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Contrasting age-dependent leaf acclimation 
strategies drive vegetation greening across 
deciduous broadleaf forests in mid- to  
high latitudes

 

Increasing leaf area and extending vegetation growing seasons are two 
primary drivers of global greening, which has emerged as one of the most 
significant responses to climate change. However, it remains unclear 
how these two leaf acclimation strategies would vary across forests at a 
large spatial scale. Here, using multiple satellite-based datasets and field 
measurements, we analysed the temporal changes (Δ) in maximal leaf area 
index (LAImax) and length of the growing season (LOS) from 2002 to 2021 
across deciduous broadleaf forests (DBFs) in the middle to high latitudes. 
Contrary to the widely held assumption of coordination, our results 
revealed a negative correlation between ΔLAImax and ΔLOS. Notably, the 
trade-offs between ΔLAImax and ΔLOS were strongly explained by stand 
age. Younger DBFs, with lower baseline LAImax, predominantly located in 
eastern Asia, displayed an increase in LAImax with small changes in LOS. This 
acquisitive strategy facilitated younger DBFs to grow more photosynthe
tically efficient leaves with low leaf mass per area, enhancing their light use 
efficiency. Conversely, older DBFs with a higher baseline LAImax, primarily 
located in North America and Europe, extended their LOS by increasing leaf 
mass per area. This conservative strategy facilitated older DBFs to produce 
thicker, but less photosynthetically efficient leaves, resulting in decreased 
light use efficiency. Our findings offer new insights into the contrasting 
changes in leaf area and growing season length and highlight their divergent 
impacts on ecosystem functioning.

In recent decades, vegetation greening, defined as the increase of 
annual or seasonal vegetation greenness observed by satellites, has 
become one of the most significant responses of plants to climate 
change1–3. This global greening encompasses a range of leaf acclima-
tion strategies among plants worldwide, which have not been fully 
understood. One commonly observed strategy is to produce more 
canopy leaves4,5, while another involves adjusting the timing of the 
growing season, by advancing its start (SOS)6,7 and/or delaying its end 

(EOS)8,9. The first strategy leads to an increase in maximum leaf area 
index (LAImax)10,11, while the second results in an increase in the length 
of the growing season (LOS = EOS − SOS) (refs. 8,12–14). A fundamental 
question has been whether and how these two leaf acclimation strate-
gies vary across biomes under climate change.

Satellite observations have recorded increases in LAImax and LOS 
across deciduous broadleaf forests (DBFs)4,7,15–19. The widely held belief 
is that LAImax and LOS have changed coordinatively. Nevertheless, 
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Consequently, younger DBFs in Asia with smaller Aage could afford a 
substantial increase in ΔLAImax (Fig. 1a). By contrast, older DBFs with 
higher baseline ΔLAImax showed a relatively lower Arealeaf/Areasapwood 
ratio (Supplementary Fig. 3b,c). As a result, older DBFs in North Amer-
ica and Europe with larger Aage appeared to produce less additional 
leaf growth (Fig. 1a). Instead, they markedly advanced the SOS and/or 
delayed the EOS (Supplementary Fig. 4), resulting in a notable increase 
in LOS (Fig. 1b).

Changes in leaf physics and chemistry
ΔLAImax and ΔLOS can be associated with different changes in the physi-
cal and chemical properties of leaves across DBFs with varying Aage. 
LMA is a leaf trait highly related to leaf chemical properties such as 
nitrogen, phosphorus and potassium content42. Therefore, we explored 
the temporal changes in LMA (ΔLMA) during the period 2002-2016 and 
used ΔLMA as a proxy to investigate leaf chemical variability across 
DBFs with different Aage. In addition, we assessed the temporal changes 
in LMC (ΔLMC) during the period 2002–2016 based on the time-series 
MODIS-derived LMC datasets29 and used ΔLMC as a proxy to examine 
leaf physical variability (refer to ‘Exploring leaf physical, chemical and 
functional changes’ and ‘Modelling LMA using the PROSAIL model’ 
sections in Methods for details).

