
RESEARCH

Theoretical and Applied Climatology         (2025) 156:104 
https://doi.org/10.1007/s00704-024-05348-0

Cities can also modify regional climate. For example, 
Kishtawal et al. (2010) noted an increase in the frequency 
of heavy precipitation episodes during the monsoon season 
over Indian cities with increased urbanization. Regional cli-
mate modifications could have impacts on an area’s econ-
omy. For instance, India’s agricultural sector depends on the 
proper amount of monsoon rainfall each year (Parthasarathy 
1984).

A common urbanization impact is the tendency of urban 
areas to be warmer than their nearby non-urban surround-
ings, i.e., the urban heat island (UHI) phenomenon (Oke 
1982). In a warming climate, the UHI effect is of particu-
lar importance due to the increased risk of heat exhaustion 
and higher energy demands for cooling (Filho et al. 2018). 
The UHI effect results from the contrast between urban and 
non-urban surface properties. Urban surfaces are character-
ized by low vegetation cover and low albedo due to paved 
dark surfaces, which increases the amount of absorbed solar 
radiation and reduces evaporative cooling via decreases in 

1  Introduction

Urbanization can have many positive socioeconomic 
impacts, such as the creation of jobs and commerce hubs. 
However, urbanization can also deteriorate the environment 
that half the world calls home (Grimm et al. 2008). Urban 
areas tend to have poor air quality due to manufacturing 
and vehicular traffic (Ramachandran et al. 2012), which can 
increase the risk for respiratory illnesses (Filho et al. 2018). 
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Abstract
The urban heat island (UHI) effect refers to how cities tend to be warmer than their non-urban surroundings, which 
increases the risk for heat-related illnesses and amplifies energy demands. Therefore, developing UHI mitigation strategies 
is crucial. Bengaluru, India has been rapidly urbanizing, but has yet to receive attention regarding potential UHI mitiga-
tion strategies. This work uses the Weather Research and Forecasting model with the single-layer urban canopy model to 
determine how UHI intensity changes in Bengaluru with perturbations of − 10%, + 10%, + 20%, and + 30% in vegetation 
amount since recent work has shown that vegetation amount is the leading control of urban heat in Bengaluru. These 
perturbations illustrate how much the UHI could be amplified by near-depletion of vegetation or mitigated via realistic 
increases in vegetation. The simulations were investigated diurnally and during the dry and wet seasons. Results show 
that increases in vegetation were associated with a decrease in urban land surface temperature, an increase in the latent 
heat flux, and decreases in the sensible heat flux, and vice versa for a decrease in vegetation. Significant changes in UHI 
intensity usually occurred only when vegetation was increased by 20% or more. However, for the dry season nighttime, 
which exhibited the highest UHI intensity in the control run (1.70oC), the 10% increase in vegetation produced a signifi-
cant decrease of − 0.19oC in UHI intensity, likely due to a shallow planetary boundary layer height. These results could 
have implications for mitigating urban heat, and reducing energy demands and public health risk in Bengaluru.
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the latent heat (LH) flux, and subsequent increases in the 
sensible heat (SH) flux and Bowen ratio. These surface flux 
changes cause the urban surface to warm quickly during the 
daytime, which increases heat storage and the ground heat 
(GH) flux during the day and enables the surface to retain 
more heat at nighttime through a slow heat release (Taha 
1997). In contrast, non-urban surfaces typically have higher 
vegetation cover, albedo, and heat release, which promotes 
evaporative cooling and the reflection of solar radiation. 
Therefore, warmer surface and 2-m temperatures often 
exist for a city compared to its non-urban surroundings. The 
strength of a city’s UHI is often termed the UHI intensity, 
i.e., the mean urban surface temperature minus the mean 
non-urban surface temperature, which can be influenced by 
season, time of day, surface conditions, meteorological con-
ditions, and building materials.

It is worthwhile to develop UHI mitigation strategies to 
potentially curb the risk of heat and respiratory illnesses for 
urban inhabitants and visitors. Chen et al. (2011) noted that 
the Weather Research and Forecasting (WRF) model can 
simulate the UHI phenomenon due to its development of 
urban parameterization schemes, i.e., urban canopy models 
(UCMs). Therefore, WRF is widely used to study issues 
related to the urban environment, including mitigation strat-
egies, for cities across the world. However, thus far such 
studies have mainly focused on cities in North America, 
Europe, and East Asia. Different mitigation strategies have 
been tested, such as the use of increasing vegetation and/or 
albedo of building roofs, i.e., green and cool roofs (e.g., Li 
and Norford 2016; Imran et al. 2018). Other studies have 
increased vegetation of city surfaces that were vacant, such 
as abandoned parking lots (Cady et al. 2020), or increased 
vegetation cover by a certain percentage throughout the 
urban area (Beradi et al. 2020).

Overall, there are numerous mitigation approaches that 
could potentially reduce UHI intensity, and some approaches 
may work better for certain cities. To evaluate UHI mitiga-
tion strategies for a given city, mitigation methods should 
be based on the leading mechanisms of the UHI forma-
tion for that city. Several studies have used statistical and 
machine learning methods to determine the relative impor-
tance of variables such as vegetation, albedo, aerosols, etc., 
in influencing urban heat for various cities, as these results 
are often city specific (e.g., Kim and Baik 2002; Zhou et al. 
2011; Lokoshchenko and Alekseeva 2023; Xu et al. 2024). 
This information is crucial so that mitigation strategies are 
mechanism-based and city-specific, and thereby directly 
target the main drivers of the UHI (Lenzhöler and Van der 
Wulp, 2010).

