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ABSTRACT

Quantifying and reducing the uncertainty of model parameterizations using observations is evaluated for

tropical cyclone (TC) intensity prediction. This is accomplished using a nonlinear inverse modeling technique

that produces a joint probability density function (PDF) for a set of parameters. The dependence of estimated

parameter values and associated uncertainty on two types of observable quantities is analyzed using an

axisymmetric hurricane model. When the observation is only the maximum tangential wind speed, the joint

PDF of parameter estimates has large variance and is multimodal. When the full kinematic field within the

inner core of the TC is used for the observations, however, the joint parameter estimates are well constrained.

These results suggest that model parameterizations may not be optimized using the maximum wind speed.

Instead, the optimization should be based on observations of the TC structure to improve the intensity

forecasts.

1. Introduction

It is widely recognized that the skill of tropical cyclone

(TC) track forecasts has improved considerably during

the past decade, whereas the skill of intensity forecasts

has not improved as much (e.g., Rappaport et al. 2009).

Although multiple factors have been hypothesized to

explain the lack of measurable improvement in TC in-

tensity prediction, one of the main challenges is the

uncertainty in parameterized representations of physi-

cal processes in numerical weather prediction models

used for TC intensity (e.g., Rogers et al. 2006).

Recent studies have demonstrated large sensitivity of

numerical TC intensity forecasts to the choice of model

parameterizations (e.g., Braun and Tao 2000; Zhu and

Zhang 2006; Li and Pu 2008; Pattnaik et al. 2011; Green

and Zhang 2013). For example, Li and Pu (2008) found

significant differences in the intensity and structure

forecasts of a rapidly deepening hurricane due to differ-

ences in the storm structure resulting from various cloud

microphysical and planetary boundary layer parame-

terizations. Similarly, Green and Zhang (2013) showed

variations in TC intensity forecasts due to the use of

different surface flux parameterizations in their numeri-

cal simulations. Although these and other studies have

demonstrated a sensitivity of TC intensity to the choice of

parameterization, it is difficult to ascertain which param-

eterizations (or parameter values within them) would be

optimal for improving the accuracy of TC intensity

forecasts. Among other factors, the difficulty arises from

the lack of a formal measure of optimality for repre-

senting the uncertainties in the model parameterizations.

In this study, the estimation of parameter uncertainty

is investigated using an optimal estimation approach.

As an introductory experiment, we employ a simplified

two-dimensional model and perform the estimation of

parameter uncertainty using a nonlinear inverse model-

ing method. This paper proceeds as follows. The optimal

estimation approach along with the experimental setup
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for the introductory study is briefly explained in the next

section. Results obtained from using two different set of

observable variables are discussed in section 3, followed

by the conclusions of this study in section 4.

2. Method

a. Inverse estimation approach

This study employs the general stochastic inverse

problem theory as introduced by Mosegaard and

Tarantola (2002). Previous studies (Vukicevic and Posselt

2008; Vukicevic et al. 2010; Coddington et al. 2012)

demonstrated the utility of this theoretical formulation

in diagnostic analyses of nonlinear estimation problems

with atmospheric models containing a small number of

control parameters. The formulation allows for explicit

computation of a joint posterior probability density

function (PDF) of the parameters, given a nonlinear

model and observations with their associated stochastic

uncertainties. The posterior PDF is computed by con-

junction of a numerically determined model-based PDF,

in a joint space of parameter and observation values, with

an observation-based PDF. The model-based PDF in-

cludes explicitly computed transfer functions between

parameters and observation quantities, as well as a PDF

representation of model solution with uncertainty in the

observation space. This uncertainty reflects the presence

of modeling errors that are not associated with the con-

trol parameters. The transfer function explicitly accounts

for the variability due to these parameters. Themethod is

diagnostic because testing the impact of different ob-

servable quantities and error characteristics of the model

on the posterior PDF estimate of parameter values does

not involvemodel integration other than the computation

of the transfer functions. The numerical algorithm for

computing the posterior PDF of parameter estimates

based on this formulation is described in detail in

Vukicevic and Posselt (2008).

