and Lu/Hf greater than the MORB source, and with
time, Talkeetna lower crust should evolve to isotope ra-
tios more depleted than the MORB source. Anatexis of
garnet-bearing lower crustal rocks will produce isotopi-
cally depleted, light REE enriched, heavy REE depleted
partial melts. Interaction of these granitic melts with
surrounding mantle peridotite will raise their Mg# and
Ni, and lower SiOg to produce andesitic or basaltic hy-
brid magmas. Moho temperatures in the western Aleu-
tian arc may be relatively low, below 900°C, due to
slow convergence and low magma flux, enhancing for-
mation of garnet granulite and subsequent delamina-
tion. Lower arc crust formed during early Aleutian
magmatism, with the isotopic composition of MORB at
40 Ma and trace element patterns of Talkeetna pyrox-
enites and garnet granulites, will evolve to yield isotope
ratios like those of Miocene and present day Aleutian
andesites. Thus, melting of delaminated garnet gran-
ulites within the mantle wedge may be a viable alterna-
tive to partial melting of subducted eclogite, producing
the light REE enriched, heavy REE depleted compo-
nent in western Aleutian primitive andesites. Tectonic
erosion of old arc basement from forearcs, and incorpo-
ration of these rocks into the mantle wedge, might have
similar consequences.

VA1A-03 0830h

4D constraints on melt source-rock
input and granite production in
continent-continent collision; a case
study from a 50 ki wide swath
through the Himalayan magmatic arc

M A Edwards! (+43-676-620-1998;
michael.edwards@univie.ac.at); G Wiesmayrl
(x@x); b Grasemann! (x@x); m Meyer! (x@x); h
Hausler! (x@x); b Miller? (x@x); W.S.F Kidd3
(x@x); s Samson? (x@x)

1Structural Processes Group Dept. of Geological Sci-
ences University of Vienna, Althanstrasse 14, Vi-
enna A-1090, Austria

2Dept Geol. Sci., Univ of North Carolina, Chapel
Hill, NC 27599z‘, United States

3Dept Geol. Sci., SUNY, Albany, NY 12222, United
States .

4Dept. Earth Sci., Syracuse Univ., Syracuse, NY
13244, United States
Detailed mapping, mountaineering and high reso-
lution remote-sensing data from the Bhutan High Hi-
malaya illustrate rates & / volumes of magmatic arc
growth in continent-contintent collsion. Lunana &
Gonto La, a 20 km x 30 km area with >3 km re-
lief, provide 3D data for widespread, km-long, Dm-
thick, sill- & laccolith-form leucogranites. These peak-
forming (>8000 m) Miocene plutons are typical for the
ca.2500 km magmatic arc of the India-Asia continental
collision. Extrapolation to geo-traverses through peaks
to the east (Khula Kangri, Monlakarchung) onto a 30sec
DEM provide tight datapoint 3D subsurface control for
>4500 km3, thereby constraining total pluton shapes
and volumes. Geochemistry studies indicate exclusively
decomposition melting (Harris, et al. 2002) and permit
us to calculate required melt-source rock volumes for
various conditions. Project INDEPTH seismic reflec-
tion profiling (conducted imm. to the N. - Nelson et al.
1996) has been used with further mapping to obtain a
50 km wide, 150 km long swath through the entire oro-
gen. These reveal the sub-surface form of the shallow,
gently N-ward dipping, crystalline, mid-crustal layer
that is exposed at the High-Himalaya, the upper part of
which the plutons intrude. The 4D part of our 3D swath
through the magmatic arc is geochronology for the plu-
tons and, to the north, of local granitoid protrusions
from beneath the cover rocks of the melted mid-crustal
layer that constrain a N-ward younging of plutonism
(Copeland 1990; Edwards & Harrison 1997; Edwards et
al. 1998; Li et al. 1998). Using these time constraints
together with a kinematic model incorporating dilatant
flow where both lines of no-rotation are stretching and
non-parallel to shearing boundaries, we link deforma-
tion with melt source-rock magmatic product volume
changes. We derive a timetable for melt addition and
thereby rates of magma extraction and ascent.