Over India, studies addressing UHI mitigation are lack-
ing, despite India having the world’s second largest popu-
lation with many metropolises (United Nations 2018) and 

numerous observational studies on UHI characteristics 
throughout the country (Veena et al. 2020). Therefore, the 
need exists to evaluate mechanism-based mitigation strat-
egies for cities in India. The city of Bengaluru, which is 
centrally located in southern India (city center: 12.97°N, 
77.59°E) on the Deccan Plateau at an elevation of 900 m, 
is the third most populous city in India with a population of 
~ 13 million. Interestingly, Bengaluru was once known as 
the “Garden City” of India, but now as the “Silicon City” 
due to the increased presence of the information technol-
ogy industry (Sudhira et al. 2007). Recently, Sussman et al. 
(2021) used multiple linear regression and the random forest 
to determine the relative importance of several environmen-
tal variables in controlling urban land surface temperature 
(LST) in Bengaluru. They found both statistical models to 
suggest vegetation amount as the leading controlling factor 
of urban heat in Bengaluru for the dry season (December-
January-February; DJF) daytime and nighttime and for the 
wet season (August-September-October; ASO) daytime. 
For ASO nighttime, they found specific humidity to be the 
leading controlling factor, which was positively correlated 
to vegetation amount. Therefore, urban heat is primarily 
controlled by vegetation in Bengaluru. As a result, UHI 
mitigation strategies for Bengaluru should involve methods 
to increase vegetation.

Given that previous studies have not used WRF to quan-
tify the role of vegetation on UHI intensity in India and that 
vegetation is the leading controlling factor of urban heat in 
Bengaluru, this work strives to answer the following ques-
tions diurnally for both DJF and ASO:

1)	 What are the LST, LH, SH, and GH responses to vary-
ing perturbations of vegetation over Bengaluru?

2)	 How strong are the relationships between the change in 
LST and changes in the LH, SH, and GH fluxes?

3)	 Can the UHI of Bengaluru become neutral only by a 
vegetation increase of a realistic amount?

2  Methods

2.1  Numerical simulations

WRFv4.2.2 (Skamarock et al. 2019) was used to perturb 
vegetation over Bengaluru and investigate the simulated 
responses in LST, the LH, SH, and GH fluxes, and UHI 
intensity as compared to a reference case. The model setup 
is based on the conclusions of Sussman et al. (2024), who 
conducted WRF simulations to assess model performance 
in simulating LST over Bengaluru and the sensitivities to 
UCM and planetary boundary layer (PBL) scheme choices. 
The reader is referred to Sussman et al. (2024) for full 
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details about how UCMs work and all results of the model 
evaluation, including the specific biases. The key points of 
the model evaluation and model setup are explained below.

All simulations were run for 61 days, in which the first 
24 h was used as the spin-up period. The DJF simulations 
were run from 00 UTC on 16 December 2017 through 14 
February 2018 and the ASO simulations were run from 00 
UTC on 16 August 2018 through 15 October 2018. These 
simulations were performed for 2018 since it is most rep-
resentative of current conditions and to be consistent with 
Sussman et al. (2019, 2021) who analyzed the character-
istics and controls of Bengaluru’s UHI for 2003–2018. As 
done by Sussman et al. (2024), the daytime analysis for this 
study was performed by averaging all variables using the 
05:00 and 08:00 UTC output (i.e., 10:30 and 13:30 Indian 
Standard Time or IST) and the nighttime analysis was done 
by averaging the 17:00 and 20:00 UTC output (22:30 and 
01:30 IST). These sampling times were chosen since they 
coincide as best as possible to the diurnal timing of the 
averaged observations from Moderate Resolution Imaging 
Spectroradiometer (MODIS) LST data, which was used to 
evaluate WRF (Sussman et al. 2024).

The physical parameterizations used for all simulations 
included Dudhia shortwave radiation (Dudhia 1989), the 
rapid radiative transfer model (RRTM) for longwave radia-
tion (Mlawer et al. 1997), Thompson microphysics (Thomp-
son et al. 2008), the Eta similarity scheme for the surface 
layer (Janjić 1994), the Bougeault and Lacarrerè (BouLac) 
PBL scheme (Bougeault and Lacarrerè 1989), the single-
layer UCM (SLCUM; Kusaka et al. 2001) and the Noah 
Land Surface model (Chen and Dudhia 2001). Sussman et 
al. (2024) found that for DJF and ASO daytime and night-
time, three out of these four cases had the SLUCM as the 
best performing UCM and three out of these four cases had 
BouLac as the best performing PBL scheme in simulating 
urban LST and UHI intensity over Bengaluru. Therefore, 
the SLUCM and BouLac were chosen for all simulations 
in this study to have consistent physics, including the refer-
ence control (CTL) run.

All simulations were forced by hourly ERA5 reanalysis 
data on 0.25º grids (Hersbach et al. 2020) and ran with a 6 s 
timestep. Spectral nudging was used to ensure the WRF-sim-
ulated fields follow the large-scale variations in the forcing 
data in the free troposphere (Liu et al. 2017). Each simula-
tion had 42 vertical levels with the top at 50  hPa and 11 
levels below 2 km to better resolve the PBL. All simulations 
were performed over a single domain of 150 km × 150 km 
with 1 km grid spacing focused on the Bengaluru city cen-
ter (Fig.  1). Therefore, no cumulus parameterization was 
used due to the convective-permitting grid spacing for the 
domain (Liu et al. 2017).

Each simulation had its land cover defined using MODIS 
Aqua and Terra combined annual-mean land cover from 
Collection 6 (MCD12Q2) for 2018 on 1 km grids as shown 
in Fig. 1. MODIS defines land cover type as the dominant 
land cover within each grid and according to the classifica-
tions developed by the International Geosphere-Biosphere 
Programme (IGBP). The IGBP defines urban land cover as 
grids that have at least 30% of its surface area as impervious 
(Belward et al. 1999). In this manner, WRF assigns each 
grid 100% of the dominant land cover type shown in Fig. 1. 
However, each grid may not be composed entirely of the 
specified land cover type. To alleviate this issue, when using 
an UCM, the parameter urban fraction (FRC_URB2D) 
allows the user to specify the fraction of impervious sur-
face in the WRF urban grids to represent various degrees 
of development, i.e., 0.95 represents commercial/industrial 
development, 0.90 represents high-density residential, and 
0.50 represents low-density residential (Chen et al. 2011). 
While these broad categories exist, any value between 0 and 
1 can be chosen for urban fraction. In the CTL runs, urban 
fraction was set to 0.90 for all urban grids (Sussman et al. 
2024). Therefore, for each urban grid in the CTL runs, the 
sub-grid is parameterized as 90% impervious, urban land 
and 10% pervious, vegetated land (Chen et al. 2011). A 
value of 0.90 was chosen since the MODIS enhanced vege-
tation index (EVI) dataset showed that Bengaluru has urban 
greenness values ranging between 0.05 and 0.25 in DJF and 
ASO, with majority of the urban grids having EVI values 
closer to the lower limit (Sussman et al. 2019).

