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[1] Advanced climate models require a more realistic description of canopy radiation with
reasonable computational efficiency. This paper develops the mathematics of scattering
from a spherical object conceptualized to be a spherical bush to provide a building block
that helps to address this need of climate models. It is composed of a homogeneous
distribution of individual smaller objects that scatter isotropically. In the limit of small
optical depth, incident radiation will scatter isotropically as the sum of that scattered by all
the individual scatterers, but at large optical depth the radiation leaving the spherical
bush in a given direction is reduced by mutual shadowing of the smaller objects. In the
single scattering limit, the scattering phase function and so the albedo are obtained by
simple but accurate analytic expressions derived from analytic integration and numerical
evaluation. Except in the limit of thin canopies, the scattering and hence albedos are
qualitatively and quantitatively different than those derived from 1-D modeling.
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1. Introduction: The Importance of Addressing
Three-Dimensional Radiation in Climate Models

[2] The surface energy, water and carbon balances at the
terrestrial surface are controlled by absorption of incident
solar radiation. Climate models currently describe this
absorption in terms of a canopy architecture that can be
highly unrealistic and inaccurate. If they constrain their
absorption of radiative energy by accurate satellite obser-
vations of albedo [e.g., Lucht et al., 2000; Schaaf et al.,
2002; Wang et al., 2004; Tian et al., 2004; Liang et al.,
2005; Lawrence and Chase, 2007], their solar forcing over
the land surface should be of comparable accuracy. How-
ever, details as to how this absorbed radiation is partitioned
between various components of the terrestrial system may
still be determined very inaccurately, possibly resulting in
deficiencies of the climate simulation.
[3] For example, forests overlying snow have been

assumed through their contribution to absorption to increase
surface temperatures from that of a forest free surface [e.g.,
Bonan et al., 1992; Betts et al., 2007] and so contribute to
the melting of the snow. However, such a forest is also

directly removing incident solar energy from the snow and
so, without some further energy exchange mechanism such
as downward sensible and long-wave fluxes, would be
shadowing and cooling the snow, not melting it. Semiarid
or other sparsely vegetated systems have bushes that shade a
much larger area than that of their vertical projection, an
effect that can only be accounted for in a three-dimensional
(3-D) geometry. Widely spaced individual bushes have no
radiative effect on each other and can be treated in isolation,
the topic of this paper.
[4] Detailed numerical treatments of the canopy radiation

in complex 3-D geometries have been developed by various
authors, mostly for application to remote sensing [e.g.,
Myneni et al., 1995; Knyazikhin et al., 1998; Lewis, 1999;
Qin and Gerstl, 2000; Kimes et al., 2002; Li et al., 1995],
but these treatments have not been translated into simple
rules suitable for climate models. Rather, 1-D treatments
[e.g., Dickinson, 1983; Sellers, 1985] have been popular
because they are simple enough to require the evaluation of
at most a few exponentials. An overall objective of our
research is to establish how much of canopy radiation in 3-D
can be described with comparable simplicity. Radiation
within a canopy is, in principle, complicated by the multiple
reflections between canopy elements and with the underly-
ing surface. However, over the visible part of the solar
spectrum, the contributions from multiple scattering are
small. They can be taken as a separate component to be
added to the single scattering of a canopy [e.g., Pinty et al.,
2006; Knyazikhin et al., 2005]. Radiation leaving a canopy
is completely characterized by its scattering phase function
Y, i.e., given by the product of the phase function provided
by individual leaves [cf. Pinty et al., 2006] and the contri-
bution from the shading by the distribution of leaves.
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[5] This paper addresses the latter issue. Thus, it furthers
the approach of constructing scattered canopy radiation
from individual geometric objects as pioneered by Li et
al. [1995] with the intent of making it useful in climate
models. Some more recent studies have shown how to
mimic the effects of canopy heterogeneity on albedo in a
horizontally layered framework. Pinty et al. [2006], use
effective leaf optical properties and leaf area (LAI) as fitting
parameters to match albedos from simulations with the
Monte Carlo code of Govaerts and Verstraete [1998].
Shabanov et al. [2000] and Huang et al. [2007a, 2007b]
prescribe statistical distributions of path lengths through the
canopy.
[6] This paper describes elementary analytic solutions for

transmission and single scattering from a unit sphere com-
prised of individual scattering elements. These solutions are
constructed in the absence of any other surface, i.e., they
give the radiation scattered directionally by a sphere under-
lain by a black surface, an important building block for the
construction of the domain averaged fluxes of radiative
energy reflected from a heterogeneously vegetated surface.
Modifications for leaf orientation effects, the multiply
scattered component, the exchanges with an underlying flat
surface such as soil or snow, and the effects of mutual
shading (i.e., overlapping shadows) by a distribution of such
spheres are also needed but their details are not given here;
for similar issues in the context of clouds, see Petty [2002].

