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Fig. 11.8 Schema of the effects of moisture on a model of the Hadley Cell. The tem-
perature of the solution (solid line) is the same as that of a dry model, because this is
determined from the angular-momentum-conserving wind. The heating distribution
(as parametrized by a forcing temperature) is peaked near the equator in the moist
case, leading to a more vigorous overturning circulation.



Tropopause

z=H
4 ( N\ 4 ) )
Winter cell Summer cell
Y A A Y
\_ /L J
p - > | I < | Surface
Latitude

Fig. 11.9 Schematic of a Hadley circulation model when the heating is centred off the
equator, at a latitude 3. The lower level convergence occurs at a latitude 3; that
is not in general equal to 3. The resulting winter Hadley Cell is stronger and wider

than the summer cell.
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Fig. 11.10 Solutions of the Hadley Cell model with heating centred at the equa-
tor (3o = 0°, top) and off the equator (3, = +6°N, bottom), with Ay = 1/6. The
dashed line is the radiative equilibrium temperature and the solid line is the angular-
momentum-conserving solution. In the lower panel, 3, = +18°, and the circulation
is dominated by the cell extending from +18° to —36°.!
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Fig. 11.11 (a) The average meridional eddy heat flux and (b) and the eddy momen-
tum flux in the northern hemisphere winter (DJF). The ordinate is log-pressure, with
scale height H = 7.5 km. Positive {northward) fluxes are shaded in both cases, and
the dashed line marks the thermal tropopause. The eddy heat flux (contour in-
terval 2Kms~!) is largely polewards, and down the temperature gradient, in both
hemispheres. The eddy momentum flux {contour interval 10m” s ) converges in
mid-latitudes in the region of the mean jet, and must be upgradient there.?



N
o

20 |

Zonal wind (m s~ 1)

Zonal wind (m s 1)

-60 -30 0 30 60
Latitude
Fig. 11.12 The zonal wind in two numerical simulations. The lower panel is from
an idealized dry, three-dimensional atmospheric GCM, and the upper panel is an
axisymmetric version of the same model. Plotted are the zonal wind at the level

of the Hadley Cell outflow, u,; the surface wind, u.; and the angular-momentum-
conserving value, um.?
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Fig. 11.13 As for Fig. 11.12, but now showing the streamfunction of the overturning
circulation. ‘Altitude’ is o = p/ps, where p; is surface pressure, and contour interval

is 5Sv (i.e., 5 x 10°kgs~1).



Schneider (2006)
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Stream function on isobars - annual mean
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Moist Isentropic Stream Function

Dry Isentropic Stream Function
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Pauluis et al. 2008
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Equator Midlatitude stormtracks Pole

Pauluis et al. 2008