We found that both ΔLMA and ΔLMC were positively correlated 
with Aage (P < 0.001) (Fig. 2). Specifically, younger forests in eastern 
Asia (regionally averaged Aage = 54.29 ± 0.14 years) showed decreases 
in LMA by 1.39 mg cm−2 and in LMC by 1.18% during the study period 
(Supplementary Fig. 5). This suggested that, with ongoing climate 
change, younger DBFs tended to produce more, thinner leaves with 
lower LMC. Conversely, older DBFs exhibited larger positive ΔLMA and 
ΔLMC values (Fig. 2b,d). For instance, in North America and Europe, 
where the regionally averaged Aage was 77.23 years, LMA increased by 
1.27 mg cm−2 and 1.94 mg cm−2, while LMC increased by 5.55% and 8.72%, 
respectively (Supplementary Fig. 5). These results indicated that older 
DBFs tended to develop thicker leaves with higher LMC, promoting 
leaf longevity under climate change. The satellite-based results were 
further validated using field observations of specific leaf area (SLA) 
and leaf dry matter content (LDMC) from the TRY dataset35,36 (Sup-
plementary Fig. 6; see ‘Validations using in situ SLA and LDMC data’ 
section in Methods), where SLA is the reciprocal of LMA, and LDMC is 
complementary to LMC, respectively43,44. These analyses also showed 
negative correlations between SLA, LDMC and Aage, aligning with the 
satellite-inferred findings (Fig. 2b,d).

Overall, the contrasting changes in leaf properties between 
younger and older DBFs were associated with the age-dependent nega-
tive correlations between ΔLAImax and ΔLOS.

Implications for ecosystem functioning
The contrasting changes in leaf physical and chemical properties 
between younger and older DBFs can lead to cascading effects on 
ecosystem photosynthesis. To examine this, we quantified temporal 
changes in LUE (ΔLUE) over the 2002–2016 period and used structural 
equation modelling (SEM) to investigate the main paths through which 
leaf traits (LMA versus LMC) might impact LUE (Fig. 3a,b). To eliminate 
the impacts of climate variability, we applied the SEM analyses within 
each 2° × 2° moving window and calculated the regionally averaged 
path coefficient (Rpc) of ΔLMA versus ΔLMC impact on ΔLUE (Fig. 3c).

Results indicated that decreases in LMA, usually alongside the 
increase in canopy leaves, primarily enhanced LUE (Rpc = −0.117). 
For instance, younger forests in eastern Asia (Fig. 3a), where leaf 
acclimation favoured thinner leaves (Fig. 4a), exhibited a substan-
tial increase in ecosystem LUE (ΔLUE = 2.38 × 10−3 ± 5.10 × 10−5 gC J−1)  
(Fig. 3b). By contrast, older forests, primarily located in North Amer-
ica and Europe (Fig. 3a), experienced significant declines in LUE (ΔL
UE = −7.31 × 10−4 ± 4.12 × 10−5 gC J−1) (Fig. 3b). These declines were 
linked to the extension of LOS accompanied by widespread increases 

according to the leaf economics spectrum theory, leaf trait trade-offs 
often occur within and among plant communities20,21. Plants located 
at the ‘fast’ end of economics spectrum tend to produce thinner and 
more efficient leaves with a shorter lifespan, yielding a faster return on 
investment in terms of carbon gain relative to the resources invested 
in leaf construction, while plants located at the ‘slow’ end of the eco-
nomics spectrum tend to adopt a conservative strategy and favour 
less efficient leaves with a longer leaf lifespan20,22,23. In this context, 
young forests are expected to adopt an acquisitive strategy to grow 
more leaves for maximizing carbon gain under climate change21,24. By 
contrast, old forests may follow a conservative strategy, prioritizing 
LOS extension to maximize photosynthesis over time21,24. Based on 
this viewpoint, we hypothesize that forests at different growth stages 
respond differently to climate change (that is, increasing LAImax or 
extending LOS). Although this reasoning is conceptually appealing, it 
has not yet been fully examined in the real world at large spatial scales. 
Addressing these knowledge gaps can enhance our understanding of 
the complex leaf acclimation strategies in response to climate change 
and their implications for ecosystem functioning (that is, productivity).

We leveraged multiple satellite-based datasets (Supplemen-
tary Table 1) and field measurements to investigate the LAImax versus 
LOS acclimation strategies and their potential controls by stand age 
(denoted as Aage) at large spatial scales. We focused exclusively on DBFs 
in the middle to high latitudes (Supplementary Fig. 1; see ‘Selecting 
DBFs without disturbances’ section in Methods), which exhibit a LOS 
of less than 12 months and moderate LAI (typically LAI <6.0 m2 m−2). 
Thus, the LAI metric in this biome exhibits less saturation and remains 
sensitive to vegetation density25,26. We first examined the correla-
tions between decadal changes in LAImax (defined as the average LAI 
between the maturity and senescence period; Supplementary Fig. 2) 
and in LOS (defined as the average LOS between the green-up and 
dormancy period) (denoted, respectively, as ΔLAImax and ΔLOS) using 
satellite-based Global Land Surface Satellite (GLASS) LAI product27 and 
Moderate Resolution Imaging Spectroradiometer (MODIS) leaf phenol-
ogy dataset28 during 2002–2021 (see ‘Exploring relationships between 
ΔLAImax and ΔLOS’ section in Methods). Then, we used satellite-derived 
leaf moisture content (LMC) (2002–2016)29 and leaf mass per area 
(LMA) estimated from MODIS reflectance data30–32 via the PROSAIL 
model33,34 to investigate potential changes in leaf traits alongside vari-
ations in LAImax and LOS. Satellite observations were validated against 
field measurements of LMA and LMC from the widely referenced TRY 
Plant Trait database35,36. Finally, we assessed the cascading impacts on 
light use efficiency (LUE), defined as the ratio of gross primary produc-
tion (GPP) to absorbed photosynthetically active radiation (APAR) 
using data-driven GPP from Breathing Earth System Simulator (BESS, 
v2.0), PAR from GLASS (04B01.V60) and the fraction of absorbed PAR 
(fAPAR) from GLASS (09B01.V60)37–39.