2. Formulation of Optical Paths and Scattering
for a 3-D Canopy

[7] A detailed description of a bush would include its
spatial dimensions and spatial distribution of leaf densities.
However, such information is not commonly available even
for a single location and cannot be expected to be provided
to a climate model. Rather, the bush is characterized by an
integral property, its leaf area index, i.e., the average leaf flat
surface per unit ground area, where the latter can be either
that under the bush or total area. This information is
combined with information about the projection of the leaf
surfaces in the direction of the radiation to construct optical
depths.
[8] Radiation of unit intensity is assumed to be incident

on a sphere of unit radius whose axis is taken to lie in the
direction of this radiation (Figure 1). This geometry pro-
vides a variety of individual optical depths that are sum-
marized in terms of a volume average optical depth tv.
Rather than directly use this parameter, it is more conve-
nient to use the radial optical depth t = 0.75 tv as is
commonly done in treating radiation in spherical geome-
tries. The underlying surface is assumed to be black and can
have any orientation relative to the direction of incident
light. The scattering properties for the so constructed object
will allow later addition of the contribution from actual
surface reflections (e.g., the brightly reflective soils of the
semiarid regions). Individual leaves are approximated by
uniformly distributed isotropic scatters with a single scat-
tering albedo of w, i.e., the intensity of the energy flux
scattered by the scattering center is the same in all direc-
tions. With no dependence on direction of the radiation
leaving a scattering center, the mutual shading effects alone

impose directionality on the radiation scattered outward
from the sphere.
[9] Canopy optical depths in the vertical direction have

been commonly assumed to be independent of the horizon-
tal coordinates (i.e., an assumption of horizontal homoge-
neity is made). With this assumption, the optical path of
incident radiation depends only on a vertical optical depth
tV and on the cosine of the angle made by the entering
radiation with a normal to a horizontal plane msun, i.e., the
optical path of radiation incoming at a slant is then tV/msun,
Scattered radiation depends also on its outward direction
whose cosine relative to the vertical is mout.
[10] For scattering from a sphere, the above incoming and

outgoing directions are still relevant. However, the local
optical depths of incident radiation do not depend on sun
direction but rather on the location of an entering ray on the
sphere relative to the axis of the sphere in the direction of
the sun. Figure 1 shows how this location is characterized
by the angle made by a normal to the sphere at the entering
point relative to the above mentioned axis of the sphere.
[11] The incident radiation that is scattered per unit solid

angle is denoted Y and in normalized form by the symbol
F, i.e.

Y mout; t;wð Þ ¼ w � F mout; t;wð Þ= 4pð Þ: ð1Þ

The term F (mout, t, w) is a normalized scattering phase
function and depends on w only at higher orders of
scattering. Its single scattering value F = F1s will depend

Figure 1. A sketch of the geometry of incident and
transmitted beam of radiation for a unit sphere, where t is
the optical depth along a radius, and m = cos(q), where q is
the angle between the point of entry and the sphere axis
along the direction of the incident radiation.
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only on t, and in the limit of small t, this dependence is
linear, i.e.,

F ! F1s ! 4t=3 ¼ tv: ð2Þ

[12] With additional scatters, less radiation is scattered
per unit t from the sphere than that given by equation (2)
because of the mutual shadowing of the scatters. Such
reduction depends on the direction of the scattered radiation
relative to the direction of incidence. The intensity of
radiation incident on a scatterer will be reduced exponen-
tially by the intervening scatters along the path of incidence.
Scatterers near the point of entry will see the highest
intensities and those deep in the sphere will see little light.
Thus, the lowest exiting intensities of scattered radiation are
those in the forward direction out the shaded side of the
sphere, and the highest in the backward direction. With t
larger than about 2, the backward scattered intensities
approach a saturation value independent of t, and the
forward scattered intensities decline with larger t to small
values.
[13] The above qualitative statements apply to either a 3-D