V41A-04 0845h INVITED

Rifting, Insertial Magmatism And
Continental Arc Construction, Peru

Nick Petford?! (n.petford@kingston.ac.uk)

Michael Atherton? (m.atherton@liv.ac.uk)

1Nick Petford, Kingston University, London KT1
2EE, United Kingdom

2Michael Atherton, University of Liverpool, Liverpool
L69 3BX, United Kingdom
The Mesozoic-Cenozoic tectonic evolution of the Pe-
ruvian continental margin of South America is domi-
nated by periods of intracontinental rifting and basin
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formation. The Andean cycle in this region starts in
the Cretaceous with intrusion of the tonalite-dominated
Coastal Batholith (CB) into an Albian marine basin
forming part of a major extensional system extending
from Columbia to the Antarctic. Basaltic material at
the bottom of the basin was remelted to produce mainly
tonalitic magmas of the CB, which were intruded ver-
tically up axial fractures to form thin, trench-parallel,
horizontal intrusions near the surface. Gravity mod-
elling of the CB and its envelope shows the intrusion
is tabular, with an aspect ratio close to 20. Individual
plutons have aspect ratios close to 5. A thick (10-km)
root zone to the west is interpreted as a multiple dyke
feeder system. It is likely that much of the CB was
intruded under a shallow sea that covered the basinal
rocks prior to inversion. From Eocene times onwards,
volcanism and plutonism migrated inboard, culminat-
ing in the intrusion of the Cordillera Blanca Batholith
(CBB) and Yungay ignimbrites at c. 6 Ma. Situated
above the now thickened crustal root of the Andes (c.
60 km), the CBB was intruded into Jurassic basinal
shales which form part of the much larger West Pervian
Trough, and its emplacement overlaps with'intense up-
lift and exhumation along the Andean margin at c. 15-
10 Ma. The western margin of the basin and CBB ter-
minate at the Cordillera Blanca fault complex, a deeply
disecting, trench-parallel crustal lineament. In contrast
to traditional models of cordilleran magmatism, which
often predict ’S’-type magmas inboard of the main arc,
the CBB rocks are high Na, high Sr/Y types similar to
Archean trondhjemites that contrast markedly with the
calc-alkaline magmas of the CB. Similar calc-alkaline to
adakite-like compositional trends are seen in spatially
related volcanic rocks in land from the trench. In the
Peru arc, the generation of large volumes of granitic
(s.1.) melts is related to periods of crustal extension,
with the pre-existing (Gondwana) structural template
of the continental margin controlling both location and
style of intrusion. The source material for the majority
of plutonic rocks was newly generated basaltic lower
crust. Volume constraints imply that the crustal col-
umn beneath the western Peruvian arc evolved signif-
icantly from c. 20 to 5 Ma, with vertical thickening
driven by an elevated flux of mantle-derived magma
into the lower crust, followed by rapid intracrustal
remelting and chemical differentiation. It is likely that
flare-up of insertial magmatic activity combined with
rifting has led to periodic thermal weakening of the en-
tire arc, resulting in fluctuating bulk rheology of arc
lithosphere over time.
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Patterns of the Cretaceous to
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lDeptA of Geology, San Jose State Univ., San Jose,
CA 95192-0102, United States

2DeptA of Earth Sciences, Univ. of Southern Califor-
nia, Los Angeles, CA 90089, United States

3Dept, of EAPS, MIT, Cambridge, MA 02139, United
States

The crystalline core of the North Cascades (Cas-
cades core) preserves a crustal section of ca. 10- to
40 km paleodepths that facilitates evaluation of the
crustal architecture and partitioning of strain during
major shortening of this 96- to 45 Ma continental mag-
matic arc. The dominantly tonalitic plutons in the arc
are steep-sided, vertically extensive bodies that com-
monly are sheeted. They intrude oceanic and arc ter-
ranes juxtaposed along initially gently dipping thrusts
before 92 Ma. Shortening, crustal thickening, and
amphibolite-facies metamorphism of the Cascades core
were synchronous with large (> 100 km) thrust dis-
placements at shallow levels in the ca. 100-80 Ma
NW Cascades thrust system. Deformation in the core
was dominated by early tight to isoclinal, gently in-
clined to recumbent folds that were followed by open
to tight, more upright folds. SW-vergent, moderate
to steeply dipping reverse shear zones, which postdate
terrane juxtaposition, were localized next to plutons.
They have < 10 km displacement and were responsi-
ble for less shortening than the folding. Metamorphic
and geochronologic data indicate rapid burial of plu-
tons and host rocks during the mid-Cretaceous defor-
mation. Shortening in sub-greenschist-facies, ophiolitic
rocks above the Cascades core was manifested by up-
right folds and steep reverse shear zones that reacti-
vated Jurasssic faults inferred to have formed in an
oceanic fracture zone. Folding and reverse shear per-
sisted in the Cascades core until at least 65 Ma, well
after major thrusting ceased in the NW Cascades sys-
tem. The younger shortening structures are confined
to deeper, more internal parts of the arc, and were
probably localized in part by magmatism and ther-
mal weakening. This shortening was also broadly co-
incident with crypti'c thrust burial of sedimentary pro-
toliths of the Swakane Gneiss from the surface to 40
km between 73 to 68 Ma. This underthrusting may
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have removed the roots of the arc plutons. Similar de-
formation patterns throughout the crustal section im-
ply structural coupling of large parts of the arc. This
coupling may reflect the consistently tonalitic composi-
tion (rather than more mafic composition with depth)
of plutonic rocks and low paleogeothermal gradients of
the section. Structural partitioning was more strongly
controlled by relatively localized rheological contrasts,
particularly the presence of rigid plutons and other me-
chanical anisotropy.
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Tectonic evolution of the Notre Dame
magmatic arc, Newfoundland
Appalachians