Results
Negative correlation between ∆LAImax and ∆LOS
We found that DBFs displayed contrasting patterns in ΔLAImax and ΔLOS 
during the period 2002–2021, with a small but significant negative lin-
ear correlation (R = −0.16; P < 0.001) (Fig. 1a–c). Overall, DBFs with LOS 
extensions (ΔLOS >5.0 days) were primarily located in North America 
(32%) and Europe (16%) (Fig. 1b), together accounting for 48% of the 
study areas. By contrast, 39% of the studied DBFs showed an increase 
in LAImax (ΔLAImax >0.1 m2 m−2), mostly clustered in eastern Asia (22.22%) 
and scattered across Europe (3%) (Fig. 1a).

Interestingly, the negative relationship between ΔLAImax and 
ΔLOS was strongly explained by stand age (Aage), with ΔLAImax sharply 
decreasing (slope −1.73 × 10−3 m2 m−2 yr−1) and ΔLOS increasing (slope 
7.85 × 10−2 days yr−1) as Aage increased (Fig. 1d,e). Younger DBFs with a 
lower baseline ΔLAImax maintained a larger Arealeaf/Areasapwood ratio, 
representing the ratio of total leaf area (Arealeaf) to the sapwood 
cross-sectional area (Areasapwood)40,41 (Supplementary Fig. 3b,c). 
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in ΔLMA (ΔLMA = 1.26 ± 0.02 mg cm−2; Rpc = −0.117) and ΔLMC 
(ΔLMC = 7.12 ± 0.10%; Rpc = −0.142) (Fig. 3c). This driving mechanism 
of leaf physical and chemical changes impact on LUE, as illustrated 
by the SEM analyses, remained robust across various Aage bins (Sup-
plementary Fig. 7). Overall, younger forests tended to grow thinner 
leaves with higher photosynthetic efficiency to enhance LUE, while 
older forests tended to develop thicker leaves with a longer lifespan 
but lower photosynthetic efficiency, leading to reduced LUE (Fig. 4).

Potential uncertainties and caveats
A key issue to consider is the validity of a dynamic phenological 
extraction threshold method to extract LOS45. This approach uses a 
dynamic threshold of the 2-band Enhanced Vegetation Index (EVI2) to 
determine the start (SOS) and end (EOS) of the growing season based 
on the seasonal cycle of EVI2 data46. The EVI2 threshold (denoted as 
EVI20 in equation (1)) is defined as a linear function of two extreme 
EVI2 values: EVI2min (the minimum of EVI2) and EVI2max (the maximum 
of EVI2). While EVI2min remains relatively stable, EVI2max varies annu-
ally and can influence the value of EVI20, leading to uncertainties 
in LOS estimation (ΔLOSuncertainty) (refer to ‘Exploring relationships 
between ΔLAImax and ΔLOS’ section in Methods for details). Specifically,  
EVI2max increases in the case of greening and may cause a rise in EVI20, 

leading to an overall shorter LOS (ΔLOSuncertainty <0). This may artifi-
cially introduce a negative correlation between ΔLOS (ΔLOS <0) and 
ΔLAImax (ΔLAImax >0). Therefore, accounting for uncertainties associ-
ated with the dynamic LOS extraction threshold method is crucial 
for confirming the robustness of the satellite-observed contrasting 
changes in LAImax and LOS. To address this, we first applied a dynamic 
phenological threshold to the EVI2 curve to reproduce the MODIS 
phenology product (Supplementary Fig. 8a,b). Second, we quantified 
ΔLOSuncertainty associated with changes in EVI2max (ΔEVI2max) (see ‘Explor-
ing relationships between ΔLAImax and ΔLOS’ section in Methods). As 
expected, the dynamic phenological threshold method could result 
in negative correlations between ΔEVI2max and ΔLOSuncertainty, but such 
impacts are overall minor (Supplementary Fig. 8c,d). By subtracting 
ΔLOSuncertainty from the corresponding ΔLOS for each pixel, results 
still showed a significant (P < 0.001) negative relationship between 
ΔLAImax and ΔLOS (Supplementary Fig. 8f). We further used fixed EVI2 
thresholds (0.2, 0.25 and 0.30) to extract SOS and EOS, which were then 
used to compute LOS. The observed negative relationship between 
ΔLAImax and ΔLOS still held true (Supplementary Fig. 9).