In the current study the method is adapted for the

estimation of parameter uncertainty using an axisym-

metric hurricane model. The estimation is performed

for two parameters within the parameterization of un-

resolved processes that are known to have significant

impact on intensity prediction (described in the next

section). Our goal is to evaluate the likelihood of joint

parameter values simulating the observable quantities

that are relevant to hurricane intensity, given the un-

certainty in both the observations and model.

b. Experimental setup

Themodel employed in this study is theAxisymmetric

Simplified Pseudoadiabatic Entropy Conserving Hurri-

cane (ASPECH) model (Tang and Emanuel 2012). The

variable-resolution grid stretching technique was used,

with grid spacings of 4–8 and 0.5–0.8 km, in the radial

and vertical directions, respectively, within a domain of

1000 km 3 24 km. The model was initialized with an

idealized vortex with a maximum surface tangential wind

speed of 20ms21 and an environmental profile with 70%

relative humidity and 298C sea surface temperature. To

ensure a robust representation of idealized hurricane

evolution for the estimation of parameter uncertainty

experiments, the model was first spun up for 48 h. The

model state at 48 h was then used to initialize the sim-

ulations for computing the transfer functions and the

reference ‘‘true’’ observations.

The enthalpy exchange coefficient Ck and inflated

latent heat of vaporization Lyo parameters were chosen1

for the estimation problem. The first parameter is known

to influence TC intensity (e.g., Emanuel 1995), yet its

reference value in the ASPECHmodel reflects a consen-

sus of previous studies that have estimated this quantity

(Tang and Emanuel 2012, and references therein). The

second parameter was chosen because the model uses

an inflated version of the latent heat of vaporization to

compensate for the neglect of liquid-water entropy, as

suggested by Bryan (2008). To compute the transfer

functions, 30 discrete values for each parameter within

the prescribed ranges were used (Table 1). Consequently,

a total of 302 5 900 simulations were produced, one for

each possible combination of Ck and Lyo. By doing this,

we have assumed that all other parameters in the model

are perfect, except for Ck and Lyo. The reference true

observations for the estimation were derived from the

simulation with the parameter-value pair, as in the stan-

dard model configuration (see Table 1). It is important to

note that the reference true observations are not real

observations, but rather the model solution using the

default values of Ck and Lyo. The default pair of values

was not used for the transfer-function ensemble.

The standard sensitivity result (i.e., time series of an

intensity metric, which in this case is the maximum tan-

gential wind speed) exhibits large sensitivity to varying

TABLE 1. Parameter values used in the true and simulated

measurements. The true values were taken from the original setup

of the ASPECH model as presented in Tang and Emanuel (2012).

Parameter ‘‘True’’ value Smallest bin Largest bin

Ck 1.2 3 1023 0.6 3 1023 2.4 3 1023

Lyo (J g
21) 2.678 3 106 2.0 3 106 3.0 3 106

1 Sensitivity tests done prior to employing the methodology

showed a sufficient sensitivity of TC intensity to these two pa-

rameters, although the choice is somewhat arbitrary.
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values ofCk andLyo (Fig. 1). Even though all cases start

with the same tropical storm intensity, some cases

strengthen substantially and others weaken throughout

the forecast period. The variance of the ensemble, as

well as the difference between the ensemble mean and

the reference, increases with time. The deviation of the

ensemble mean from the reference is large, suggesting

that the response to parameter perturbations is nonlinear.

In addition, many different combinations of parameters

produce similar intensity. These properties imply that

identifying a single optimal pair of parameters using the

sensitivity results is unfeasible. Instead, an optimal subset

of values should be determined. This is readily achievable

by application of the optimal estimation method.

3. Optimal estimation results

The optimal estimates of joined values of Ck and Lyo

are analyzed for two types of observations of the axi-

symmetric hurricane winds: the maximum tangential

wind speed (ymax) and the total wind field (i.e., tangen-

tial, radial, and vertical wind) within the inner core of

the simulated TC.

a. Maximum wind speed observation

We define the observation as ymax at a certain time.

The transfer function for such observations is ymax as a

function of paired parameter values for each selected

time. The transfer function for 24- and 48-h observation

times is displayed in Fig. 2. The values shown are the

same as in Fig. 1 for the corresponding times, but now

shown in the parameter space. Several properties of

interest are evident: 1) small values ofLyo correspond to

low intensity irrespective of Ck; 2) for moderate to high

values of Lyo (above 2.75 3 106 J kg21) the intensity

tends to increase with increasing Lyo, but at a variable

rate depending on the value of Ck; and 3) the change of

intensity is not linear with respect to either Lyo or Ck.

