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[1] The analysis of a global data set of monthly leaf area index (LAI), derived from
satellite observations of normalized difference vegetation index (NDVI) for the period
July 1981 to September 1994, is discussed in this paper. Validation of this retroactive,
coarse resolution (8 km) global multiyear data set is a challenging task because repetitive
ground measurements from all representative vegetation types are not available. Therefore
the magnitudes and interannual variations in the derived LAI fields were assessed as
follows. First, the use of a NDVI-based algorithm, as opposed to a more physically based
approach, is estimated to result in relative errors in LAI of about 10–20%, which is
comparable to the mean uncertainty of AVHRR NDVI data. Second, the satellite LAI
values compared reasonably well to ground measurements from three field campaigns.
Third, comparison with an existing multiyear LAI data set showed qualitative agreement
with regards to interannual variability, although the LAI values of the earlier data were
consistently larger than those derived here. Fourth, interannual variations in LAI were
evaluated through correlations with climate data sets, e.g., sea surface temperatures and
precipitation in tropical semiarid regions known for ENSO impacts, temperature
dependence of vegetation growth, and therefore LAI, in the northern latitudes. The general
consistency between these independent data sets imbues confidence in the LAI data set, at
least for use in large-scale modeling studies. Finally, improvements in near-surface climate
simulation are documented in a companion article when satellite LAI values were used in
a global climate model. The data set is available to the community via our Web server
(http://cybele.bu.edu). INDEX TERMS: 1640 Global Change: Remote sensing; 1620 Global Change:

Climate dynamics (3309); 3322 Meteorology and Atmospheric Dynamics: Land/atmosphere interactions;
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1. Introduction

[2] The exchanges of energy, water, and carbon between
the land and the atmosphere depends largely on the func-
tioning of leaves. They use solar energy, water, atmospheric
CO2 and nutrients to synthesize sugars and other organic
compounds. Stomates provide the path between the atmos-
phere and the water-saturated cellular tissues inside the
leaves to facilitate the exchange of mass [Sellers et al.,
1997a]. Depending on environmental conditions, stomates
act to optimize the uptake of atmospheric CO2 and loss of
water vapor, and, thus directly control evapotranspiration of

vegetated surfaces [Cowan, 1977; Field and Mooney, 1986].
Parameterizations for leaf functioning as part of climate
models that simulate these processes require accurate quan-
titative information on the amount of vegetation [Dickinson,
1995]. In this context, the leaf area index (LAI) is one of the
standard ecological parameters. It is defined as the one-
sided green leaf area per unit ground area. In needleleaf
vegetation, LAI is defined as the projected needleleaf area
per unit ground area.
[3] LAI has been introduced in climate models to quan-

tify water and carbon fluxes as well as the effect of leaves
on the surface radiation balance [Dickinson, 1984]. One
inconsistency in these efforts is that the model LAI values
are often based on a few measurements from a less than
ideal suite of sites that makes their extrapolation to other
regions problematic. The availability of multiyear satellite
data and recent advances in vegetation remote sensing
provide an opportunity to overcome this deficiency. Several
procedures have been developed to retrieve LAI from
remotely sensed data. Empirical relationships between
LAI and spectral vegetation indices, including near-infrared
(NIR) to red (RED) band ratios and the normalized differ-
ence vegetation index (NDVI), have been suggested [Asrar
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et al., 1984; Peterson et al., 1987; Chen and Cihlar, 1996;
Sellers et al., 1996]. However, such relationships are site-
and sensor-specific and their application to large areas or
different seasons is limited [Gobron et al., 1997]. The
preferred alternative for LAI retrievals from surface reflec-
tances is a radiative transfer based approach that is accurate
and applicable on an operational basis.
[4] In this paper, we present an analysis of a global

monthly multiyear LAI data set for the period July 1981 to
September 1994, derived from satellite NDVI with the aid
of a three-dimensional radiative transfer model and a map
of global land cover [Myneni et al., 1997a]. Establishing
the validity of the produced LAI fields is a challenging
task, yet without this, the utility of the data set for model
studies of interannual variability in near-surface climate
and terrestrial carbon cycle may be limited. Satellite data
products are often validated with ground measurements,
that is, an estimate of uncertainty of the produced fields is
provided relative to some ground truth. The coarse spatial
resolution of the LAI data set (8 � 8 km) and its global
and temporal extent confound this task. Global validation
requires field data from a range of sites representing a
logical subset of the Earth’s land covers. Such activities

require significant resources and coordination. Moreover,
the timeline of our data set implies dependence on past
experimental campaigns.
[5] In spite of these limitations, we have tried never-

theless to assess the magnitudes and interannual variations
in the produced LAI fields through five different activities.
First, we perform an analysis to estimate the magnitude of
errors incurred by the use of a NDVI-based algorithm as
opposed to a radiative transfer based algorithm such as that
used for the moderate resolution imaging spectroradiometer
(MODIS). Second, ground measurements of LAI from three
campaigns are used to verify the magnitude of the produced
fields. Third, the data set is compared to another LAI data
set currently used by the community. Fourth, through
correlations with climate data sets, e.g., land and sea surface
temperatures and precipitation, we argue for meaningful
interannual variations observed in our LAI data set. Finally,
the utility of the data set is documented through climate
model simulations with the satellite LAI fields. This last
activity is reported by Buermann et al. [2001]. While these
activities do not constitute comprehensive validation per se,
they do imbue sufficient confidence in the data set for
further use and verification by the community.

