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Abstract: Wind farms (WFs) are believed to have an impact on lower boundary layer 

meteorology. A recent study examined satellite-measured land surface temperature data 

(LST) and found a local nighttime warming effect attributable to a group of four large WFs 

in Texas. This study furthers their work by investigating the impacts of five individual WFs 

in Iowa, where the land surface properties and climate conditions are different from those in 

Texas. Two methods are used to assess WF impacts: first, compare the spatial coupling 

between the LST changes (after turbine construction versus before) and the geographic 

layouts of the WFs; second, quantify the LST difference between the WFs and their 

immediate surroundings (non-WF areas). Each WF shows an irrefutable nighttime warming 

signal relative to the surrounding areas after their turbines were installed, and these warming 

signals are generally coupled with the geographic layouts of the wind turbines, especially in 

summer. This study provides further observational evidence that WFs can cause surface 

warming at nighttime, and that such a signal can be detected by satellite-based sensors. 
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1. Introduction 

Wind turbines extract kinetic energy from the atmospheric flow to generate electricity. Consequently, 

the spinning blades enhance vertical mixing and increase turbulence within a few hundred meters above 

the ground [1]. In a wind farm (WF), the collective effects of multiple turbines can theoretically alter 

near-surface atmospheric boundary layer (ABL) fluxes of heat, momentum and moisture, leading to 

noticeable changes in local meteorology. 

Recent modeling studies [2–5] have simulated local WF impacts by approximating wind turbines as 

massless, elevated sinks of kinetic energy and sources of turbulent kinetic energy. Relative warming of 

the air below the turbine rotor area at nighttime has been noted, caused by a vertical redistribution of the 

air due to turbine-enhanced vertical mixing and turbulence. In a typical nighttime ABL with strong stable 

stratification (i.e., ∂θ ∂z⁄  >> 0) and laminar low-level flow [6,7], enhanced vertical mixing would act to 

bring warm air downward and cool air upward, thus allowing more heat to be transferred from the air to 

the radiatvely-cooled ground [3]. Similar vertical redistribution of heat has been found with a large-eddy 

simulation of a WF [8]. Impacts of WFs also apply to surface sensible and latent heat fluxes, depending 

on the static stability and total water mixing ratio lapse rate of the atmosphere. Nighttime surface sensible 

heat flux is typically negative, with heat transport from the atmosphere to the ground, and so WFs 

bringing warmer air to the surface makes the surface sensible heat flux more negative [3].  

Few studies so far have documented observational evidence of WF impacts on local meteorology. 

Baidya Roy and Traiteur [9] observed a slight late-night warming effect of about 1 °C for a small WF in 

California by comparing 5-m air temperature measurements from two meteorological towers, upwind 

and downwind of the WF, for a 53-day summertime period. Smith et al. [10] observed a nighttime 

warming effect of 1.9 °C for a large WF in the Midwest U.S. by comparing 2-m air temperatures from 

a WF-waked area to a non-waked area, for a 47-day springtime period. Rajewski et al. [11] observed 

several individual periods with a significant warming of 1.0–1.5 °C within a group of 13 turbines in a 

WF in Iowa, using 9-m tower data from a 42-day summertime period. The results from these studies are 

significant but only indicate WF impacts from point measurements over short time periods. 

Surface measurements near or within WFs are not easy to obtain if the data or WFs are privately 

owned, and the spatial and temporal coverage of publicly available data may not be sufficient for  

long-term studies of WF impacts on larger scales. Alternatively, satellite-based remote sensing 

instruments can consistently provide observations over broad areas for long periods of time. For instance, 

Zhou et al. [12] studied nine years of summertime and wintertime land surface temperature data (LST) 

from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard NASA’s 

Terra and Aqua satellites. They chose an area centered on a large group of four WFs in Texas that were 

built in phases, and they observed a nighttime warming rate of 0.72 °C per decade over the WFs in the 

summer, relative to nearby non-WF areas. No significant daytime impacts were found. They ruled out 

changes in vegetation greenness, land cover and surface albedo as the possible causes for the warming 

signal. Zhou et al. [13] examined seasonal and diurnal variations of such impacts for the same WFs in 

Texas. Their results consistently showed a nighttime WF warming of 0.31–0.70 °C across all seasons 

for both the Terra and Aqua measurements, with the largest warming effect occurring at ~10:30 p.m. in 

the summer. Their results for the daytime were noisy and insignificant. Zhou et al. [14] also ruled out 
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the possibility that the warming signal could be an artifact of varied surface topography in and around 

the WFs. 