Cees van Staall (613-095-4333;
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1Geological Survey of Canada, 601 Booth Street, Ot-
tawa, ON K1A OE*, Canada

Notre Dame continental arc.magmatism in New-
foundland had an overall lifespan of c. 60 Ma (489-429
Ma). Extensive age dating suggests that arc construc-
tion took place in 3 distinct stages, separated by gaps
of magmatic quiescence (arc shut-off). The first phase
of quiescence (c. 480-468 Ma) corresponds to the start
of Taconic collision between the initially west-facing
Notre Dame arc and Laurentia. The second phase of
magmatic quiescence (455-445 Ma) corresponds to col-
lision between the now east-facing Notre Dame arc and
the west-facing, peri-Gondwanan Victoria arc built on
a piece of Ganderian crust. Resurgence of arc magma-
tism followed stepping- back of the west-dipping sub-
duction zone into the oceanic marginal basin that sepa-
rated the Victoria arc from the Gander margin. A grad-
ual transition (431-429 Ma) from arc-like to mainly ju-
venile, bimodal within plate-like magmatism coincides
with suturing of the Notre Dame arc with the Gander
margin along the Dog Bay line and probably reflects
break off of the west-dipping Ganderian slab. Preser-
vation of an unconformable and unmetamorphosed Sil-
urian cover, consisting of red beds and bimodal volcanic
rocks, over large tracts of the Notre Dame arc indicates
that the arc was extinct and stabilized by the Late
Silurian (c. 425 Ma) and did not experience any sig-
nificant overprint during the Early Devonian Acadian
orogeny, the effects of which were mainly localized fur-
ther to, the east due to accretion of Avalonia to Lauren-
tia. The second, Mid-Ordovician phase of arc magma-
tism (c. 469-456 Ma) appears most voluminous and was
mainly characterized by K-poor, calc-alkaline quartz
diorite to tonalite and, to a lesser extent granodior-
ite, plutons. These calc-alkaline plutons intruded dur-
ing deformation and significant thickening of the Notre
Dame arc, presumably as a result of ongoing shorten-
ing following initial collision with Laurentia and an arc-
polarity reversal. Such a tectonic scenario is consistent
with the high metamorphic grade of the supracrustal
rocks they intruded and high La/Yb content of most
tonalites, which suggests melting of garnet~amphibolite
near the base of an over thickened arc. The firat evi-
dence of emergence of the Notre Dame arc following its
thickening is provided by unconformably overlying, late
Caradoc (c. 453 Ma) subaerial ignimbrite and conglom-
erate. Parts of the Notre Dame arc show very rapid ex-
humation of its middle to lower crust at c. 430 Ma, fol-
lowing shortening during the Barly Silurian. Exhuma-
tion was presumably triggered by slab breakoff during
final suturing between Ganderia and Laurentia.
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Crustal Structure and Rock Uplift due
to Back-Arc Extension.
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2Geoscience Australia, GPO Box 378 CANBERRA
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We use crustal structure and exhumation data to
estimate the density and partial melt variation in the
mantle wedge of a back-arc extension system. A pro-
gram of explosion seismology (NIGHT) in the central
North Island (CNI) of New Zealand has unearthed an
intriguing, isostatic contradiction: an association of
profoundly thin continental crust with recent rock up-
lift. We explore properties of the upper mantle that
might lead to sufficient buoyancy to compensate the
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