Figure 1. Singular spectrum analysis of the time series of five degree latitudinal band NDVI anomaly.
The panel shows a selection of the first 20 reconstructed principal components from SSA analysis of the
time series of spatially averaged PAL NDVI anomaly of vegetated pixels in the tropical band 5�S to 0�.
Here, reconstructed principal components with similar spectral characteristics were grouped together.
Window length was set to 90 (90 � 10 days � 2.5 years) to primarily resolve periods at seasonal to
interannual timescales [Vautard et al., 1992].
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2. Production of the LAI Data Set

[6] The NOAA/NASA Pathfinder AVHRR Land (PAL)
data set consists of 10 day maximum NDVI value global
composites for the period July 1981 to September 1994
[James and Kalluri, 1994]. The NDVI is expressed on a
scale between �1 to +1. It is between �0.2 and 0.1 for
snow, inland water bodies, deserts and exposed soils, and
increases from about 0.1 to 0.7 for progressively increasing
amounts of vegetation [Tucker et al., 1986]. The NDVI data
capture the contrast between red and near-infrared reflec-
tance of vegetation that is indicative of the abundance and
energy absorption by leaf pigments such as chlorophyll. The
processing included improved navigation, calibration and
partial atmospheric correction (Rayleigh scattering and
ozone absorption) of the data. Remaining atmospheric
effects were minimized by analyzing only the maximum
NDVI value within each 10 day interval. However, residual
noise due to orbital drift, intersensor variations and strato-
spheric aerosol effects in the data, have been reported
[Myneni et al., 1998]. Therefore the PAL NDVI data were
corrected as follows.
[7] The time series of NDVI for barren and vegetated

pixels in 5 degree latitude bands were extracted from a
quarter degree NDVI data set, created by aggregating the 8
km data, using the land cover classification reported by
Myneni et al. [1997a]. The spatial aggregation over the
specific surface types emphasizes temporal variations in the
NDVI fields that is the focus here. After subtracting the
mean, based on the full record length, each of the resulting
spatially averaged NDVI anomaly time series was subjected
to singular spectrum analysis (SSA), which is a form of
principal component analysis in the time domain [Vautard et
al., 1992]. The first 8 principal components (PCs) generally
accounted for about 95% of the variance in the series.
However, for the tropical bands significant high-frequency
noise in the PAL NDVI data, likely due to residual cloud
contamination, required inclusion of a larger number of
PCs. For example, Figure 1 shows the first 20 reconstructed
principal components for all vegetated pixels in the tropical
band 5�S to 0�. The sum of the reconstructed PCs 3 and 4
shows the expected regularly recurring annual cycle corre-
sponding to wet and dry periods. In contrast, the recon-
structed PCs 1 and 2 as well 5 and 6 capture the degradation
due to stratospheric aerosols (Pinatubo, El Chichon), inter-
sensor variations, and changes in overpass time and asso-
ciated solar zenith angle effects resulting from orbital loss at
the end of the satellites lifetime [Myneni et al., 1998]. The
effects of the seasonal movement of the ITCZ and related
changes in atmospheric water vapor content on the NDVI
data in this tropical band are likely to be captured in the sum
of the reconstructed PCs 7 and 8 [Los et al., 1994]. The
remaining PCs explain only a small portion of the variances
in the PAL NDVI data and mostly exhibit high-frequency
variations from residual cloud contamination. The PAL
NDVI anomaly time series for this tropical band and the
aggregated reconstructed PCs denoting noise and signal are
shown in Figure 2. The latitude and surface specific noise
time series were then subtracted from the original quarter
degree and 8 km time series of all pixels in that 5 degree
latitude band. Note that the signal time series still shows a
pronounced negative anomaly in the post Pinatubo period

(Figure 2). An evaluation of the corrected (noise-subtracted)
NDVI time series confirms that for this period the data in
the lower latitudes is still corrupted.
[8] The mean of the corrected three 10 day maximum

NDVI value composites was used to create a monthly
NDVI data set. Thereafter, this monthly NDVI data set
was used to create the 8 km monthly LAI and Fraction of
Absorbed Photosynthetically Active Radiation (FAPAR)
data sets with an algorithm that utilizes results from a
three-dimensional radiative transfer model and a land cover
map as described by Myneni et al. [1997a].

2.1. Error Analysis

[9] We evaluated the magnitude of errors in the satellite
LAI fields incurred due to uncertainties in input AVHRR
NDVI data and deficiencies of the algorithm. The conver-
sion of NDVI to LAI in the algorithm depends only on the
vegetation type and measurement geometry, and this is also
the principal deficiency [Myneni et al., 1997a]. The NDVI
is not a unique function of the component red and near-
infrared channel reflectances. Thus, various combinations of
the channel data can potentially result in the same value of
NDVI, and hence, LAI. For example, consider two pixels of
the same vegetation type but of different LAI values. The
channel reflectances, even if measured under identical geo-
metrical conditions, will be different, but may combine to
result in similar NDVI, and hence LAI, values.
[10] To assess the magnitude of such errors, we use

results from a recent effort in which the MODIS LAI
algorithm and AVHRR based LASUR channel reflectances
were utilized to retrieve LAI of broadleaf and needleleaf
forests [Tian et al., 2000; Berthelot et al., 1997]. The NDVI
based algorithm used here and the MODIS LAI algorithm