To minimize impacts from interannual data variability, we exam-
ined the negative correlations between ΔLAImax and ΔLOS across dif-
ferent time frames, randomly selected for each pixel. These analyses 
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Fig. 1 | Contrasting changes in maximal leaf area index (∆LAImax) and length 
of growing season (∆LOS) from 2002 to 2021 across DBFs in the middle to 
high latitudes. a, Map of ΔLAImax during the 2002–2021 period. b, Map of 
ΔLOS during the 2002–2021 period. c, Negative correlation between ΔLAImax 
and ΔLOS, with the black line representing the linear regression between 
two variables. The 95% confidence interval (CI) of the Pearson’s correlation 
coefficient (R) in the square brackets was tested by using the Fisher’s z 

transformation. d, Negative correlation between ΔLAImax and stand age (Aage).  
e, Positive correlation between ΔLOS and stand age (Aage). The black lines in  
d and e represent the linear regressions between ΔLAImax and Aage and between 
ΔLOS and Aage, respectively. Aage data were extracted from the widely used  
MPI-BGC global forest dataset74. In c–e, the P values were evaluated using a  
two-sided Student’s t-test.
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further confirmed the robustness of our findings regarding this nega-
tive relationship (Supplementary Fig. 10). In addition, we calculated 
the slope of the linear correlation between the time series of LAImax 
(slopeLAImax), LOS (slopeLOS) and time (also known as a linear trend 
or temporal trend). The results also showed negative correlations 
between slopeLAImax and slopeLOS (Supplementary Fig. 11). These analy-
ses showed that the contrasting changes in LAImax and LOS reflected 
a biological reality rather than an artefact of a specific phenological 
extraction method or random temporal variability.

Uncertainties may also arise from tree cover changes, which can 
influence both the sign and magnitude of ΔLAImax. To address this, we 
classified DBFs into four groups based on their tree cover fraction: 
50–60%, 60–70%, 70–80% and >80%. For each group, we analysed 
the relationship between ΔLAImax and ΔLOS within different tree cover 
change bins (0–1%, 1–2%, 2–3%, 3–4% and 4–5%). Results consistently 
showed negative correlations between ΔLAImax and ΔLOS across all 
tree cover change bins, confirming the robustness of our findings 
(Supplementary Fig. 12). Extreme climate events may also introduce 
uncertainties. For instance, our analysis showed that droughts could 
reduce ΔLAImax, which in turn weakened the negative correlations 
between ΔLAImax and ΔLOS (Supplementary Fig. 13). Under drought 
conditions, the acclimation of leaf chemical and physical properties 
played a less important role in regulating LUE (Supplementary Fig. 14).

Furthermore, correlations between ΔLAImax and ΔLOS may vary 
across tree species. To examine this, we analysed field-observed pheno-
logical data of the USA National Phenology Network47 (Supplementary 

Fig. 15), the Pan European Phenological database48 (Supplementary 
Fig. 16) and the northern Eurasia Phenological database49 (Supplemen-
tary Fig. 17) against the MODIS EVI product at a higher resolution of 
250 m (ref. 50) (see ‘Validations using in situ and high-resolution satel-
lite data’ section in Methods). Results showed that field-observed ΔLOS 
in most species remained positively correlated with Aage. The ΔEVImax 
also exhibited a negative correlation with ΔLOS. However, the relation-
ship between ΔEVImax and Aage may vary considerably across species.

Overall, although the negative ΔLAImax–ΔLOS relationship 
observed in this study is generally robust, uncertainties remain due 
to limitations in field-based LAI and leaf trait data, the coarse resolu-
tion of satellite observations and the complexity of forest communities 
across local to global scales.

