on the grid of operational numerical weather prediction models currently in use.

Our analysis focused on sustained winds measured in both CONUS-wide (ASOS,
RAWS) and regional networks, the latter including the New York State Mesonet (NYSM)
and two utility mesonets established by California public utilities (PGE and SCE). Our
focus was on October 2021 and forecasts from the 00 and 12 UTC cycles of the operational
HRRR (version 4) model. Forecasts and observations were compared using the Model
Evaluation Tools (MET) and aggregated into network analyses (averaged across stations)
and station analyses (averaged across forecast times).

Consistent with our prior work that examined different time periods [27,29], we
found that the HRRR provided excellent network-averaged forecasts for ASOS stations,
independent of time of day, over the T ≈ 2800 forecast hours included in our study.
The CONUS-mean forecasts and observations fell along the 1:1 correspondence line with
minimal scatter (R2 ≈ 1). There was no correlation between bias (forecast minus obser-
vation) with temporal mean forecasted or observed wind speed, which means that the
errors were functions of neither predicted nor measured wind speed. The station analysis,
which compared temporal mean forecasts and observations for the N ≈ 800 sites, also
resembled past findings in that there was general (albeit lower) correspondence between
station means of forecasts and observations with a tendency for windier locations to be
underpredicted and for positive biases where observed winds were slower. We referred to
this as the “bias-bias” because the forecast wind bias was itself intrinsically biased, and in a
manner that reduced the usefulness of the predictions.

There were significant shortcomings in the raw (unadjusted) model forecasts for the
other networks examined herein. While there was still a very good relationship (R2 ≈ 1)
between network-averaged forecast and observation for all of the networks, mean winds
were overpredicted by roughly 40% for all non-ASOS networks examined. This implied
the existence of large correlations between bias and both forecast and observed winds.
Station analyses presented lower skill, with forecasts generally having markedly narrower
frequency distributions than the observations. One consequence of that was the aforemen-
tioned “bias-bias” was substantially more pronounced.

Simple ways of adjusting either the forecasts or observations were considered and dis-
carded, as these did not resolve (or even exacerbated) the “bias-bias”. We hypothesized that
forecasting issues, even with respect to station means, were a consequence of discrepancies
between the observed and modeled temporal standard deviations (σ). The variability of
the wind measured in the field is influenced by many factors, including mounting height,
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instrument type, and the time interval used to compute the sustained wind as well as
the station’s environment (situation and exposure). In making its forecasts, the numerical
model is not taking into account the first three listed factors and the last is being only
partially addressed via parameters such as roughness length (z0).

Ultimately, we elected to adjust the forecasts in post-processing by giving each station’s
forecasts the temporal standard deviation (σ) observed at that location. This approach
was found to remove nearly all of the mean error and “bias-bias” among the adjusted
forecasts, rendering the predictions and observations more compatible. The result was that
the forecasts became much more accurate assessments of what was actually measured in
the field. We note that we have examined other time periods (months, seasons) and while
in some cases particulars can differ the main conclusions we came to herein are robust.

In this example, October 2021 forecasts were adjusted using σ values computed from
October 2021 observations. In an operational setting, more sophisticated approaches would
likely be used, perhaps including having σ vary by season and/or computed from long-
term records. We also stipulate that we have provided a solution to the problem but not
the solution. One very important reason we use NWP models is to obtain guidance for
locations that do not have an observing site. A useful advance would be to be able to
predict from the model itself what a reasonable temporal standard deviation would be for
a particular site, instead of relying on external (observation-based) corrections. Perhaps the
model-derived correction will be a function of landuse category or subgrid orography or
other factors. This is a topic for future research.
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The following abbreviations and acronyms are used in this manuscript:

AGL Above Ground Level
ASOS Automated Surface Observing System
CONUS Conterminous United States
CWOP Citizen Weather Observer Program
HRRR High-Resolution Rapid Refresh model
MADIS Meteorological Assimilation Data Ingest System
NCEI National Centers for Environmental Information
NOAA National Oceanic and Atmospheric Administration
NWTC National Wind Technology Center
NYSM New York State Mesonet
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NYSMP New York State Mesonet propeller
NYSMS New York State Mesonet sonic
PGE Pacific Gas and Electric
RAWS Remote Automated Weather Stations
SCE Southern California Edison
SDGE San Diego Gas and Electric
SLP Sea Level Pressure
WRF Weather Research and Forecasting model
WMO World Meteorological Organization
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