Figure 2. PAL 10 day NDVI anomaly time series (data)
for vegetated pixels in the tropical band 5�S to 0� and
aggregated principal components (PCs) denoting noise and
signal. Numbers in brackets indicate the number of the PCs
from Figure 1. The large-amplitude noise in these tropical
vegetation data is due to residual cloud effects in the PAL
NDVI data. Note also the impacts of stratospheric aerosols
due to Mount Pinatubo eruption in June of 1991 and the
dramatic loss of orbit in 1994.
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are both based on the physics of radiative transfer. However,
the MODIS algorithm ingests channel data, instead of
NDVI, and also utilizes information on sun and view angles
as well as background reflectances in the retrieval process
[Knyazikhin et al., 1998a]. Further, uncertainties in the input
channel data are taken into account by the MODIS algo-

rithm through the use of a probabilistic approach that results
in a LAI distribution function as the solution. LASUR
reports no information on reflectance uncertainties. In such
a case, it is necessary to identify at least the upper bound of
the overall input channel uncertainty [Wang et al., 2001].
One way to identify this upper bound is to set it to a fixed

Figure 3. Scatterplot of the NDVI-LAI relationship for broadleaf and needleleaf canopies obtained
from the MODIS algorithm using LASUR data [Berthelot et al., 1997]. Solid lines are regression curves
that represent the mean values of a Gaussian fit for each 0.02 NDVI interval. The regression curve is the
best possible prediction of LAI and also minimizes the expected squared error of the prediction of LAI
given a realized value of NDVI. The upper and lower sigma boundaries are shown as dashed lines.
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value and asses the performance of the algorithm on targets
of know properties. For LASUR, an assumed overall input
channel uncertainty of 20% indicated that 95% of the
nonretrieved pixels were nonvegetated (NDVI < 0.1), and
therefore this value was used in the retrieval process [Tian et
al., 2000].
[11] Figure 3 shows the conditional distribution of LAI

with respect to NDVI evaluated from the red and near-infra-
red channel reflectances input to the MODIS algorithm. The
scatter in the figure highlights the limitation of using a NDVI-
LAI relation and, therefore, provides an estimate of errors
incurred due to deficiencies of the NDVI-based algorithm.
[12] The results presented in Table 1 and Figure 3 indicate

that in the NDVI range of 0.1 to 0.65 in broadleaf forests
and 0.1 to 0.55 in needleleaf forests, relative errors in LAI
are about 10–20%. This is approximately comparable to the
overall uncertainty of input AVHRR channel data. The
uncertainties in LAI grow for larger NDVI values, indicat-
ing retrievals from the saturation domain. Under such
conditions, the canopy reflectances carry little signal for
reliable LAI retrieval, because a wide range of natural
variations in canopy structure and soil can result in the
same value of the remotely sensed signal [Knyazikhin et al.,
1998b]. For the other four biomes (grasses, crops, shrubs
and savannas) with relatively little or no tree fraction
[Myneni et al., 1997a], the frequency of LAI retrieval under
saturation conditions is relatively low, thus minimizing this
type of error. The errors in retrieved LAI values in these
biomes are likely to be in the range of the uncertainties of
the input data, about 20% [Tian et al., 2000]. Errors in LAI
retrievals due to biome misclassification are not considered
here. Analysis presented in the work of Tian et al. [2000]
indicates that misclassification of spectrally and structurally
distinct biomes (e.g., grass and forests) can seriously
degrade the quality of the retrieval.

3. Comparison With Field Observations

[13] The validation of coarse resolution global data sets
with ground measurements is a difficult task. Here arises the
challenging problem of scaling plot level measurements to
satellite resolutions [Tian et al., 2002]. The scarcity of field
LAI measurements useful for validation during the 1980s

represents a more pressing problem. Nevertheless, we tried
to utilize the few available LAI data from the following field
campaigns (First International Field Experiment (FIFE),
Oregon Transect Ecosystem Research (OTTER) and BOR-
eal Ecosystem-Atmosphere Study (BOREAS)) as described
below.
[14] A biome in a certain region at a given time has a LAI

distribution that is dependent on the climatology and
edaphic conditions [Potter et al., 1993]. Sampling this
distribution requires many plot-level, small-scale samples
distributed over a large area which is expensive and not
practical. Most field measurements are typically several plot
level samples within a small region. Satellite retrievals, on
the other hand, cover an entire region of interest, but at a
coarse scale. If the sampling in both cases is adequate, the
LAI distributions from field measurements and satellite data
retrievals should approximate the true intrinsic distribution
of the biome in that region at that time. By adequate we
mean an optimum number of samples, but in practice we are
limited to the available field data. Given a certain number of
plot level measurements, we compare the resulting LAI
distribution to that from coarse-scale satellite data retrievals
for a biome in that region at about the same time period. If
the two distributions are comparable, this then is the
necessary, but not sufficient, condition for concluding that
the distributions approach the true LAI distribution. It is not

Table 1. Mean and Standard Deviation of LAI at Specific NDVI

Levels in Broadleaf and Needleleaf Forests, Using LASUR Data

[Berthelot et al., 1997] and the MODIS Algorithm [Knyazikhin et

al., 1998a]a

Biome NDVI LAI, m Error, ±s

Broadleaf 0.5 0.85 0.11
0.6 1.28 0.17
0.7 2.23 0.59

Needleaf 0.5 0.97 0.13
0.6 1.65 0.44
0.7 1.75 0.87

aFor a given set of spectral reflectances, the MODIS algorithm produces
multiple solutions of LAI which result from certain combinations of
canopy/soil patterns leading to the same surface reflectance. In this
algorithm, a mean uncertainty of 20% in the spectral surface reflectances is
assumed [Tian et al., 2000]. Analysis shows that the multiple LAI solutions
are nearly normally distributed. The mean and standard deviation were
obtained through a Gaussian fit and correspond to the conditional
distribution of LAI in 0.02 NDVI intervals, centered at the respective
NDVI values given in the table.

