1	Script for Snowstorm test case SNOW2023
2	ATM419/563 Fall 2025
3	
4	* preliminaries *
5	* make a directory in your lab space called SNOWSTORM, and move into it
6	* copy \$LAB/SNOWSTORM/SETUP.TAR and
7	* unpack it: tar -xvf SETUP.TAR
8	* execute sh make_all_links.sh
9	
10	* visualize domain and run geogrid*
11	Launch Jupyterlab: https://jupyterhub.hpc.ucar.edu
12	Casper Login suffices. Execute plot_WRF_domain.ipynb notebook
13	
14	qsub submit_geogrid
15	{Look for: "Successful completion of geogrid."}
16	
17	On Jupyterlab, execute plot_WRF_terrain.ipynb notebook to visualize terrain and
18	provide information on MAPFAC_M values
19	
20	**
21	./link_grib.csh \$LAB/DATA/GFS_2023012212/gfs.* .
22	Is -al GRIBFILE* [make sure everything is OK]
23	wgrib2 GRIBFILE.AAA more [looking at contents]
24	
25	cp Vtable.GFS Vtable [select correct Vtable!]
26	
27	UNGRIB CAN BE TIME-CONSUMING AND CAUSE RESOURCE CONTENTION
28	Listen for which option we will use for this demonstration
29	
30	Option (A): Submit ungrib as a batch job
31	qsub submit_ungrib
32	tail -f ungrib.out Break out of tail with ctrl-C
33	
34	Option (B): Link to prepared ungrib outputs [that space and dot are important]
35	In -s \$LAB/SNOWSTORM/UNGRIB/FILE* .
36	
37	ungrib is done when you see: "Successful completion of ungrib."
38	ungrib makes 10 gigabytes worth of outputs
39	Is FILE*

```
40
    * -----*
41
    qsub submit metgrid
42
    [look for Successful completion.... If issues, check metgrid.log.0000 file]
43
44
    Is met em*
45
46
    ncdump -h met em.d01.2023-01-22 12:00:00.nc | more [TAB COMPLETION!]
47
    [Notice is says num metgrid levels = 34 in the header information]
48
    [Note in namelist.input, we specify num metgrid levels = 34]
49
50
    * -----*
51
52
    (see PPT)
53
    * ------*
54
55
    qsub submit real
56
57
    [NOTE JOB NUMBER ASSIGNED]
58
    [check job status as directed]
    myjobs
59
60
    [when job is finished, check 'tail' of rsl.out.0000 file with 'trsl' command.
61
    Make sure it says "SUCCESS COMPLETE REAL EM INIT"]
62
    trsl Break out of tail with ctrl-c
63
64
    Is -al wrfbdy* wrfin*
65
66
    * ------ wrf.exe ------ *
67
68
    qsub submit wrf
69
70
    [check job status as directed. WRF runs should take about 2 minutes.]
    myjobs
71
72
73
    * monitor WRF run
74
    trsl (ctrl-c to break out)
75
76
    [check for successful completion with 'trsl']
77
78
    ls -1 wrfout d01* (Verify you have wrfout d01 2023-01-22 12:00:00)
79
```

80	* analyze WRF simulation *
81	
82	Launch WRF_plot_SNOW2023_V3.ipynb
83	
84	Cell #1 = openers
85	Cell #2 = useful functions
86	Cell #3 = define and open WRF output. Should not require editing.
87	Cell #4 = Extract some fields from WRF output
88	Cell #5 = Plot model topography
89	Cell #6 = Prepare for a plot of 10m winds, microphysics total precipitation, and
90	cumulus total precipitation at final forecast time
91	Cell #7 = Plot 10m winds, microphysics total precipitation, and cumulus total
92	precipitation at final forecast time
93	Cell #8 = Extract snow depth for a single location, convert to inches, and plot as a
94	time series
95	
96	* TOUR of namelist.input settings *
97	(see PPT, slides 41-end)
98	
99	examine model vertical grid (see slide 48)
100	dopython
101	python read_wrfinput.py wrfinput_d01