To perturb vegetation, urban fraction was altered. Four 
perturbations to urban fraction were made relative to the 
CTL value of 0.90 for all urban grids: (1) a browning or 
continued urbanization scenario (URB) in which urban frac-
tion was increased by 10% to 0.99, (2) a conservative green-
ing scenario (CON) in which urban fraction was decreased 
by 10% to 0.81, (3) a moderate greening scenario (MOD) in 
which urban fraction was decreased by 20% to 0.72, and (4) 
an aggressive greening scenario (AGR) in which urban frac-
tion was decreased by 30% to 0.63 (Table 1). In this way, the 
fraction of pervious, vegetated area (i.e., 1–FRC_URB2D) 
of each urban grid is 0.01 in URB, 0.19 in CON, 0.28 in 
MOD, and 0.37 in AGR. This approach is similar to Cady 
et al. (2020), but with the added perturbation of increasing 
urban fraction (i.e., the URB experiment) to understand how 
UHI intensity could increase if urbanization continues with-
out any mitigation efforts and if near-depletion of vegetation 
over the city occurs. By performing four perturbation exper-
iments and including the CTL from Sussman et al. (2024), 
a 5-member ensemble of urban fraction scenarios will be 
developed, which can be used to estimate changes to LST at 
other urban fraction values. These perturbation experiments 
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were done for DJF and ASO, thus eight WRF simulations 
were performed for this study.

Changes to urban fraction also influence other land sur-
face variables. For example, as urban fraction decreases and 
more pervious, vegetated land cover is parameterized in 
the urban grids, the urban albedo increases. An increase in 
surface albedo decreases the amount of absorbed shortwave 
radiation over the city, which could contribute to a decrease 
in urban LST and consequentially UHI intensity. However, 
the albedo over the urban surface in the perturbation experi-
ments never became as high as that of the non-urban sur-
roundings. Overall, the albedo changes were small and of 
less than a 5% increase from the CTL to AGR simulations. 

Table 1  The urban fraction (FRC_URB2D) values used in the control 
(CTL), continued urbanization (URB), conservative greening (CON), 
moderate greening (MOD), and aggressive greening (AGR) simula-
tions for all urban grids. The 1–FRC_URB2D represents the pervious, 
vegetation fraction in the sub-grid scale of each urban grid
Experiment FRC_URB2D 1–FRC_URB2D
CTL 0.90 0.10
URB 0.99 0.01
CON 0.81 0.19
MOD 0.72 0.28
AGR 0.63 0.37

Fig. 1  The 150 km × 150 km domain with 1 km grid spacing used for 
all WRF simulations. The background shows the 2018 land cover dis-
tribution specified by MODIS, i.e., the land cover used in all simula-
tions. The black dashed square represents the 50  km × 50  km area 

used for all analyses. In the WRF simulations, the urban grids are not 
100% urban in the sub-grid scale due to the use of the SLUCM, which 
enables the urban fraction parameter to be used
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vegetation over Bengaluru by a uniform amount. Statistical 
significance of all the above analyses was assessed using the 
two-tailed Student’s t-test with a p-value ≤ 0.10 considered 
to be statistically significant.

3  Results and discussion

3.1  Vegetation-induced changes in LST, LH, SH, and 
GH

Figure 2 shows the mean change patterns in LST, LH, SH, 
and GH for DJF daytime from all experiments as compared 
to the CTL. Overall, results are as expected. Decreasing 
the vegetation fraction from 10 to 1% for all urban grids 
in the URB experiment induces a mean increase in LST 
of 0.22oC, a mean decrease in LH of 33.15 Wm− 2, a mean 
increase in SH of 7.84 Wm− 2, and a mean decrease in GH 
of 17.35 Wm− 2 over the urban area. These results indicate 
less evaporative cooling, more thermal heating of the air, 
and more ground heat storage since all fluxes are posi-
tive upward. In contrast, increased vegetation in the CON, 
MOD, and AGR experiments induces a decrease in LST and 
SH and an increase in LH and GH, with the magnitude of 
the changes increasing with more vegetation (Fig. 2). Addi-
tionally, while differences exist throughout the domain, the 
dominant change is only over the urban grids where urban 
fraction was perturbed. As in Cady et al. (2020), the small 
changes in the non-urban surroundings are associated with 
the turbulent nature of the lower atmosphere and behave as 
white noise. For a 10% increase or decrease in urban frac-
tion, the variables change by a similar amount with an oppo-
site sign. For all experiments, the LH magnitude change is 
about four times that of the SH change and is about two 
times that of the GH change. The LH change ranges from 
− 233.15 to 99.46 Wm− 2, compared to the SH change of 7.84 
to − 225.04 Wm− 2 and the GH change of − 217.35 to 51.35 
Wm− 2. This is likely due to changes in vegetation directly 
impacting surface evapotranspiration, which subsequently 
changes LST and the SH and GH fluxes (Taha 1997). While 
the LH, SH, and GH flux changes are significant over most 
urban grids for all experiments, the LST changes are signifi-
cant only over some grids in MOD and AGR, and the mean 
urban LST change is significant only in AGR. This indicates 
that large changes in the LH, SH, and GH fluxes are needed 
to cause significant changes in LST over Bengaluru in DJF 
daytime.

Figure  3 shows the mean change patterns and urban-
mean changes in LST, LH, SH and GH for ASO daytime 
from each experiment. Similar to DJF daytime, decreased 
vegetation in the URB experiment induces a mean increase 
in LST of 0.19oC, a mean decrease in LH of 35.08 Wm− 2, 

Investigating these indirect changes due to perturbations of 
urban fraction are beyond the scope of this study as these 
changes are likely included in the LST and UHI intensity 
changes.