Overall, consistent with the sensitivity result in Fig. 1, the

transfer functions indicate that the impact of the param-

eters is mutually dependent and nonlinear. These prop-

erties were evident during other forecast times as well.

Using the transfer functions and estimates of obser-

vation and model errors, as outlined in the previous

section, the joint posterior PDF of parameters is com-

puted for each observation time. The errors associated

with the observation of ymax are assumed Gaussian with

a standard deviation of so 5 5m s21. This value repre-

sents the expected uncertainty associated with the Na-

tional Hurricane Center’s operational estimates of TC

intensity (Landsea and Franklin 2013). Themodel errors

in the observation space are also assumed Gaussian. To

estimate the standard deviation of the model PDF,

several ASPECH simulations were used, but perturbing

different physical variables in the initial conditions (e.g.,

relative humidity, maximum wind speed, etc.). As a re-

sult of this method, the model standard deviation was

estimated to be sm5 3.5m s21. This estimate represents

the chaotic variability in the model due to small per-

turbations in the initial conditions, but not associated

with Lyo and Ck.

The joint posterior PDFs were computed for every

6-hourly forecast, but only the PDFs corresponding to

the 24- and 48-h observation times will be discussed here

as other times showed similar characteristics. As ex-

pected, Fig. 3 shows that these PDFs are similar in shape

to the transfer functions within the range of parameter

values that is determined by convolution of the obser-

vation and model PDFs in the observation space. This is

consistent with the findings of Vukicevic and Posselt

(2008). The posterior PDFs for both observation times

exhibit multiple maxima and large variance for both

parameters. The absolute maximum of each PDF is in

the neighborhood of the reference true solution; how-

ever, because of the large variance and multimodality of

the PDF its likelihood is small. The results suggest that

the optimal values of the parameters cannot be uniquely

estimated when using the values of ymax as the observable

quantity. Consistent with the sensitivity studies, they

point to the need to use an ensemble of model parame-

terizations for TC intensity prediction. These results also

indicate that the ensemble should be based on the opti-

mal estimation in order to include realistic ranges and

FIG. 1. Hourly maximum tangential wind speed for the reference

‘‘true’’ (black line) and the simulated measurements (box plots)

resulting from all Ck and Lyo combinations. For each boxplot the

white circle depicts the median, the blue box marks the interquartile

range (IQR), the whiskers extend up to 1.5 IQR, and the open blue

circles are outliers. Also shown is the hourlymean fromall simulated

measurements (red line).
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mutually dependent parameter perturbations between

different processes.

The impact of including multiple observation times in

the posterior estimate is also evaluated. This impact is

assessed in two ways: 1) by convolving the posterior

PDFs for the individual observation times and 2) by

computing the average of these PDFs. The convolution

method is equivalent to performing the sequential esti-

mation with cycling in time, whereas the average is

equivalent to compositing the estimates that correspond

to different periods of the TC vortex evolution. For both

methods we used an observation frequency of 6 h, be-

ginning with the 6-h forecast and ending with the 48-h

forecast, inclusive. The convolution resulted in mutually

independent estimates for the two parameters (Fig. 3c).

The PDF corresponding to Lyo is primarily bimodal, as

in the individual observation times, but it exhibits less

variance. The Ck PDF, however, is uniformly distrib-

uted, thus showing the high uncertainty associated with

this parameter. On the other hand, the composite of the

PDFs resulted in a weakly correlated joint parameter

estimate with slightly better constrained maximum

likelihood than for the individual observation times

(Fig. 3d). With respect to the optimization of the ensem-

ble of parameterizations, these results indicate that the

ensemble estimates would be sensitive to the approach

for combining information from different observation

periods and cases.

b. Kinematic field observations

The possibility of estimating the parameters with re-

spect to the observations of TC vortex wind field instead

of just the maximum wind speed is explored next. The

observations are defined as the radial u, tangential y, and

verticalwwind within the inner 150-km radius, extending

from the surface up to an 18-km height. Similar to the

experiments for ymax, the error variance for these obser-

vations is prescribed based on expected errors in practice

(e.g., airborne measurements) and the variances for the

model error in the equivalent fields were computed using

ASPECH simulations with perturbed initial conditions.