Figure 4. Comparison of field (dashed line) and 8 km
satellite LAI (solid line) values for grasses and needleleaf
forests. (a) FIFE (July 1987; 180 measurements), (b)
OTTER (August 1990; 59 measurements), (c) BOREAS
Southern Study Area (June 1994; 300 measurements) and
(d) BOREAS Northern Study Area (June 1994; 200
measurements). The satellite LAI values are from 38.30�–
39.70�N and 95.75�–97.25�W (FIFE), 44.40�–44.90�N
and 122.10�–123.80�W (OTTER), 53.00�–54.50�N and
104.00�–106.50�W (BOREAS-SSA) and 55.00�–57.00�N
and 96.50�–99.50�W (BOREAS-NSA), respectively.
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sufficient because the two sampled distributions may con-
verge to the wrong distribution due to inadequate sampling.
This is the logic behind our validation strategy.
[15] The FIFE experimental site is a 15 � 15 km grass-

land area of the Konza Prairie in central Kansas, USA
(39.00�N, 96.50�W). A total of 180 destructive grass
samples at thirty plots were collected in July 1987. Sub-
sequently, the leaf area of the grasses was measured with a
LI-COR-3100 area meter [Nelson et al., 1994]. These are
compared to a similar number of 8 km satellite data LAI
retrievals during the same period over grasslands in mid-
western United States (Figure 4a). The distributions of field
and satellite LAI values compare well, with the latter
showing slightly higher LAI values. Apart from scaling
issues, which perhaps explain some of this discrepancy,
field retrievals possibly underestimate the actual LAIs due
to rapid drying and change in shape of the grass samples
[Nelson et al., 1994].
[16] In the OTTER experiment, a total of 59 field photo-

graphic measurements were taken in August 1990 at two
representative western coniferous sites in Oregon. The two
sites are Warings Woods (44.60�N, 123.27�W; mountain
hemlock and Douglas fir) and Scio (44.67�N, 122.61�W;
mountain hemlock), at about 50 km apart. LAI values were
computed from these photographic data [Ustin, 1990]. The
resulting distribution is shown in Figure 4b together with
the 8 km satellite data retrievals from needleleaf forests in
this region during August 1990. The two distributions agree
reasonably well and the most probable LAI value at these
sites is about 5.5 to 6.
[17] A large number of overstory LAI measurements were

made at several boreal conifer sites as part of the BOREAS
experiment. These include old jack pine (OJP), old aspen
(OA) and old black spruce (OBS). Most of these measure-
ments were performed in June 1994 along transects at the
intensive sampling sites (tower flux sites) located in the
BOREAS southern study area (SSA) and northern study
area (NSA), using a LI-COR LAI-2000 sensor [Chen and
Cihlar, 1996]. About 300 measurements were made at three
intensive sites (SSA-OA, SSA-OBS, and SSA-OJP) in the
SSA, covering an area of about 100 � 50 km. Likewise,
about 200 measurements were made at two intensive sites
(NSA-OBS and NSA-OJP) in the NSA, covering an area of
40 � 30 km [Chen and Cihlar, 1996; Sellers et al., 1997b].
We computed LAI values from these LAI-2000 readings,
accounting for clumping effects as recommended by Chen
and Cihlar [1996]. The resulting LAI distributions for the
two study regions are shown in Figures 4c and 4d, together

with the 8 km satellite data retrievals from needleleaf forests
in the boreal zone during June 1994.
[18] The field and satellite LAI distributions agree

remarkably well at the NSA. The observed bimodality in
the field data is due to a dense canopy at the OBS site (3.7 ±
0.5) and sparser canopy at the OJP (1.7 ± 0.5) site. The
satellite data retrievals capture this, which also suggests that
these two forest types are about equally common in that
region. At the SSA, the satellite retrievals are generally
higher than the field values. The distributions are also
indicative of the different forest types. For example, the
distinct peak at field LAI value of two is from OJP (1.9 ±
0.2) and OA (2.1 ± 0.2), while the shoulder at higher LAI
values is due to OBS (3.4 ± 0.2). According to a land cover
map of this region, high-density stands are more common at
the SSA compared to the NSA [Steyaert et al., 1997], but
this is not reflected in the field LAI data. This possibly
explains the discrepancy between the two distributions, in
that the field samples at the SSA were not representative of
the larger region. Moreover, all ground values at the
BOREAS and OTTER sites represent overstory LAI only.
The satellite retrievals include understory LAI as well
[Myneni et al., 1997a], which is an important part of the
total LAI, especially in the boreal region, where the forest
stands are often sparse and relatively open [Chen and
Cihlar, 1996]. The measured NDVI of understory vegeta-
tion at BOREAS sites was reported to be about 0.35–0.50,
the larger values at OBS sites [Miller et al., 1997]. These
NDVI values translate to an understory LAI of about 0.6 for
OJP and about 1.0 for OBS sites [Myneni et al., 1997a].
Accounting for the understory LAI reduces the discrepancy
between the distributions shown in Figures 4b–4d.
[19] In summary, these results suggest that the magnitude

of satellite LAI values are comparable to field observations,
at select sites representative of grasses and needleleaf forest
biomes. Similar exercises are required for the other biomes
and obviously at many more sites. These activities are
ongoing as part of MODIS LAI validation efforts [Myneni
et al., 2002].