2.2  Analysis

All analyses were carried out over the central 50 km × 50 km 
region of the WRF domain (Fig. 1), which is the same area 
analyzed in Sussman et al. (2019, 2021, 2024). For each 
simulation, the mean change relative to CTL over the 
50 km × 50 km area in LST, LH, SH, and GH was computed. 
The mean change in LST, LH, SH, and GH was then aver-
aged only over the model urban grids (Fig. 1). In an attempt 
to have each urban grid be in its “purest” form, if an urban 
grid was 2 km or less away from a cropland (i.e., non-urban) 
or water grid, it was excluded from the urban averaging in 
an effort to reduce possible contamination of cooler LST, 
higher LH fluxes, and lower SH and GH fluxes from the 
nearby vegetated and water areas (Sussman et al. 2024). 
To determine how strong the relationships are between the 
urban LST response and changes in the urban LH, SH, and 
GH fluxes, the linear temporal correlation coefficient and 
slope was computed for the urban LST change with both the 
urban LH, SH, and GH change, relative to the CTL for each 
experiment and for day and night. The simulation mean 
urban LST, LH, SH, and GH were also computed. The slope 
among the four simulation means was computed to assess 
how changes in vegetation influence the seasonal-mean of 
the variables. For these analyses, the LH flux was assessed 
only during daytime since the LH flux is mainly driven 
by solar radiation with near-zero values during nighttime, 
regardless of vegetation amount.

The mean UHI intensity and its mean change relative to 
the CTL were computed for each simulation. UHI intensity 
was computed as the mean urban LST minus the mean non-
urban LST. The non-urban LST was computed using the 
cropland grids (Fig. 1). Grids are classified as cropland by 
MODIS, and subsequentially by WRF, if at least 60% of the 
grid is cultivated cropland in which the lands are covered by 
temporary crops followed by a harvest and a bare soil period 
(e.g., single and multiple cropping systems), according to 
the IGBP (Belward et al. 1999). Similar to the computation 
of urban LST, efforts to have the non-urban LST be in its 
“purest” form were accomplished by excluding a non-urban 
(i.e., cropland) grid in the calculation if it was 2 km or less 
away from an urban or water grid (Sussman et al. 2024). 
The linear line of best fit was then computed for the numeri-
cal relationship between urban fraction and mean UHI 
intensity. Using this equation, the urban fraction needed 
to achieve a 0oC UHI intensity was determined to under-
stand if a neutral UHI can be obtained by solely increasing 
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Figure  4a–d show the mean spatial change patterns in 
LST for DJF nighttime. The LST changes are of greater 
magnitude and are not as linear compared to DJF daytime 
for each 10% change in urban fraction. The mean urban 
LST increased by 0.35oC in URB, decreased by 0.39oC in 
CON, which then decreased by 0.44oC to a mean decrease 
of − 20.83oC in MOD, and decreased further by 0.50oC to 
a mean decrease of − 21.33oC in AGR. Additionally, some 
weak changes in LST to the west of the city are seen in 
each simulation, which is most noticeable in the MOD and 
AGR experiments. During DJF nighttime, the mean simu-
lated wind direction is from the east to the west (not shown). 
As a result, a downwind LST change appears due to advec-
tion. Previous studies have also noted the occurrence of a 

a mean increase in SH of 7.93 Wm− 2, and a mean decrease 
in GH of 16.72 Wm− 2 over the urban area. The SH change 
is comparable to DJF daytime (7.84 Wm− 2), but the LH and 
GH change are slightly more than in DJF daytime (− 233.15 
Wm− 2 and − 217.35 Wm− 2, respectively in DJF daytime). 
However, the mean LST change is slightly less than in DJF 
daytime (0.22oC). Also similar to DJF daytime are the small 
spatial variations in the change patterns, significance of 
the LH, SH and GH changes over most urban grids for all 
experiments (except for SH in URB), and the mean urban 
LST change is significant only in AGR. These results indi-
cate that even larger changes in the LH, SH, and GH fluxes 
are needed to cause significant changes in LST over Benga-
luru in ASO daytime compared to DJF daytime.

Fig. 2  (a–d) The 17 December 2017–14 February 2018 (DJF) mean 
daytime change relative to the CTL simulation in LST (oC) for the 
URB, CON, MOD, and AGR simulations. Stippling indicates that the 
mean change is significant at the 10% level based on the two-tailed 
Student’s t-test. The mean change averaged over the urban surface ( ∆

LST) is shown on top of each panel with an asterisk indicating that the 
mean change is significant at the 10% level based on the two-tailed 
Student’s t-test. (e–h) Same as (a–d), but for the LH flux (Wm− 2). (i–l) 
Same as (a–d), but for the SH flux (Wm− 2). (m–p) Same as (a–d), but 
for the GH flux (Wm− 2). All fluxes are positive upward
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west of the city exhibits a small decrease in the SH flux for 
the URB experiment and an increase in the SH flux for the 
CON, MOD, and AGR experiments that becomes higher in 
magnitude with a higher increase in vegetation. A few grids 
show significant differences in SH for the AGR experiment. 
The local SH flux is mainly dependent on the local wind 
speed and difference between LST and 2-m temperature, in 
that a higher difference causes more vertical turbulent heat 
transfer, and thus a higher SH flux. For the CON, MOD, and 
AGR experiments, advection cooled 2-m temperature more 
than LST to the west of the city, which led to an increased 
LST and 2-m temperature difference downwind, with the 
largest difference occurring for the AGR experiment (not 
shown). Consequentially, the SH flux increased to the west 
of the city, and since the increase is largest in AGR, some 
grids were significant. The opposite occurs for URB as 
advection warms 2-m temperature more than LST causing a 

downwind effect that is mainly observed at nighttime when 
the boundary layer is not as deep nor well-mixed as in day-
time (e.g., Cady et al. 2020). The WRF simulated mean PBL 
height over the urban grids in Bengaluru for all simulations 
is highest for ASO daytime, followed by DJF daytime, ASO 
nighttime, and lastly DJF nighttime (Table  2). The mean 
PBL height is highest in ASO daytime due to higher solar 
heating and LST. The mean PBL height does not exhibit 
large changes during daytime across the simulations but has 
larger decreases with more vegetation during nighttime as 
surface roughness, urbanization intensity, and surface heat-
ing all decrease (Table 2).