Unlike for the maximum intensity experiment, the

posterior solution shows perfect constraint with the ki-

nematic field observations (i.e., the posterior PDF consists

of a two-dimensional delta function for all observation

times; Figs. 4a,b). The singular value estimates are close

to, but not exactly equal to, the reference true values. This

could be attributed to the low resolution of the para-

meter bins that was used to compute the transfer func-

tions (i.e., only 30 bins were used for each parameter).

Regardless of this limitation, the result suggests that pa-

rameterizations could be effectively optimized using the

observations of kinematic structure of the TC vortex,

which would, in turn, improve the simulations with re-

spect to the maximum tangential wind speed.

Similar to the analysis for ymax, the cumulative impact

of observations from different times was evaluated for

the kinematic field observations. To account for the

lack of resolution of the parameter bins, the posterior

delta-function PDFs were first smoothed by adding a

two-dimensional uncorrelated Gaussian error to the

posterior parameter estimate at each time indepen-

dently. The convolution and averaging were then ap-

plied as in the previous section to compute the cumulative

posterior PDFs. As in the ymax experiment, the convo-

lution resulted in uncorrelated estimates for the two

parameters but with a well-constrained maximum

likelihood that is slightly biased relative to the reference

true value (Fig. 4c). The compositing of the posterior

PDFs produced correlated joint parameter estimateswith

a well-defined and more accurate maximum likelihood

solution (Fig. 4d). It is worth noticing that the biases (the

FIG. 2. Maximum tangential wind speed (color shaded; m s21) at (a) 24 and (b) 48 h for each two-parameter

combination. The dashed lines correspond to the reference true values for each parameter; their intersection shows

the maximum tangential wind speed for the control simulation.
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deviation from the reference solution) for the ymax and

kinematic field experiments are very similar for the pa-

rameter Lyo, and that for both experiments the biases are

reduced when using the composited PDFs.

Additional experiments were carried out using only

vertical profiles of u, y, and w at a specific distance from

the storm center [e.g., at the radius of maximum wind

(RMW), at 2 RMW, etc.] as observations. The PDFs

from those experiments are surprisingly similar to those

shown in Fig. 4, and also show a perfect constraint of the

parameter values at all observation times (not shown).

4. Conclusions

The potential for quantifying and reducing uncertainty

in parameterizations using optimal estimation with

observations is evaluated for an idealized case of tropical

cyclone intensity prediction. Using the nonlinear inverse

estimation method with the Axisymmetric Simplified

Pseudoadiabatic Entropy Conserving Hurricane model,

it is shown that two parameters affecting the intensity

forecast could not be effectively optimized using only the

maximum tangential wind speed observations. In con-

trast, the joint parameter estimates are well constrained

when the observations of the inner vortex core circulation

are used. The results suggest that full kinematic field

observations, such as Doppler winds measurements, are

beneficial for optimizing the parameterizations with

respect to the intensity prediction problem. It is also

demonstrated that optimal estimation with observations

would lead to mutually dependent estimates of the

parameters. Such estimates would benefit the design of

FIG. 3. Posterior joint PDFs in the parameter space (color shaded; darker colors represent relatively high prob-

abilities) andmarginal PDFs forCk andLyo (green and blue lines, respectively). (top) The PDFs at (a) 24 and (b) 48 h.

(bottom)The time-integratedPDFs, obtained by (c) convolving the 6-hourly PDFs and (d) averaging the PDFs over the

48-h simulation period. For all panels, the gray dashed lines depict the reference true parameter values, as in Fig. 2.
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optimal parameter-based ensemble forecast perturba-

tions. Although it would be difficult to compute a non-

linear inverse solution for full-physics, three-dimensional

models because of the large dimension, more practical

methods such as the ensemble Kalman filter data as-

similation technique (e.g., Aksoy et al. 2006; Godinez

et al. 2012; Yussouf and Stensrud 2012) could be ap-

plied with the full kinematic field observations. The

efficacy of using such a method remains a question for

future studies.
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