or a 1-D system. Their quantification for a 3-D geometry
requires integration over all the different paths that a photon
might travel. These integrations are analytic if the exponen-
tial attenuation along the photon path can be separated from
spatial averaging as possible for a sphere or spheroid and for
the cases of direct beam transmission and for scattering in
the forward and backward directions (as shown schemati-
cally in Figure 2). A relatively exact treatment of scattering
in other directions is only possible in the asymptotic limits

of small and large t but otherwise requires numerical
quadrature. However, the numerical treatment reveals a
close correspondence to that inferred from the analytic
solutions as is shown in the next section. The analysis
provided by these solutions shows qualitative and quantita-
tive differences from those for a 1-D system.

3. Derivation of Analytic Solutions for the Single
Scattering Phase Function of a Sphere

[14] Analytic integrations are done over a volume, con-
sisting of along path (see Figure 2) and cross path integrals
(the latter over a hemisphere with area increments normal to
the direction of the path). In the limit of small t, as already
discussed, the scattering is linear in t and the integrals
reduce to a volume integration. The integration elements are
clarified by developing these volume integrals. With larger
t, it becomes necessary to include within the integration the
exponential attenuation over the paths of incidence and
scattering.
[15] Let tp denote the optical depth for a single path in

the vertical direction through the sphere, i.e., in the direction
of the incident radiation. The directional angle for scattering
is 0 for the backward direction, i.e., mout = 1 in the backward
direction, mout = 0 in the sideways direction, and mout = �1
in the forward direction. For a homogeneous distribution of
scatters, an optical depth increment is a geometric distance
increment multiplied by t. The geometric non-dimensional
distance of the path of a vertically incident ray through a
unit sphere is 2m where m (see Figure 1) is the projection of
the normal to the sphere onto the direction of the path. It
characterizes a location on the sphere, and is not the
direction of incident or scattered radiation. Thus,

tp ¼ t
Z 2m

0

dh ¼ 2mt; ð3Þ

where the parameter h is the geometric distance along the
path from the point of entry.
[16] The volume of the sphere is given by the integration

of the product of the above geometric distance 2m and area
increments on the surface of the sphere projected on a
surface normal to the path. The incident flux intensity per
unit area consists of the total flux intercepted by the sphere
divided by the total projected area of the sphere, i.e., the
area of its bisecting plane. A surface integration element
reduces to m dm, (i.e., an element of surface area on the
sphere multiplied by its projection normal to the direction of
the radiation). Averaging is applied by multiplying it by 2,
i.e., the inverse of its integral. The average over the sphere
of the optical depths is thus:

tn ¼
Z 1

0

2mtð Þ2mdm ¼ 4

3
t; ð4Þ

i.e., it is the volume optical depth that was introduced earlier
in equation (2). The normalized scattering for an optically
thin media is simply the volume average, equation (4). For
an optically thickmedia it has the same integral as equations (3)
and (4) but with an integrand that is the product of the
transmission of the incoming and outgoing radiation

Figure 2. A sketch of the single scattered paths accom-
panying the unit incident beam of radiation shown in
Figure 1. The variable h measures the distance through the
sphere from entry point. The small circle is an individual
volume from which the scattering originates.
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intensities, i.e., the contribution to F1s (1, t) from a path
entry point on the sphere at m is denoted 8b(m, t) and
evaluated as:

8b m; tð Þ ¼ t
Z 2m

0

exp �2h � tð Þdh ¼ 0:5 � 1:� exp �4mtð Þ½ �;

ð5Þ

(the 2h and 4m in the exponents are, respectively, the
geometric paths to a single element in and back, and the
longest path of scattering, going from one surface of
the sphere to the opposite surface and back). The correspond-
ing path integral for forward scattering 8f (m, t) is simply

8f m; tð Þ ¼ tp exp �2mtð Þ; ð6Þ

where tp is the path length given by equation (3). In this
case, the attenuation factor (product of that for incoming
and outgoing paths) is the same for scattering anywhere
along the path independent of the location of the scattering
element, i.e., the total path length is the same for scattering
from any element at m. Expanded in Taylor series, both
equations (5) and (6) have leading terms that are the tp of
equation (3).
[17] For determining the interactions with an underlying

surface, the direct beam transmission T(t) is also needed. At
one location of incident radiation it is simply the radiation
intensity exp(�2mt) (see Figure 1). Averaged with the
projected area, this factor integrates to:

T tð Þ ¼ 2

Z 1

0

m exp �2mtð Þdm

¼ 0:5t�2 1:� 1:þ 2tð Þ exp �2tð Þ½ �: ð7Þ

This term also gives us the needed integration of equation (5)
for the backward scattering, i.e.,

F1s 1; tð Þ ¼
Z 1

0

8b m; tð Þ2mdm ¼ 0:5 1:� T 2tð Þ½ �: ð8aÞ

[18] The integration of equation (6) to obtain the forward
scattering is a bit more complicated as the weighting of the
exponential attenuation term is proportional to m2,

F1s �1; tð Þ ¼
Z 1

0

8f m; tð Þ2mdm

¼ t�2 1:� 1:þ 2t þ 2t2
� �

exp �2tð Þ
� �

: ð8bÞ

[19] Equations (8a) and (8b) and the scattering in all other
directions reduce to the same limiting expression as t ! 0:

F1s mout; tð Þ ! 4

3
t � 2t2 ¼ tv 1� 9

8
tv

� �
; ð9Þ

where the leading term (as previously indicated in equation
(2)) is the volume averaged optical depth tv, and the next
term of the expression given in square brackets indicates
that radiation is attenuated by 9/16 the volume optical depth
upon entry and 9/16 upon exit. This factor exceeds 1/2

because of greater attenuation along central paths that have
greater weight in the integration.
[20] The forward and backward scattering phase func-

tions are shown in Figure 3. The behavior of these terms for
large t is simply that obtained from equations (8a) and (8b)
with the exponential terms neglected, i.e., 0.5 for the
backward scattering and t�2 for the forward scattering. In
this large t limit, the radiation will only interact within a
thin shell near the edge of the sphere, and the single-
scattering in any direction can be reduced to the integration
over angle. This non-exponential asymptotic limit is con-
tributed by the radiation leaking through the sides of the
sphere and for any direction but downward a constant
nonzero limit is approached. In particular, this integration
reduces to 1/4 when mout = 0 for sideways scattering.

4. Numerical Results

[21] Because analytic solutions for scattering from a
sphere are only possible for mout = 1, or mout = �1, (or for
asymptotic limits in t), numerical results for these and other
directions are obtained (Figure 3). The numerical solutions
for the forward and backward scattering adequately repro-
duce the analytical solutions (see Figures 3b and 3c). The
parameter space of interest is that of t 
 3. Figure 4 shows
the numerical solutions for normalized scattering phase
function, F1s (mout, t) versus mout, at several values of t.
The forward scattering peaks between 0.5 and 1.0. as seen
in Figure 3, but peak values shift to between t = 1 and 2 for
sideways scattering, i.e., mout = 0. Only in the backward
direction does the scattering continue to grow with larger t,
resulting mathematically from the t-dependent term of the
backward scattering being negative but that of the forward
term positive. The peak scattering in other directions at
intermediate optical depths results physically from the
deeply penetrating photons at intermediate t being able to
escape upward through the sides of the sphere, a unique
phenomenon from the 3-D geometry. Such escaping pho-
tons would undergo much greater absorption in 1-D.
[22] These integrations establish that the scattering in all

directions is approximated with errors of order of 1% or less
by a linear combination of the forward and backward
scattering functions, i.e., written in terms of average and
differences of the backward and forward functions, i.e.,
equation (10c),

Fav tð Þ ¼ 0:5 F1s 1; tð Þ þ F1s �1; tð Þ½ �; ð10aÞ

Fdiff tð Þ ¼ 0:5 F1s 1; tð Þ � F1s �1; tð Þ½ �; ð10bÞ

F1s mout; tð Þ ¼ Fav þ moutFdiff : ð10cÞ

Some further improvement can be obtained by multiplying
the last term in equation (10c) by a small empirical
correction term F0,

F1s mout; tð Þ ¼ Fav þ moutFdiff 1þ F0 t;moutð Þð Þ: ð11Þ

[23] The F0 was assumed to be of the form:F0(t, mout) =
[a (1 � mout

2) (1 � bt) t 2]/(1 � ct3), and optimized to
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correct for the nonlinear dependence of F on mout seen for
large t, as illustrated by Figure 5. It was constrained to
match the analytic solutions at mout = 1, �1 and the large t
results at mout = 0. Parameter values obtained from the

fitting are a = �0.016989, b = �3.776098, c = �11.097930,
respectively. The numerical solution with this correction
term (i.e., equation (11)) or without (i.e., equation (10c)) are
identical, as constructed, for the forward and backward

Figure 4. Normalized scattering function versus mout at values of t = 0.5, 1, 2, 3.