The SH change patterns in DJF nighttime (Fig. 4e–h) are 
similar to DJF and ASO daytime for each experiment. How-
ever, the magnitude of the change is smaller. Here, a 10% 
change in urban fraction causes approximately a 4 Wm− 2 
mean change in SH. Related to the downwind effect, the area 

Fig. 3  Same as Fig. 2, but for ASO daytime (i.e., 17 August 2018–15 October 2018)
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the GH flux, and warmer LST. In contrast, GH decreases 
for the CON, MOD, and AGR experiments since there is 
less heat storage during the daytime for these experiments 
(Fig. 2b–c), which causes less heat release at nighttime and 
cooler LST. The influence of advection is not as noticeable 
for the GH flux. For the AGR simulation (Fig. 4l), there is 
a small area west of the city that experiences an increase in 
the GH flux. This may be due to the increased SH flux in 
the downwind area that has increased heat conduction and 
thus enabled more ground heat release at nighttime. Similar 
to the previous cases, despite the significant changes in SH 
and GH for the URB and CON experiments, no significant 
changes are shown for LST in these experiments. Significant 
changes in LST are only exhibited for MOD and AGR, in 
which the entire city exhibits significant grid-level changes.

Figure 5 shows the mean LST, SH and GH changes for 
ASO nighttime. The LST changes are of greater magnitude 
compared to ASO daytime but are less than in DJF night-
time. The LST response to a 10% change in urban fraction 
is not linear, similar to DJF nighttime. For CON, the mean 
urban LST decreased by 0.25oC, which then decreased by 
0.29oC to a mean decrease of − 20.54oC in MOD, and further 

decreased LST and 2-m temperature difference (not shown). 
Despite the significance in AGR, these changes in SH are 
small in magnitude, which prevents significant changes in 
LST to occur downwind of the city. For the GH change pat-
terns in DJF nighttime (Fig.  4i–l), the mean changes are 
about one-third of the mean changes in magnitude com-
pared to DJF daytime. Since the GH flux at nighttime is 
positive, i.e., ground heat directed upward through a heat 
release, the sign of the change is reversed compared to day-
time. The decrease in GH for the URB experiment during 
daytime indicates more heat retention (Fig.  2m) and thus 
more ground heat release at nighttime, i.e., an increase in 

Table 2  The mean planetary boundary layer height (in m) determined 
from each WRF simulation during each season and time of day aver-
aged over the urban surface

DJF 
Daytime

ASO 
Daytime

DJF 
Nighttime

ASO 
Nighttime

CTL 1182 1288 190 398
URB 1184 1288 205 413
CON 1180 1287 175 383
MOD 1177 1285 159 369
AGR 1174 1283 142 354

Fig. 4  (a–d) The 17 December 2017–14 February 2018 (DJF) mean 
nighttime change relative to the CTL simulation in LST (oC) for the 
URB, CON, MOD, and AGR simulations. Stippling indicates that the 
mean change is significant at the 10% level based on the two-tailed 
Student’s t-test. The mean change averaged over the urban surface ( ∆

LST) is shown on top of each panel, with an asterisk indicating that 
the mean change is significant at the 10% level based on the two-tailed 
Student’s t-test. (e–h) Same as (a–d), but for the SH flux (Wm− 2). (i–l) 
Same as (a–d), but for the GH flux (Wm− 2). All fluxes are positive 
upward
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3.2  Relationships between the changes in LST and 
LH, SH, and GH fluxes

Figure 6 shows the daytime relationship between the change 
in urban LST and the change in urban LH for all experi-
ments relative to the CTL in DJF and ASO. For both sea-
sons, each simulation shows a sharp urban LST decrease as 
urban LH increases and has a significant, negative temporal 
correlation coefficient (r ∼ –0.99 for all simulations in DJF 
and r ~ − 0.98 for all simulations in ASO). The slope val-
ues indicate that in all simulations in DJF, a daytime urban 
LH flux positive change would lead to a negative daytime 
urban LST change at a rate of about − 0.03oC per 1 Wm− 2 
since increased evaporation promotes surface cooling. The 
opposite is true for an urban LH flux decrease as in the URB 
simulation. In ASO, the rate of change for all simulations 
is about − 0.022oC per 1 Wm− 2. The rate of change in DJF 
is slightly higher than in ASO likely due to the shallower 
PBL simulated in DJF (Table 2), which would confine the 
responses to vegetation closer to the ground due to less 
vertical mixing. In addition, as the urban vegetation cover 
increases from URB to AGR, the seasonal-mean urban LH 
increases while the seasonal-mean urban LST decreases at 
a rate of − 0.007oC per 1 Wm− 2 in DJF and − 0.006oC per 

decreased by 0.32oC to a mean decrease of − 20.86oC in 
AGR. For URB, the mean LST increased by 0.24oC. Also 
similar to DJF nighttime, a downwind effect is noticeable 
mainly for MOD and AGR. However, changes in LST are 
now to the east of the city since the mean simulated wind 
direction is from the west in ASO (not shown). Additionally, 
the downwind effect is weaker in ASO nighttime compared 
to DJF nighttime, likely due to the smaller LST response, 
which determines the downwind effect through advection. 
The smaller LST response in ASO nighttime is likely related 
to its deeper PBL compared to DJF nighttime (Table 2), as 
shallower boundary layers have been shown to influence 
LST more than deeper boundary layers (Davy et al. 2017). 
The SH and GH change patterns and magnitude are similar 
to DJF nighttime. Additionally, the downwind effect for SH 
is only evident in the MOD and AGR experiments, in which 
both show an insignificant increase in SH east of the city, 
again due to increased near-surface temperature gradients. 
The influence of advection on the GH flux is nonexistent. 
Finally, despite the significant mean changes in SH and GH 
throughout the city for all experiments, significant mean 
changes in LST mainly exist in the MOD and AGR experi-
ments. A few grids are significant in the CON experiment.