The MODIS dataset and methodology used in Zhou et al. [13] are applied here, but for five individual 

WFs in Iowa. The Texas WFs examined previously [12–14] are built on semi-arid grasslands and 

complex terrain, whereas the WFs examined here are built mostly on farmlands and relatively smoother 

topography. Areas with different land surface properties can have disparate fluxes of sensible and latent 

heat. For a field study, Doran et al. [15] found the measured surface sensible heat flux over semi-arid 

grasslands to be higher than that over adjacent irrigated farmlands by a factor of four or more, and the 

latent heat flux differences were nearly opposite. The effects of these sensible and latent heat flux 

differences eventually propagate through the ABL. Because the WFs in Texas and Iowa are built on such 

differing land surface types, and therefore have drastically different ABL and climate characteristics, the 

primary question of this study is whether the WFs in Iowa would yield results similar to previous studies. 

This paper furthers the work of Zhou et al. [13] and demonstrates that their results are not unique to the 

Texas WFs on semi-arid grassland. 

2. Data and Methodology 

The five WFs in this study are consistently labeled a through e in all figures and tables. Table 1 gives 

the construction dates and number of turbines for each WF. This information is publicly available from 

various sources [16]. Figure 1 shows elevation plots for each WF region using GTOPO30 data from the 

U.S. Geological Survey [17]. The terrain over each WF region is relatively flat, with the elevation ranges 

not exceeding 120 m. The majority of each WF region consists of agricultural land. The precise locations 

of turbines in each WF were determined using latitude/longitude coordinates from the Federal Aviation 

Administration’s Obstruction Evaluation/Airport Airspace Analysis database (FAA OE/AAA) [18]. 

Obstructions over a certain height must be reported, and the FAA logs the construction dates and types 

of obstructions. The existence of each individual turbine was verified for this study using Google Earth, 

and coordinates for nonexistent turbines were removed from the list. 

Table 1. Construction dates and number of turbines for each wind farm (WF). 

WF a b c d e 
Year 2008 2009 2008–2009 2008–2009 2005 

Number 76 121 200 224 135 

Eleven full years of MODIS 8-day LST data (MOD11A2 and MYD11A2) [19] are used here, 

beginning with 2003 when both the Terra and Aqua satellites had complete years of data, through 2013. 

Each satellite takes two measurements per day for a given location: Terra at ~10:30 a.m. and  

~10:30 p.m., and Aqua at ~1:30 p.m. and ~1:30 a.m., local solar time. Thus, there are two nighttime 

measurements and two daytime measurements per day. LST is the radiometric temperature derived from 

surface emission and is closely related to land surface radiative properties [20]. The 8-day LST products 

are 2–8 day averages of daily products, depending on the gaps in the data, and they represent the best 

quality data retrieval possible from clear-sky conditions [21]. The resolution of the MODIS data is 

approximately 1 km on a sinusoidal projection, and the data are re-projected onto a 0.01° resolution grid 

of pixels that are roughly 1.1 km2. The LST data are produced with various quality flags based on cloud 

interference and measurement errors, but no LST data are produced for pixels that are covered by clouds. 
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This study uses all available LST data (i.e., all data not flagged with bad quality), allowing the highest 

number of pixels to be used. Additionally, data with different quality controls are examined. The higher 

quality assurance criteria include fewer composites in the 8-day LST averages. 

Figure 1. Topography for each WF (a–e) in terms of the deviation from the mean elevation 

(m) over the region. Black dots represent individual turbines. 

 

Pixel-level anomalies were produced for each season, year and MODIS measurement time. First, 

monthly means were calculated using the 8-day LST data. Monthly climatology values were calculated 

from the monthly means. Then, monthly anomalies were calculated by subtracting the monthly 

climatology from each pixel. Seasonal means and anomalies were created by combining monthly values, 
i.e., winter is Dec-Jan-Feb (DJF), spring is Mar-Apr-May (MAM), summer is Jun-Jul-Aug (JJA), fall is 

Sep-Oct-Nov (SON), and an annual average (ANN) for all months. 