Figure 3. (a) The backward, forward, and sideways scattering phase function versus t for the spherical
bush. The scattering phase function was normalized by dividing by 0.25 w/p, so that the backward goes to
0.5 at large t. The results are obtained numerically. (b and c) Compares respectively the forward and
backward scattering between the numerical and analytical solutions. They are graphically indistinguishable.
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scattering (see Figures 5a and 5e) but differ with increasing
t in other directions (Figures 5b–5d).

5. Application to Albedos

[24] The scattering phase function gives the fraction of
incident energy escaping into a given solid angle. Albedo is
the integral over this energy in the upward direction and
diffuse transmission is the integral in the downward direc-
tion. Such integration is done very simply with the homo-
geneous scattering model, and may be extended to include
leaf orientation effects.
[25] Normalized albedo a or diffuse transmission Td areR
F dmout where the integration is over the upward hemi-

sphere for the albedo and the downward hemisphere for the
diffuse transmission. These are to be multiplied by a 0.5 w
factor after accounting for a 2p from the azimuthal integration
to obtain the non-normalized conventional terms. These
terms refer to averages over the area shadowed by the
geometric bush. They could be divided by 1/msun to refer to
the vertical projection of the bush as conventionally done for
plane parallel geometries. The appropriate integration limits
are most obvious for the case of overhead sun, i.e., simply
from 0 to 1 and �1 to 0 respectively. The normalized single-
scattering albedo a1s from integrating equation (11) is then:

a1s ¼ Fav þ 0:5Fdiff ¼ 0:75F1s 1; tð Þ þ 0:25F1s �1; tð Þ; ð12Þ

and the diffuse transmission the same but with a minus
sign on the 0.5 Fdiff factor. For the sun at an angle, there is
a sector on the bottom half of the sphere relative to the
direction of the sun that scatters in the upward direction
relative to the vertical, and a sector on the top half of the
sphere relative to an axis toward the sun that scatters
downward. With these complications:

a ¼ Fav þ 0:5m2
sunFdiff ; ð13Þ

Td ¼ Fav � 0:5m2
sunFdiff : ð14Þ

[26] Figures 6 and 7 show the dependence of this nor-
malized albedo on the optical depth parameter t and on the
cosine of solar zenith angle msun, either versus t at several
values of msun (Figure 6) or versus msun at several values of t
(Figure 7). From equation (15), the normalized bush albedo
for overhead sun is 0.75 F1s (1, t) + 0.25 F1s (�1, t).
Consistent with Figures 4 and 5, both terms are comparable
at t = 0.5 and a � F1s (m, t) � 0.33. However, at t = 3, F1s

(�1, t) � 0.1, and F1s (1, t) � 0.5, so a � 0.4. Because the
albedo includes some sideways scattered photons, it only
increases by 0.07 from t = 0.5 to t = 3 compared to the 0.17
increase of F1s (1, t). The changes of a with t are even
smaller at lower solar zenith angle as seen in Figures 6 and 7.
[27] The normalized albedo a of the sphere translates to a

domain averaged albedo aD for spheres that are widely
spaced relative to their size and over a black background as:

aD ¼ 0:5wm�1
sunfca; ð15Þ

where fc is the fractional coverage of the spheres. The cosine
factor msun

�1 can either be interpreted as multiplying fc to get
the fractional shadowed area or as the radiation crossing a
horizontal surface per unit area from the unit source incident
at an angle qsun = cos�1msun.