4. Comparison With Existing Data Sets

[20] A monthly LAI data set at one degree spatial
resolution for the period January 1982 to December 1990
was developed by Los et al. [2000] from AVHRR NDVI
data with corrections for satellite orbit loss, subpixel clouds
and interpolation for missing data. The authors applied an
empirical approach to derive LAI from FPAR-NDVI/SR

Table 2. Differences in Mean Seasonal NDVI and LAI per Biome Between This Study and Those Reported by Los et al. [2000]a

Biome Latitude

DJF MAM JJA SON

�NDVIb �LAIc �NDVI �LAI �NDVI �LAI �NDVI �LAI

Grasses 20�N–50�N 0.06 0.47 0.06 0.71 0.07 1.37 0.08 1.14
Shrubs 30�S–15�S 0.09 0.51 0.11 0.78 0.12 0.72 0.10 0.48
Broadleaf 40�N–55�N 0.10 0.43 0.07 0.65 0.06 1.90 0.10 1.11
Savannas 20�S–0� 0.06 1.27 0.06 1.07 0.08 1.02 0.13 0.84
Broadleaf 20�S–10�N 0.07 2.39 0.06 1.96 0.05 1.90 0.09 2.37
Needleleaf 50�N–65�N 0.07 0.36 0.06 0.17 0.09 1.29 0.04 1.22

aFor this comparison, the monthly 8 km corrected Pathfinder NDVI and corresponding LAI data sets were aggregated to one degree spatial resolution,
using an 8 km land cover map [Myneni et al., 1997a]. The seasonal means of the NDVI and LAI fields are based on the time period of data record (January
1982 to December 1990). Spatial averaging for each biome and latitudinal band was performed over vegetated pixels (NDVI > 0.1 and LAI > 0), only.

bDifference between FASIR-NDVI [Los et al., 2000] and this study.
cDifference between LAI from Los et al. [2000] and this study.
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relationships based on work by Sellers et al. [1996]. We
aggregated our 8 km LAI data, using a biome map [Myneni
et al., 1997a], to one degree resolution to enable a compar-
ison of the two data sets.
[21] The LAI values from Los et al. [2000] are larger than

our values in all biomes (Table 2 and Figure 5a). One reason
for this consistent discrepancy is that the magnitudes of
FASIR-NDVI for all biomes are also consistently larger
compared to the corrected Pathfinder NDVI used in this
study (Table 2). Most of these biases in NDVI is likely to be
explained by differences in temporal compositing, Los et al.
[1994] assign the maximum of all daily images within a
monthly period to the monthly value, and a small reduction
in the magnitudes of the Pathfinder NDVI data due to SSA
corrections (see above). Further, Los et al. [2000] utilized
the NDVI-LAI relational parameters that were derived at
fine scales, to a relatively coarse scale. However, recent
results from LAI retrieval efforts at multiple resolutions
document the strong dependence of the NDVI-LAI relation
on spatial scale [Tian et al., 2002]. Generally, LAI values
decrease with larger pixel sizes due to inevitable averaging
over nonvegetated areas. The decrease of LAI with increas-
ing area implies that application to coarser scales of fine
scale derived NDVI-LAI relational parameters may result in
significant LAI overestimates.

[22] A meaningful comparison between the LAI estimates
from Los et al. [2000] and the biome specific field measure-
ments presented previously is seriously compromised by the
differences in spatial scales. Uncertainties resulting from
mixing of different land covers and from the fact that the
LAI magnitudes in general decrease with decreasing reso-
lution due to averaging over nonvegetated areas are propor-
tional to the differences in spatial scale under consideration
[Tian et al., 2002]. However, for completeness we extracted
a few pixels from the one degree LAI fields of Los et al.
[2000] and from the aggregated one degree LAI fields of
this study over the corresponding field campaign sites. The
results of this exercise yielded mean LAIs of 4.1 ± 1.0 (Los)
and 2.1 ± 1.1 (this study) for FIFE (38.3�–39.7�N and
95.5�–97.5�W; 5 pixels), 4.7 ± 1.4 (Los) and 4.0 ± 1.4 (this
study) for OTTER (44.0�–45.0�N and 121.5�–124.5�W; 3
pixels), 3.4 ± 0.2 (Los) and 3.4 ± 0.3 (this study) for
BOREAS-SSA (53.0�–54.5�N and 104.0�–106.5�W; 6
pixels), and 2.9 ± 0.2 (Los) and 2.6 ± 0.2 (this study) for
BOREAS-NSA (54.0�–58.0�N and 95.5�–100.5�W). For
BOREAS, the LAI values from Los et al. [2000] represent
the climatological mean based on the 9 year satellite record,
since the field measurements and satellite observations do
not timely overlap. In view of these and results from the
previous section, and also from recent MODIS validation

Figure 5a. Time series of spatially averaged monthly LAI from this study (solid line) and from Los et
al. [2000] (dashed line) for selected regions. Spatial averaging for needleleaf forests was performed over
all one degree pixels in the latitudinal band between 50�N and 65�N, for broadleaf forests from 20�S to
10�N and from 40�W to 80�W, for southern Africa grasslands from 50�S to 0� and from 0� to 40�E, and
for midwestern U.S. grasslands from 20�N to 50�N and from 60�W to 120�W.
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efforts reported by Myneni et al. [2002], it appears that the
LAI values of Los et al. [2000] are overestimates in the case
of grass canopies.
[23] The intra and interannual variations in LAI anoma-

lies between the two data sets are qualitatively comparable
in the case of needleleaf forest and grassland sites (Figure
5b). Our Amazonia LAI anomaly time series shows sig-
nificant interannual variations, but some of this could be
noise due to residual cloud contamination in the NDVI data
set. To alleviate this problem, Los et al. [2000] utilized the
annual maximum to represent data for all 12 months of the
year. Their anomaly time series also shows artifacts related
to change in satellites, possibly indicating an intersensor
calibration problem.
[24] The use of our LAI data reduced some of the known