Two methods are used to assess WF impacts on LST at pixel- and region-aggregated levels for each 

season. The first method calculates the pixel-level LST differences between the later years’ mean 

anomaly values (after WF construction) and the earlier years’ mean anomaly values (before WF 

construction). For example, for a WF built in 2008, it is the anomaly difference between (2009–2013) 

and (2003–2007). By plotting pixel-level LST anomalies, spatial patterns in the LST changes can be 

compared to the geographic layouts of the WFs. Each WF has a unique geographic layout of turbines, 

therefore any WF impacts should resemble the WF layout to some extent. The second method calculates 

the difference between the mean anomaly value over wind farm pixels (WFPs) and the mean anomaly 
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value over nearby non-WF pixels (NNWFPs), for each year. Pixels with one or more turbines present 

are defined as WFPs, and NNWFPs are selected in an area around the WFPs that is 3–4 pixels wide and 

3–4 pixels away from the nearest WFPs, so the immediate surroundings are represented without being 

impacted by the WFs. This leaves about 3–4 km between the WFPs and NNWFPs, which is enough 

distance for the WF wake to no longer be detectable [10]. Figure 2 shows plots of WFPs and NNWFPs 

for each WF region. Both methods are beneficial because they use data over a large spatial domain for 

a long period of time. However, throughout the long period of the data there are undoubtedly days when 

the WFs may not have been fully operational, whether for weather or maintenance reasons, but there is 

no way to filter non-operational days from the 8-day LST product. Assuming it is unusual for a WF to 

be non-operational, those days should not have a significant impact on a long-term averages. 

Figure 2. Wind farm pixels (WFPs) in orange, containing at least one turbine, and nearby 

non-wind-farm pixels (NNWFPs) in green, for each WF (a–e). The pixel resolution is 0.01°, 

or roughly 1.1 km2. 

 

3. Results and Discussion 

Figure 3 shows the pixel-level LST anomaly differences, post- minus pre-turbine-construction years, 

for each WF for JJA at ~10:30 p.m. Note that a regional mean value is removed from the LST anomaly 

difference to highlight the pixel-level LST changes relative to the regional mean [13]. Thus, the red 

contours indicate areas where the LST anomaly difference between later years and earlier years is greater 

than the region-average LST change, while the blue contours are areas with LST anomaly differences 

below that average. There is a relative warming effect for each WF, indicated by positive anomalies of 

0.12–0.44 °C, that is spatially collocated with the turbines. This spatial coupling suggests that the WFs 

are likely causing the warming effect, which is consistent with previous studies. Figure 4 shows the same 

pixel-level anomaly differences as Figure 3, but for an average of MAM and SON. The DJF plots are 

very noisy compared to the other seasons, with practically no LST anomaly signals that are spatially 

coupled with the WF layouts, and are therefore not included. Significant high-frequency LST variability 
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due to extreme weather events such as cold fronts and the associated changes in land surface properties 

(e.g., snow cover) likely mask any small low-frequency WF-induced warming signals in DJF. Figure 4 

demonstrates that the nighttime WF-warming effect does not occur only in the summer, but compared 

with Figure 3 it is evident that JJA is the best season for noticing warming effects that are spatially 

coupling with the layouts of the WFs. 

Figure 3. Pixel-level anomaly differences, post- minus pre-turbine-construction years, for 

each WF (a–e), for Jun-Jul-Aug (JJA) at ~10:30 p.m. Black dots represent individual 

turbines. Note that a regional mean value is removed from the land surface temperature (LST) 

anomaly difference to highlight pixel-level LST changes relative to the regional mean [13]. 

 

In both Figures 3 and 4, there is a small area of strong negative anomalies in excess of −0.44 °C just 

north of WF e. This feature was investigated further, and it is attributed to a small lake with relatively 

warmer anomalies in earlier years, thus making the anomaly difference negative. The change in the 

lake’s signal could be due to a change in water surface area, but further speculation is beyond the scope 

of this study. There are other non-WF areas in each region with warming and cooling anomalies 

associated with either natural LST variability and/or errors due cloud and aerosol contamination [13].  

A low-pass filtering technique such as empirical orthogonal function (EOF) analysis can reduce  

high-frequency LST variations and leave some persistent WF-warming signals [14]. Nevertheless, the 

spatial and temporal averaging used here should remove most high-frequency signals in the data, and 

the remaining residuals cannot coincidentally create the strong spatial coupling between the warming 

signals and the turbines [13].  



Remote Sens. 2014, 6 12240 
 

 

Figure 4. Pixel-level anomaly differences, post- minus pre-turbine-construction years, for 

each WF (a–e), for Mar-Apr-May (MAM) and Sep-Oct-Nov (SON) at ~10:30 p.m. Black 

dots represent individual turbines. Note that a regional mean value is removed from the land 

surface temperature (LST) anomaly difference to highlight pixel-level LST changes relative 

to the regional mean [13]. 