6. Discussion

[28] This paper models the scattering properties of an
isolated spherical bush. By itself, such a model would be of
limited applicability. However, its simplicity facilitates its
extension to more complicated situations. Its primary pur-
pose is to serve as one of the building blocks that are needed
to equip climate models with more appropriate descriptions
of terrestrial radiation. However, it also provides simple
insights as to the modification expected to the albedo of a
collection of absorbing point scatters from 3-D geometric
effects.
[29] For an overhead sun and backward reflected radia-

tion, the integration for single scattered radiation is the same
for 1-D as for 3-D, and so the 3-D reflection only differs in
being a weighted average over a distribution of paths
through the sphere. The fraction of radiation that is upscat-
tered in both 1-D and 3-D systems then approaches 0.25w
for large t after removing the normalization. However, at
other angles the fraction of photons exiting is qualitatively
and quantitatively different in 3-D. In 1-D, the maximum
scattering occurs in the limit of large t for any escape angle.
Removing leaves simply reduces the accessible scattering

Figure 5. The difference between the analytical and
numerical solution at values of mout = �1, 0.5, 0, 0.5, 1,
respectively, and its improvement with the fitting described
in the text.
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surfaces and increases the leakage (transmission) out the
bottom. However, in 3-D, the maximum scattering occurs at
moderate optical depths, i.e., t in the range of approximately
0.5 to 1.5. Under these conditions, photons can scatter
throughout the sphere with their shorter escape paths more
than compensating for the nonzero downward transmission.
Adding more scatters above t of about 1.5 increases the
attenuation along escape paths to reduce the overall scat-
tering. However, even systems with very large t scatter
more if they are spherical than if plane parallel because of
sideways leakage. As shown in Figure 7, the normalized
albedo reduces to 0.375 for t ! 1. The comparable
computation for a plane parallel system, e.g., as derived
by Dickinson [1983], approaches a value of (1 � log 2) �
0.307, which is smaller than the 3-D result by 24%.
[30] The integration needed for its application to albedo

as described above is easily done including leaf orientation
effects or for bi-Lambertian optical properties of leaves, i.e.,
that have transmissivities and reflectivities that differ, by
representing the leaf scattering phase functions by polyno-
mials in the cosine of the angle between incident and
outward scattered radiation, e.g., equation (10) of Dickinson
et al. [1990] and Joseph et al. [1996]. Spheres can be easily

extended to ellipsoids [Li and Strahler, 1992; Li et al.,
1995; Strahler and Jupp, 1991] and they can be described
by a statistical distribution of spacing. For sparsely spaced
spheres over a bright surface, the albedo obtained by
combining radiation scattered by the sphere with that of
the underlying surface is much more determined by geo-
metric shading effects than by the multiple exchanges of
radiation with the underlying surface implicit in the 1-D
models. With these shading effects adequately character-
ized, the model described here should provide a much more
accurate description of the partitioning of absorbed radiation
between canopy and surface for the sparse shrub vegetation
of semiarid systems than that now used in climate models.
Differences from current 1-D treatments may be less for
shorter vegetation such as grasses.

7. Conclusions

[31] Climate models use 1-D modeling for determining
how much radiation is absorbed by canopies and their
underlying surfaces. Such modeling is unrealistic in its
details. This paper describes simple analytic expressions
for a model of solar radiation incident on a 3-D canopy. The

Figure 6. Normalized albedo. The albedo is defined as the fraction of radiation reflected by the bush
from its shadowed area versus t for various solar zenith angles: overhead, 30�, and 60�.

Figure 7. Normalized albedo versus cosine of solar zenith angles for values of t = 0.5, 1, 2 and 3.
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canopy is idealized as a 3-D spherical object consisting of
the simplest individual scattering centers. This spherical
bush is viewed as a building block for the construction of
more complex models of the interaction of incident radia-
tion with more realistic canopy configurations. It is treated
without the complications of multiple scattering, leaf orien-
tation effects, or of an underlying surface. With such
simplification, the paper is able to provide a complete
analytic description of the directional scattering and its
integration to an albedo. The solutions are obtained by
integrations over a distribution of optical paths through the
sphere. Exact solutions are obtained for the transmission of
the direct beam, and for the backward and forward single-
scattered components. These terms alone are shown to be
sufficient to provide a complete scattering phase function,
and sun-angle dependent albedos. Scattering is substantially
enhanced for radiation leaving in near horizontal directions
compared to that from 1-D modeling, and thus also albedos,
especially for leaf area index in the range of 1 to 3.
Multiple-scattering can be included using these building
blocks with some further approximation [Dickinson, 2008].
For use in a climate model, these solutions must be
combined with radiative interactions between different bush
elements and with an underlying surface, and with a
characterization of the angle dependences imposed by
leaf-orientations.

[32] Acknowledgments. This study was supported in part by the lead
author’s NSF grant ATM-0720619 and DOE grant DE-FG02-01ER63198.
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