Fig. 5  Same as Fig. 4, but for ASO nighttime
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~ 0.029oC per 1 Wm− 2 for all simulations in DJF and a slope 
of ~ 0.025oC per 1 Wm− 2 for all simulations in ASO. For 
each simulation in daytime, a significant temporal correla-
tion is shown that is nearly perfectly linear (r ~ 0.99 in DJF 
and ASO). The slopes and correlation coefficients indicate 
that a daytime urban SH flux negative change is associated 
with a daytime urban LST negative change since increased 

1 Wm− 2 ASO, which is weaker than the slope of the daily 
daytime changes for both seasons.

Figure 7 shows the relationship between the change in 
urban LST and the change in urban SH for all experiments 
during each season and time of day relative to the CTL. Fig-
ure 7a–b shows that in daytime, there is a direct relationship 
between changes in urban SH and urban LST with a slope of 

Fig. 6  (a) The 17 December 2017–14 Febru-
ary 2018 (DJF) daytime temporal relationship 
between the daily change in the urban LH 
flux (Wm− 2) and the daily change in urban 
LST (oC) for the URB (brown), CON (red), 
MOD (green), and AGR (blue) simulations 
relative to the CTL daily value. (b) Same as 
(a), but for 17 August 2018–15 October 2018 
(ASO) daytime. The temporal correlation 
coefficient (r) and slope (0.1oC per 1 Wm− 2) 
are reported in the legend of each panel. An 
asterisk indicates the correlation coefficient is 
significant at the 10% level based on the two-
tailed Student’s t-test. The slope (0.1oC per 1 
Wm− 2) among the seasonal-mean urban LST 
and LH between the four simulations (denoted 
as stars) is also reported
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in ASO, have a significant, negative temporal correla-
tion that increases with a larger change in urban fraction. 
The nighttime correlations are weaker in magnitude than 
in daytime. The rate of change is not as consistent among 
the simulations compared to daytime as well. In DJF, the 
daily nighttime urban LST decreases at the fastest rate of 
− 0.087oC per 1 Wm− 2 in AGR, which is followed by MOD 
(–0.079oC per 1 Wm− 2), CON (–0.068oC per 1 Wm− 2), and 
URB (–0.035oC per 1 Wm− 2). Similarly, in ASO, the daily 
nighttime urban LST decreases with the fastest rate in AGR 
(–0.098oC per 1 Wm− 2), followed by MOD (–0.092oC per 1 
Wm− 2), CON (–0.084oC per 1 Wm− 2), and URB (–0.012oC 
per 1 Wm− 2). The negative relationship suggests that an 

vegetation promotes more evaporative cooling, and thus 
less vertical heat transfer, and consequentially a lower LST. 
The opposite is true for an urban SH flux increase as in 
the URB simulation. Similar to Fig. 6, the rate of change 
is slightly higher in DJF likely due to the shallower PBL 
compared to ASO. The seasonal-mean urban LST increases 
as the seasonal-mean urban SH flux also increases at a rate 
of 0.029oC per 1 Wm− 2 in DJF, and again slightly less in 
ASO of 0.025oC per 1 Wm− 2 from AGR to URB, which is 
similar to the slopes of the daily daytime changes for each 
individual simulation for both seasons.

For the SH relationship at nighttime (Fig.  7c–d), all 
simulations in both seasons, except for the URB simulation 

Fig. 7  (a) The 17 December 2017–14 February 2018 (DJF) daytime 
temporal relationship between the daily change in the urban SH flux 
(Wm− 2) and the daily change in urban LST (oC) for the URB (brown), 
CON (red), MOD (green), and AGR (blue) simulations relative to the 
CTL run. (b) Same as (a), but for 17 August 2018–15 October 2018 
(ASO) daytime. (c–d) Same as (a–b), but for nighttime. The temporal 

correlation coefficient (r) and slope (0.1oC per 1 Wm− 2) are reported 
in the legend of each panel. An asterisk indicates the correlation coef-
ficient is significant at the 10% level based on the two-tailed Student’s 
t-test. The slope (0.1oC per 1 Wm− 2) among the simulation-mean 
urban LST and SH (denoted as stars) is also reported
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However, a lower daily nighttime urban LST change tends 
to be associated with a smaller downward nighttime urban 
SH flux change among the simulations, which suggests 
that the nighttime urban LST and 2-m temperature differ-
ence becomes weaker as nighttime LST decreases for the 
experiments and becomes closer to equilibrium with 2-m 
temperature.

Figure  8 shows the relationship between the change 
in urban LST and the change in urban GH for all experi-
ments during each season and time of day relative to the 
CTL. Figure 8a shows that in DJF daytime, a high urban 
GH flux change (i.e., decreased heat storage) is associ-
ated with a high urban LST change with a slope ranging 
from 0.107–0.151oC per 1 Wm− 2 and significant tempo-
ral correlation coefficients ranging from 0.53 to 0.74 from 
URB to AGR. Therefore, as the daily daytime urban GH 
flux becomes more positive, which is indicative of more 

increased nighttime urban SH flux change is associated 
with a decreased nighttime urban LST change relative to 
the CTL. During daytime the urban SH flux is positive; 
therefore, the flux is directed from the surface to the atmo-
sphere. At nighttime, the urban SH flux is often negative, 
and thereby directed toward the surface since the surface 
becomes cooler than the lower atmosphere (i.e., nocturnal 
inversion) due to radiative cooling. Figure 7a–b show that 
the daytime seasonal-mean urban LST and SH decrease as 
the urban vegetation cover increases, which coincides with 
the daytime seasonal-mean LH increase and LST decrease 
from URB to AGR (Fig. 6). A lower daytime LST would 
also generally lead to a lower nighttime LST, and thus a 
larger downward SH flux at night, which helps to explain 
the seasonal-mean nighttime changes from AGR to URB 
shown in Fig. 7c–d that have a positive slope of 0.101oC 
per 1 Wm− 2 in DJF and 0.060oC per 1 Wm− 2 in ASO. 