 

Figure 5 shows the interannual variability of the difference between WFP and NNWFP LST 

anomalies, for each WF at ~10:30 p.m. in JJA, as well as MAM and SON. Positive values indicate that 

WFP anomalies are greater than NNWFP anomalies. Vertical reference lines indicate turbine 

construction years. The positive shift (0–0.20 °C) in the WFP-NNWFP LST anomaly differences after 

turbine construction, relative to the negative values (−0.20–0) before turbine construction, indicates that 

WFPs undergo a relative warming rate compared to the NNWFPs, which is consistent with the findings 

of Zhou et al. [13]. These areal mean warming values are slightly smaller in magnitude compared to the 

maximum warming signals in the pixel-level anomaly differences because stronger warming anomalies 

tend to occur in the middle of the WFs, where the collective wake effects are larger, whereas the warming 

anomalies tend to be weaker closer to the edges of the WFs. 

Table 2 shows mean WFP-NNWFP LST differences (in degrees Celsius) from before to after turbine 

construction, for MAM, JJA and SON at ~10:30 p.m. Positive values represent a mean warming effect 

over the WFPs relative to NNWFPs in later years compared to earlier years. Nearly all the seasons for 

each WF show positive values. For reasons discussed previously, Table 2 excludes values for DJF, and 

therefore ANN as well. The WFP-NNWFP LST difference values in DJF are not as meaningful as the 
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values for the other seasons which had good spatial coupling between the warming signals and the WFs. 

The WFPs and NNWFPs are chosen in a way such that spatial patterns in LST changes could be 

quantified. Without a spatially coupled signal, positive and negative values do not indicate any sort of 

WF-warming or cooling effects, only that the detected LST variability over the chosen pixels yielded 

such a number. With that in mind, the negative value in Table 2 for WF b in MAM does not necessarily 

mean there is a WF-cooling effect, but rather that in the absence of any discernible WF signal the natural 

LST variability over WFPs and NNWFPs might happen to yield a negative value. Seasonal variations 

of the ABL likely contribute to these varying signals or lack thereof. 

Figure 5. Interannual variability of the WFP-NNWFP mean LST anomaly difference at 

~10:30 p.m. for JJA (solid) and MAM and SON (dashed), for each WF (a–e). The vertical 

reference lines mark the years when the WFs were under construction. 

 

Table 2. Mean WFP-NNWFP LST anomaly differences for each WF at ~10:30 p.m. Values 

are calculated as the difference between mean WFP-NNWFP differences after and before 

turbine construction. 

WF a b c d e 
MAM 0.037 −0.093 0.152 0.213 0.365 
JJA 0.184 0.227 0.119 0.143 0.259 

SON 0.202 0.181 0.181 0.238 0.485 
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The results thus far have used all data without any quality flags. LST anomalies over each WF were 

also examined using different quality assurance (QA) controls. Altering the QA criteria can improve the 

overall LST data quality, but the number of LST retrievals used for spatial and temporal averaging is 

reduced, consequently resulting in uncertainties in LST variations due to the sampling heterogeneity 

over different periods and different pixels [13]. Figure 6 uses WF d, the one from this study with the 

most turbines, as an example for plotting pixel-level LST anomaly differences using only the highest 

quality data. It demonstrates that the WF-warming signals at ~10:30 p.m. are robust when using different 

QA criteria, and it supports the conclusion from previous figures that JJA is the best season for detecting 

such a signal. Table 3 is the same as Table 2, except it uses three different sets of QA criteria. WFs b 
and c have negative values with various QA criteria, and as described before, the negative values do not 

necessarily indicate a WF-cooling effect.  

Figure 6. Pixel-level anomaly differences for WF d for JJA (left) and MAM and  

SON (right), at ~10:30 p.m., with quality assurance criteria only allowing for pixels with 

the best quality. 

 

Table 3. Mean WFP-NNWFP LST anomaly differences at ~10:30 p.m. for each WF, using 

the following quality assurance criteria: only the best quality pixels (QA), any quality pixels 

with LST errors ≤ 1 K (QA 1), and any quality pixels with LST errors ≤ 2 K (QA 2). 