cold biases in a recent global climate model study, resulting
in better agreement between the simulated climate and
observations of temperature and precipitation [Buermann
et al., 2001]. The simulations over grasslands were espe-
cially improved due to lower values of satellite LAI, relative
to the standard values used in the model. The latter are
comparable to the LAI magnitudes seen in the work of Los
et al. [2000]. The lower satellite LAI values reduced land
surface evapotranspiration, and consequently, enhanced
sensible heat fluxes and near-surface air temperatures.
[25] In summary, the comparison of the two data sets

indicated qualitative agreement with regards to interannual
variability. However, it also showed that the LAI values of
Los et al. [2000] were consistently larger than those derived

here. This highlights the importance of verifying satellite
data products with ground measurements. We argue in favor
of our data set in view of reasonable agreement with field
data and improved simulation results from a global climate
model using our data.

5. Comparison With Climate Variables

[26] The verification of satellite data LAI retrievals with
ground measurements sampled from representative biomes
and repeated in time is the preferred method of choice, but
the scarcity of such measurements precludes this option.
The dependence of vegetation growth on temperature and
precipitation provides an alternative method in that spatial
and temporal variations can be assessed for consistency
with changes observed in meteorological fields. Myneni et
al. [1996] have shown the interannual variation of NDVI
and its association with tropical SST and other meteoro-
logical fields. Here we intend to use the same approach to
evaluate the interannual variations in LAI with respect to
anomalies in sea surface temperature, precipitation, and
near-surface air temperature. To facilitate this analysis, the
8 km native data set was aggregated to a quarter degree
resolution.

5.1. Spatial Averages of LAI and LAI Anomaly

[27] The time series of spatially averaged monthly LAI in
broad latitudinal bands and globally are shown in Figure 6a.
The averaging was done over vegetated areas only. The data

Figure 5b. Time series of spatially averaged monthly LAI anomalies from this study (solid line) and
from Los et al. [2000] (dashed line) for the same regions as in Figure 5a. Anomalies were derived by
subtracting the monthly pixel data from the 9 year (1982–1990) monthly mean values.
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clearly show the seasonality in the temperate and northern
latitudes. The winter time LAI is close to zero at latitudes
north of 45�N, largely due to lack of valid winter time data
and low sun angles. The LAI values in the southern hemi-
sphere show the opposite seasonality, with maximum LAI
during the months of January and February. A gradual
increase in boreal summer time LAI values in the northern
latitudes can be seen, which was reported previously by
Myneni et al. [1997b] from analysis of NDVI data during
the 1980s.
[28] Monthly LAI anomalies were computed by subtract-

ing the thirteen-year pixel monthly mean values (July 1981
to June 1994) from the pixel data. The time series of
spatially summed LAI anomaly in broad latitudinal bands
and globally are shown in Figure 6b. Spatially summed LAI
anomalies, as opposed to spatial averages, correctly reflect
the changing pixel numbers, i.e., seasonality, and thus are
more informative. Further, this allows comparison of the
contribution of each latitudinal band to the global LAI
anomaly. The results of Figure 6b indicate that the global
LAI anomaly pattern is dominated by northern vegetation

dynamics and to a lesser extent by variations in the tropics.
The increasing trend in the northern high-latitude monthly
LAI anomalies is also evident. The global anomaly time
series shows a distinct period of negative LAI anomalies
that coincides with the strong 1982–1983 ENSO event and
the eruption of El Chichon (April 1982).
[29] The abrupt negative global anomalies over several

months following the Pinatubo eruption (June 1991) are
largely due to contributions from the tropics where the data
were still deemed to be of poor quality (see above). The
analysis in the following two sections is therefore restricted
to the period July 1981 to June 1991, as the spatial scale of
interest involves the entire globe.

5.2. Spatial Distribution of LAI

[30] The quarter degree LAI values were averaged over
the 10-year period (July 1981 to June 1991) to obtain long-
term, climatological, monthly LAI values. These monthly
values were then further annually averaged with missing
data given a LAI value of 0. Figure 7a shows the geo-
graphical distribution of the resulting annual LAI data. As
expected, tropical evergreen forests have high LAI values,
somewhat less green are the midlatitude broadleaf forests
(e.g., eastern United States). Regions of low annual LAI
values generally coincide with the global distribution of
grasses and shrubs [Myneni et al., 1997a]. The low LAI
values of needleleaf forests in the boreal and temperate
zones are largely an artifact associated with the lack of valid
winter time data in these regions.
[31] Figures 7b and 7c show the geographical distribution

of maximum and minimum LAI over the same 10-year
period during the month of peak greenness. The latter was
determined as the month of peak LAI from the climatolog-
ical record. The LAI differences between the maximum and
minimum values are large and seen notably in the forests of
eastern United States, eastern China, central Africa, South
America, and eastern Australia. Large relative LAI differ-
ences are seen in the grasslands of northeastern Brazil,
southeastern South America, southern and eastern Africa,
eastern Australia, the midwestern United States, southern
Russia, and partly over northern high-latitude shrub lands.