Fig. 8  Same as Fig. 7, but for the GH flux
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the CTL could cancel the UHI in Bengaluru. In comparison, 
an urban fraction of 0.59 would be needed in ASO daytime, 
0.16 in DJF nighttime, and 0.01 in ASO nighttime. These 
urban fractions represent a decrease of 34%, 82%, and 
99% for ASO daytime, DJF nighttime, and ASO nighttime, 
respectively, compared to the CTL urban fraction of 0.90. 
These decreases in urban fraction are likely too high to be 
accomplished.

These results indicate that increasing vegetation 
alone will not cancel the UHI in Bengaluru. However, a 
10% decrease in urban fraction, which could possibly be 
achieved, can certainly help Bengaluru reduce its extreme 
heat. In particular, Fig.  9c shows that the mean reduction 
in UHI intensity for 10% decrease in urban fraction in DJF 
nighttime is significant compared to the CTL. Reducing 
nighttime UHI intensity has been linked to a lower risk of 
heat-related illnesses for urban residents and can reduce 
energy demands when residents are in their homes (Frum-
kin 2002; Murage et al. 2017). This is especially important 
since DJF nighttime has the highest mean UHI intensity of 
1.70oC based on the CTL mean values and has the highest 
sensitivity to urban fraction (Fig. 9).

4  Conclusions

To fill the gap in investigating UHI mitigation strategies 
over India, this study investigated the impacts of perturbed 
vegetation amount by various percentages over Bengaluru, 
India since vegetation amount is the leading driver of urban 
heat for the city (Sussman et al. 2021). This was achieved 
using WRF 1  km simulations by perturbing urban frac-
tion by + 10%, − 10%, − 20%, and − 30% compared to its 
CTL value of 0.90 in each urban land cover grid, in which 
decreases represent more pervious, vegetated land cover. 
The responses in LST, the LH, SH and GH fluxes, and UHI 
intensity were examined. The strength of the relationships 
between the change in urban LST and changes in urban LH, 
SH, and GH were computed. It was also determined if the 
UHI could be cancelled through only decreasing urban frac-
tion by a uniform amount throughout Bengaluru.

Results show that increases in vegetation lead to more 
upward LH flux during daytime and decreases in LST 
and SH during daytime and nighttime. During daytime, 
increased vegetation resulted in less downward GH flux, 
indicating less ground heat storage. This leads to less upward 
GH release, which cools the surface air, during nighttime as 
less heat is stored during the daytime under increased veg-
etation scenarios. These results occur since the GH flux is 
downward during daytime, and upward during nighttime. 
The results were opposite for a decrease in vegetation. The 

ground heat storage release that would warm the surface, 
the daily daytime urban LST change also increases. Com-
paring the seasonal-means shows that as vegetation cover 
increases from URB to AGR in DJF daytime, the mean 
urban LST decreases as the mean urban GH flux increases 
at a rate of − 0.136oC per 1 Wm− 2. Therefore, as vegeta-
tion increases, the mean urban LST decreases, and the mean 
urban GH increases as less heat is retained. For ASO day-
time (Fig. 8b), none of the correlations are significant and 
the slopes are weak. The seasonal-mean slope is slightly less 
compared to DJF daytime (–0.122oC per 1 Wm− 2). For DJF 
nighttime (Fig. 8c), again the slopes are weak and none of 
the correlations are significant. The seasonal-mean slope of 
0.648oC per 1 Wm− 2 indicates that as vegetation decreases 
from AGR to URB, the mean urban GH flux increases (i.e., 
more nighttime heat release) and the mean urban LST also 
increases, which is likely due to low vegetation over the 
urban surface being able to retain more daytime heat, which 
then corresponds to a large heat release at nighttime. For 
ASO nighttime (Fig.  8d), the slopes are positive and the 
correlation coefficients are only significant for URB and 
CON, which indicates that as the urban GH flux increases 
and more heat is released, the urban LST also increases. The 
seasonal-mean slope is slightly less than in DJF nighttime of 
0.402oC per 1 Wm− 2 from AGR to URB.

3.3  Impact of vegetation on surface fluxes and UHI 
intensity

Figure 9 shows the relationship between urban fraction and 
mean UHI intensity for the CTL and perturbation experi-
ments. As expected, UHI intensity increases linearly as urban 
fraction increases. For the AGR simulation, which represents 
the largest change in urban fraction (i.e., 30% decrease), the 
largest change in UHI intensity occurs in DJF nighttime 
of − 0.66oC, followed by ASO nighttime of − 0.42oC, DJF 
daytime of − 0.35oC, and ASO daytime − 0.31oC. The same 
ordering of the largest to smallest change in UHI intensity 
follows for the URB, CON, and MOD simulations as well. 
Thus, the nighttime UHI intensity appears to be the most 
sensitive to urban fraction change, especially during DJF. 
The high sensitivity of UHI intensity to vegetation cover 
during DJF nighttime is consistent with the largest urban 
LST change that was simulated during this time, which is 
again likely due to the shallow PBL that suppresses vertical 
mixing of the vegetation-induced surface changes (Table 2).

Using the linear line of best fit (Fig. 9), the urban fraction 
needed to obtain a neutral UHI of 0oC in DJF daytime is 
0.85, which corresponds to a 5.56% decrease in urban frac-
tion compared to the CTL. This is the only case in which 
solely decreasing impervious urban land and increasing per-
vious vegetation cover by a realistic amount as compared to 

1 3

Page 13 of 17    104 



H. S. Sussman et al.

to induce significant LST changes, even though changes 
in LH and SH are significantly correlated with changes in 
LST (Figs.  6 and 7). For all simulations in both seasons, 
the changes relative to the CTL in daily daytime urban LST 
were significantly negatively correlated with the changes in 
daytime urban LH since a higher LH flux is associated with 
a cooler LST due to more evaporative cooling (Fig. 6). For 
DJF and ASO daytime, the urban change in daily LST was 
significantly positively correlated with the urban change in 
daily SH since a low SH flux is associated with a low LST 
due to reduced surface-air temperature gradients, which is 
brought about by increased evaporative cooling (Fig.  7). 
During nighttime, the relationship between the urban 

magnitude of the change in LST was higher during night-
time than daytime for both seasons.