QA a b c d e 
MAM 0.086 −0.288 0.198 0.046 0.296 

JJA 0.148 0.175 0.099 0.268 0.171 
SON 0.079 0.203 −0.255 0.264 0.474 

QA 1 a b c d e 

MAM 0.086 −0.286 0.198 0.048 0.296 
JJA 0.148 0.175 0.099 0.268 0.171 

SON 0.079 0.203 −0.255 0.264 0.474 

QA 2 a b c d e 

MAM 0.036 −0.093 0.174 0.213 0.467 
JJA 0.184 0.227 0.119 0.143 0.259 

SON 0.202 0.179 0.181 0.238 0.471 
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The lack of signal in DJF suggests that the overall wintertime ABL in Iowa is not favorable for 

allowing WF impacts to be observed with these methods, presumably because the near-surface ABL 

characteristics and land surface properties in winter are dramatically different from other seasons. In 

contrast, the negative values in MAM for WF b and SON for WF c suggest that the ABL conditions in 

those particular regions are not favorable for observable WF impacts in those seasons, rather than the 

problem being specific to those seasons in general. 

All seasons and MODIS measurement times were examined for WF impacts, and a nighttime 

warming was observed. An opposite scenario for daytime cooling was not observed for any WF, likely 

because enhanced mixing from turbines would have very little effect on a typical daytime ABL that is 

turbulent and already well-mixed (i.e., ∂θ ∂z⁄  ~ 0) [3,9]. MODIS LST changes at ~1:30 a.m. were also 

examined, and warming signals were found to be smaller and less spatially coupled than those at ~10:30 p.m. 

(figures not shown). Consistent with Zhou et al. [13], the results for each WF were better in JJA than in 

other seasons, and at ~10:30 p.m. than later in the nighttime at ~1:30 a.m. These results raise new 

questions about the differences in the nocturnal ABL between the ~10:30 p.m. and ~1:30 a.m. MODIS 

measurement times, and how such differences affect WF impacts. The nocturnal ABL can be 

complex and difficult to diagnose or predict due to night-to-night variability in turbulent and radiative 

cooling processes [22–24]. These questions will be addressed in future work using observational data 

from tall towers. 

Zhou et al. [14] determined that their observed WF warming signals were not an artifact of the 

topography. The topography over the WFs in this study, which is fairly flat relative to the terrain on 

which the Texas WFs are built, did not appear to have any effect on the LST anomaly differences.  

Zhou et al. [12] determined that small changes in land surface properties could not account for the 

warming signals that they observed over WF pixels. No significant changes in land surface properties 

were noticed over the WF regions in this study, so the nighttime warming signals shown in these results 

are very likely caused by operational wind turbines. The WF-warming signal magnitudes observed here 

are slightly smaller than the magnitudes observed in Zhou et al. [13]. This discrepancy is likely due to 

ABL differences between the semi-arid Texas grasslands and the Iowa farmlands, as those two land 

surface types have disparate surface sensible and latent heat fluxes [15]. The Texas WFs are grouped 

together and have more turbines than all of the Iowa WFs. The number of turbines in this study ranges 

from 76 to 224 (Table 1), whereas the total number of turbines investigated by Zhou et al. [12–14] was 

2358. Lu and Porté-Agel [8] noted that different turbine spacing can cause different WF effects on ABL 

turbulence intensity, so the smaller number of turbines and different spacing in the Iowa WFs could 

contribute to the smaller magnitudes of the warming signals as well. 

4. Conclusions 

Observing local WF impacts is important because of the potential impacts of large-scale wind power 

use on global climate [25–27]. For WFs built on croplands, their impacts on local meteorology also have 

implications for agriculture, as vertical fluxes of heat, moisture, CO2, and momentum can have an effect 

on crop growth [11]. Different parameterizations of WFs in models do not always agree [28], so 

understanding observed WF impacts can help improve model representations of WFs. Using two 

different methods and eleven years of MODIS LST data, this study has provided evidence of  

WF-induced surface warming at nighttime over five individual WFs in Iowa. This effect has been 



Remote Sens. 2014, 6 12244 
 

 

predicted by several previous studies and observed by a few. The same dataset and methodology as  

Zhou et al. [13] were used here, but for other locations with different topography and different land 

surface properties. The results presented here agree with their results, showing that the WF warming 

signal is not unique to their study region. The nighttime WF-warming signals occur in each season except 

DJF, which creates a discrepancy between this study and Zhou et al. [13], likely due to the differences 

in land surface properties and local climate. The best signal occurs in JJA at ~10:30 p.m., in agreement 

with Zhou et al. [13]. Seemingly, the ABL characteristics and land surface properties in summertime at 

about 10 p.m. are the most favorable for allowing such WF impacts to be observed with the given data 

and methodology.  
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