5.3. LAI Variations Related to ENSO

[32] Several studies have focused on the relation between
rainfall anomalies in the tropical continents and ENSO
[McBride and Nicholls, 1983; Ropelewski and Halpert,
1987, 1989; Dai et al., 1997; Dai and Wigley, 2000]. The
shifts in convergence zones associated with ENSO have
consequences for vegetation growth in the tropical arid and
semiarid areas [Myneni et al., 1996]. Two strong ENSO
events occurred during the 1980s: the warm event of 1982–
1983 and the cold event of 1988–1989, as evidenced from
sea surface temperature (SST) anomalies in the equatorial
tropical Pacific Ocean [Reynolds and Smith, 1994]. The
time periods May 1982 to April 1983 (warm event) and
May 1988 to April 1989 (cold event) were considered to
examine the effects of ENSO related variations in the LAI
data. Monthly LAI anomalies, relative to the ten-year
monthly mean (July 1981 to June 1991), were summed
and correlated with the NINO3 index (SST anomaly from
the 5�S–5�N and 90�W–150�W region in the equatorial
tropical Pacific) over the respective 12 month ENSO cycles.

Figure 6. (a) Time series of spatially averaged monthly
LAI for different broad latitudinal bands and the whole
globe. (b) Time series of spatially summed LAI anomaly for
different broad latitudinal bands and the whole globe.
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Figure 7. Geographical distribution of LAI: (a) the geographical distribution of annual LAI and (b, c)
the maximum and minimum LAI over the 1981–1991 period during the month of peak greenness.
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The objective here is to identify regions where vegetation
growth is generally affected by ENSO events independent
of various lags and where variations in LAI are directly
related to variations in SSTs. Pixels with 12 month cumu-
lative LAI anomaly greater than 2 or lesser than �2, and
those correlated significantly at the 5% level are shown in
Figures 8a and 8c. Figures 8b and 8d show the same, but a
one month lag in LAI was assumed to account for SST
anomalies to propagate their influence.
[33] Monthly LAI anomalies in eastern Australia, north-

east Brazil, southeast and central Africa, Indonesia, central
America, the west coast of the United States, and to a lesser
extent, southeastern United States, and southwestern
Europe, correlate negatively with the monthly NINO3 index
(decreased LAI) during the warm event of 1982–1983.
Only in south-central and southeastern South America and
southwestern Africa do LAI anomalies show a positive
correlation with the NINO3 index (increased LAI). During
the cold event of 1988–1989, monthly LAI anomalies in
eastern Australia, northeast Brazil, and to a lesser extent, in
central Africa, west coast of the United States, southeastern
United States, and southwestern Europe, correlate nega-
tively with the NINO3 index (increased LAI; Figure 8c).
Southeastern South America exhibits a large negative LAI
anomaly. The spatial patterns of LAI anomalies observed
during these two well-defined ENSO events conform to
reported patterns in rainfall anomalies [Ropelewski and
Halpert, 1987; Dai et al., 1997].
[34] The time series of LAI and rainfall anomalies in

regions showing significant correlation between LAI and
SST anomalies are shown in Figure 9. There is notable
coherence between LAI and rainfall anomalies in these
semiarid areas. The negative rainfall and LAI anomalies
during the warm event of 1982–1983 can be seen in
northeast Brazil, eastern Australia and southeast Africa.
The severe and extensive drought of 1988–1989 in south-
eastern South America associated with the cold event can
also be seen. During the cold event, the wet conditions
expected in northeast Brazil, eastern Australia, and south-
east Africa are discernable in the rainfall time series but are
distinct in the LAI anomaly time series. Overall, the
observed spatial and temporal agreement between satellite
LAI and station rainfall anomalies imbues further confi-
dence in the derived LAI data set.

5.4. LAI Variation and Surface Temperature
in the North

[35] An increasing NDVI trend in the northern latitudes
during the 1980s was reported previously [Myneni et al.,
1997b]. It was speculated that this increased plant growth
was possibly due to a warming trend in these regions. Here
we present LAI trends for an extended period (1981–1994)
and assess their correlation to station temperature data as an
exercise to further verify variations in the LAI data set.
[36] The geographical distribution of local changes from

1981 to 1994 in summer time LAI of vegetated areas north
of 25�N is shown in Figure 10. Eurasian vegetation in the
latitude band between 50�N and 65�N shows the largest
increase in LAI, and this includes southern Russia and a
broad region in Siberia north of Lake Baikal. Outside this
band, significant LAI increase can also be seen in north-
eastern Mongolia, China and Siberia, northern Fenno-scan-

dia (Finnmark and the Kola peninsula), and west central
Europe. In North America, regions of enhanced LAI com-
prise the three southwestern Canadian provinces (British
Columbia, Alberta, Saskatchewan), and some pockets in the
midwestern United States. North American vegetation,
though, shows considerably less increase in LAI and
regions with increasing LAI tend to be more fragmented.
For this time period, notable decreases in LAI are seen in
southern Scandinavia, the Pacific Northwest, and over
regions south of the Hudson Bay and east of the Ural
Mountains (West Siberian Plain).
[37] In general, the regions of large LAI increase are

north of 50�N and in the interiors of the Eurasian and, to a
smaller extent, North American continents. A comparison
with the spatial distribution of annual LAI (Figure 7a)
indicates that these regions closely coincide with the dis-
tribution of needleleaf forests in the boreal and temperate
zones. This suggests that the largest LAI increases over this
time period happened in areas with already abundant
vegetation.
[38] The trends in station temperature and LAI anomalies

and their correlation during the spring and summer periods
in Eurasia and North America are shown in Figure 11.
Variations in spring time near-surface station temperature
and satellite based LAI anomalies correlate remarkably well
in the northern high latitudes. For Eurasia, the good corre-
lation for the 40�N to 70�N latitude band masks the weak
correlation in the corresponding temperate band (40�N to
50�N). In the boreal latitudes (50�N to 70�N), the correla-
tions are significant and the trends are consistent between
the two continents. The pronounced Pinatubo cooling in the
boreal latitudes during spring 1992 is also well captured in
the LAI data [see also Parker et al., 1996]. The summer
temperature trends and relations to LAI are considerably
weaker. It is interesting to note that the significant trend in
summer time LAI anomalies over Eurasian temperate and
boreal latitudes shows little direct correlation to summer
temperature anomalies. This enhanced plant growth might
in part be associated with warmer temperatures in the spring
and an associated lengthening of the active growing season
[Myneni et al., 1997b].
[39] These relations suggest that warmer temperatures