The largest reductions in LST from increased vegeta-
tion occurred in DJF nighttime (simulation mean decrease 
of 0.44oC), which is likely a consequence of the shallowest 
PBL during this time (Table 2) that confines the vegetation-
induced changes to the surface due to suppressed vertical 
mixing. For both seasons and both times of day, significant 
changes in LST were typically only observed when urban 
fraction was decreased by 20% or more (i.e., the MOD and 
AGR experiments) despite significant changes in the LH, 
SH, and GH fluxes for all simulations (Figs. 2, 3, 4 and 5). 
Therefore, large changes in LH, SH, and GH are needed 

Fig. 9  (a) The 17 December 2017–14 February 2018 (DJF) daytime 
relationship between urban fraction and mean UHI intensity for the 
CTL (black), URB (brown), CON (red), MOD (green), and AGR (blue) 
simulations. The mean UHI intensity for each simulation is reported in 
the legend along with the associated mean change in UHI intensity 
with respect to the CTL simulation in parenthesis. An asterisk next to 

the mean change indicates that the mean difference is significant at the 
10% level based on the two-tailed Student’s t-test. The linear line of 
best fit is reported in the legend and was used to determine the urban 
fraction needed to produce a 0oC UHI intensity. (b) As in a), but for 17 
August 2018–15 October 2018 (ASO) daytime. (c) As in (a), but for 
DJF nighttime. d) As in a), but for ASO nighttime
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day-to-day noise being smoothed out. Including more years 
of simulations to determine the daily mean response to the 
vegetation forcing may involve different atmospheric back-
ground conditions, which may alter the results.

Future work can consider other mitigation strategies that 
are still based on the leading mechanism of urban heat in 
Bengaluru. For example, Sussman et al. (2019) showed that 
Bengaluru is expanding radially outward. Therefore, the 
most recently urbanized land on the outskirts of Bengaluru 
likely is not as urbanized as the city center. As a result, it 
may be more realistic to increase vegetation by a substantial 
amount in those areas. This would likely result in cooling 
of the outskirts and due to the downwind effect, tempera-
ture advection would aid in cooling central areas of the city. 
Future work can also investigate the impacts of combining 
mitigation strategies, such as increasing vegetation to pro-
mote evaporative cooling and increasing surface albedo to 
promote the reflection of solar radiation.

Future work should also investigate any potential regional 
impacts of increasing vegetation to reduce Bengaluru’s UHI. 
For example, since increased vegetation increases the LH 
flux, this would increase available moisture and potentially 
increase the frequency, amount, and intensity of precipita-
tion. Recently, Patel et al. (2021) investigated the impact of 
using green roofs to curb UHI intensity in Mumbai, India on 
precipitation amount. They simulated three cases in WRF 
for varying amounts of greenness and found accumulated 
rainfall to increase by a wide range of 1–72%. An increase 
in rainfall could lead to higher runoff and increase the risk 
of floods. Therefore, before any vegetation-based mitigation 
strategy is implemented in Bengaluru, future work should 
determine how the local climate could change and the asso-
ciated implications of the change. These potential impacts 
to local climate due to UHI mitigation illustrates the com-
plexity of developing and testing mitigation strategies.
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change in LST and urban change in SH is negative, albeit 
still significant (Fig. 7). The negative relationship arises due 
to the downward SH flux becoming weaker at nighttime as 
urban LST decreases and becomes closer in value to 2-m 
temperature, thus weakening the LST and 2-m temperature 
difference, which largely determines the magnitude of the 
SH flux. The relationship between the changes in the urban 
GH flux and urban LST was significant only during DJF 
daytime (Fig. 8). The relationships between the changes in 
urban LH and urban SH with urban LST were stronger due 
to nearly perfectly linear correlations compared to the rela-
tionship between the changes in urban GH and LST, which 
have weaker correlations. Therefore, changes to the LH and 
SH fluxes are likely the key drivers of the LST responses to 
vegetation modification.

Overall, it is unlikely the UHI of Bengaluru can be can-
celed via increasing vegetation alone (Fig.  9). However, 
a 10% decrease in urban fraction, which may be realistic, 
can lead to a substantial reduction in UHI intensity and thus 
could have significant benefits to public health and energy 
demands, especially during DJF nighttime when the CTL 
mean UHI intensity is highest (1.70oC) and a 10% decrease 
in urban fraction produces a statistically significant reduc-
tion (by 0.19oC) in UHI intensity (Fig. 9).These results sug-
gest that the shallow PBL in DJF nighttime (Table 2) can 
significantly enhance the UHI and its sensitivity to vegeta-
tion cover. This may also explain why UHI intensity has a 
large sensitivity to urban fraction change in DJF nighttime 
(Fig. 9).

A limitation of this study is the absence of an urban mor-
phology dataset, which can classify each urban grid based 
on its urbanization intensity, and thus better tune the urban 
fraction parameter for each urban grid and allow for hetero-
geneity in urban land cover throughout Bengaluru. As dis-
cussed in Sussman et al. (2024), these datasets are difficult 
to obtain for India. Therefore, the urban fraction values for 
the CTL experiment were based on the results of the MODIS 
EVI dataset over the city (Sussman et al. 2019) to obtain a 
baseline understanding of how WRF performs in simulating 
Bengaluru’s UHI with homogeneous urban land cover. As 
urban morphology datasets continue to be advanced, future 
work should perform similar simulations using these data to 
better specify urban fraction, which may lead to improved 
simulations of surface fluxes and LST, and thus also improve 
the understanding of mechanisms and potential mitigation 
strategies. Another limitation of this study is that multiple 
years of the DJF and ASO seasons were not simulated, so 
a long-term climatology of LST and surface flux responses 
due to vegetation changes cannot be established. However, 
since 60 days within the DJF and ASO 2018 seasons were 
simulated and averaged, the results represent a robust daily 
response to the vegetation perturbations with most of the 
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