may have promoted plant growth in the north during the
time period 1981–1994, but this simplistic explanation may
be valid only at coarse spatial scales. Possibly it is not
mechanistically viable for all northern ecosystems and
needs to be refined to allow for lags in the relation between
plant growth and temperature induced by biogeochemical
feedbacks [Braswell et al., 1997; Houghton et al., 1998;
Potter and Klooster, 1999]. Moreover, the record length
(13–14 years) is too short for rigorous trend analysis.
However, recent results from an extended NDVI data set
(1981–1999) provide evidence that the observed trends in
vegetation growth are robust [Zhou et al., 2001].

6. Conclusions

[40] A global data set of monthly leaf area index (LAI)
derived from satellite NDVI observations for the period July
1981 to September 1994 is discussed in this article. Vali-
dation of the derived LAI fields is a challenging task, yet
without this, the utility of the data set will be limited. By
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validation we mean the specification of uncertainties in the
derived fields with respect to ground measurements. The
retroactive nature of this coarse resolution (8 km) global
multiyear data set demands repetitive ground measurements
from all representative vegetation types for validation, but
such observations are not available. Nevertheless, we have
tried to assess the magnitudes and interannual variations in
the LAI fields through five different activities.
[41] First, we estimated the magnitude of errors incurred

by the use of the NDVI-based algorithm as opposed to a
more physically based approach. This analysis indicated
that the relative error in LAI is about 10–20% in dense
biomes, for example forests, which is approximately com-
parable to the estimated mean uncertainty of input AVHRR
channel data from which NDVI was computed. Second,

ground measurements of LAI from three campaigns were
used to verify the magnitude of the produced fields. The
results suggested that the magnitude of satellite LAI values
are comparable to field observations, at sites representative
of grasses and needleleaf forest biomes. Third, the data set
was compared to another LAI data set currently used by the
community. This exercise indicated good qualitative agree-
ment with respect to interannual variability. However, the
LAI values of the earlier data were consistently larger than
those derived here. Fourth, through correlations with cli-
mate data sets, e.g., land and sea surface temperatures and
precipitation, we argued for meaningful interannual varia-
tions observed in our LAI data set. The spatial and temporal
agreement between satellite LAI and station rainfall anoma-
lies in tropical semiarid regions affected by the ENSO

Figure 8. (opposite) Geographical distribution of cumulative monthly LAI anomaly (a,b) from May 1982 to April 1983
and from (c,d) May 1988 to April 1989. The association between monthly sea surface temperature anomaly (NINO3)
[Reynolds and Smith, 1994] and monthly LAI anomaly during the respective 12 month ENSO cycle was determined
through correlation analysis (b, d represent one month LAI lag correlations). Areas with cumulative monthly LAI anomaly
greater than 2 or lower than �2 and correlated significantly at the 5% level (r > 0. 58; f statistic) were contoured.

Figure 9. Time series of LAI (solid line) and rainfall (dotted line) anomalies in ENSO affected regions.
The rainfall data are from Dai et al. [1997], and the anomalies are with respect to the 1951–1979 mean.
The anomaly plots are three month averages. The rainfall (2.5� resolution) and LAI (0.25� resolution)
anomalies were spatially averaged for northeastern Brazil (3�S–12�S, 36�W–43�W), southeastern South
America (25�S–35�S, 49�W–60�W), eastern Australia (20�S–38�S, 146�E–154�E), and southeastern
Africa (20�S–25�S, 29�E–34�E). The significance levels for correlations with 40 observations are r =
0.31 (5% level) and r = 0.21 (10% level), respectively.
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Figure 10. Geographical distribution of local changes from 1981 to 1994 in LAI of vegetated areas
north of 25�N, expressed as the average of July and August LAI. The increase over 14 years was
determined by linear regression of year-to-year LAI.

Figure 11. Trends in LAI (solid line) and station temperature anomalies (dotted line) and their
correlation (linear Pearson) during the spring (April–May) and summer periods (July August) over
vegetated areas in Eurasia and North America. The bi-monthly LAI anomalies for spring/summer are
relative to the period 1982–1994/1981–1994, respectively. The bimonthly temperature anomalies (2.0�
resolution) are based on the 1951–1980 mean [Hansen et al., 1999]. Trends (see insets) were determined
through linear regression. Values with a star represent trends that are statistically significant at the 10%
level (t statistic). Also note that the correlation significance levels for 13/14 observations are 0.48/0.46
(10% level) and 0.55/0.53 (5% level), respectively. Changes of satellite platforms are indicated in the top
two graphs (dashed-dotted line).
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phenomenon further imbues confidence in the LAI data set.
A similar exercise where the LAI variations in northern
vegetation were correlated to station temperature data
argues for consistency between satellite data retrievals and
ground measurements. Finally, the value of the data set is
documented through climate model simulations with the
satellite LAI fields that improved model simulation of near-
surface climate. This is reported by Buermann et al. [2001].
While these activities do not constitute comprehensive
validation per se, they at the very least argue for utility of
this data set for global scale modeling studies. The data set
is available to the community via our Web server (http://
cybele.bu.edu).
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