Discussion
A key finding of this study is the contrasting changes in leaf area and 
growing season length in DBFs across various stand ages. While climate 
change has driven widespread global greening4, it remains unexplored 
at large scales whether increases in maximal leaf area4,5 and extension 
in growing seasons coordinate or trade off with each other51–54. Here, 
we observed that younger forests with a lower baseline LAI favour the 
growth of additional thinner leaves55–57. By contrast, older forests with a 
higher baseline LAI prioritize extensions of growing season length over 
additional leaf growth58,59. This finding enhances our understanding of 
global vegetation greening and highlights the necessity of consider-
ing different leaf acclimation strategies (that is, growing new leaves 
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Fig. 2 | Temporal changes in leaf mass per area (∆LMA) and leaf moisture 
content (∆LMC) from 2002 to 2016 across DBFs in the middle to high latitudes. 
a, Map of ΔLMA during the 2002–2016 period. b, Positive correlations between 
ΔLMA and stand age (Aage). The black dots indicate the satellite-based ΔLMA data. 
The black line represents the linear regressions between ΔLMA and Aage. The SLA 
is the reciprocal of LMA43. The orange dots indicate the field-observed ΔSLA data. 
The orange line represents the linear regressions between ΔSLA and Aage. c, Map 
of ΔLMC between the same two periods. d, Positive correlations between ΔLMC 
and Aage. The black dots indicate satellite-based ΔLMC data.  

The black line represents the linear regressions between ΔLMC and Aage. The 
LDMC is complementary to LMC44. The blue dots indicate the field-observed 
ΔLDMA data. The blue line represents the linear regressions between ΔLDMC and 
Aage. The field-observed ΔSLA and ΔLDMC were both evaluated within each 2° × 2° 
grid cell (refer to ‘Exploring leaf physical, chemical and functional changes’, 
‘Modelling LMA using the PROSAIL model’ and ‘Validations using in situ SLA 
and LDMC data’ sections in Methods for details). In b and d, the P values were 
calculated using a two-sided Student’s t-test.
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versus extending growing season longevity) when modelling the foliar 
phenological shifts under climate change.

The divergent changes in leaf properties identified in this study 
align with the classic leaf economics spectrum theory, which empha-
sizes such trade-offs20,21. Younger forests located at the ‘fast’ end of 
the economics spectrum tended towards an acquisitive strategy21,24. 
With climate change, these forests produced more thinner leaves 
with a lower percentage water content, constraining the extension of 
growing season and shifting canopy towards higher photosynthetic 
capacity leaves3,60–62. We showed that forests adopting a ‘fast’ econom-
ics strategy were characterized by an increase in LAImax, accounting for 
39% of DBFs in the middle to high latitudes. Conversely, as community 

succession progressed, forest ecosystems tended to contain more 
older trees, which may shift towards a more conservative strategy21,24. 
These forests (48% of DBFs) predominantly followed a ‘slow’ economics 
strategy, mostly extending their LOS by producing thicker leaves with 
a higher percentage water content that could remain on the canopy 
for longer43. Consequently, this acclimation strategy tended to reduce 
ecosystem LUE63–66.

In summary, we found a negative correlation between changes in 
maximal LAI and growing season length. These contrasting changes 
were strongly influenced by stand age, reflecting contrasting leaf 
acclimation between younger and older forests. These strategies led 
to distinct changes in LMA and LMC, with cascading impacts on carbon 
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fluxes. Our findings emphasized the importance of accounting for 
diverse leaf acclimation strategies to fully understand the relationships 
among changes in leaf area, growing seasons, leaf physics and leaf 
chemistry, and their effects on ecosystem functioning under climate 
change.

Methods
Selecting DBFs without disturbances
Our study focused on DBFs in the middle to high latitudes with a defined 
leaf lifespan (<12 months) and moderate LAI (LAI <6.0 m2 m−2), which 
exhibited minimal saturation issues in satellite signals25,26. We selected 
0.05°-resolution grid cells classified as DBFs with tree cover >50% in 
the MODIS MCD12C1 V061 land cover imagery from 2002 to 202167. 
Notably, we excluded DBFs in tropical forests that may have different 
climatic drivers from those in mid-to-high latitudes. To minimize the 
impacts of natural disturbances and land cover changes, we overlaid 
30 m high-resolution global tree cover change maps from Global Forest 
Watch68 onto the 0.05°-resolution MODIS land cover images, exclud-
ing grid cells with tree cover changes greater than 5% over the study 
period69. We retained only DBF grid cells with consistent land cover type 
(within 0 ± 0.05 fraction) from 2002 to 2021. To ensure robustness, we 
controlled tree cover changes within small bins to test our key findings 
of this study (Supplementary Fig. 12). In addition, we excluded pixels 
affected by wildfires by removing 0.05° forest grid cells with burned 
areas during the study period, using the MODIS Fire_cci AVHRR-LTDR 
Burned Area Pixel product (version 1.1)70, which provides a 0.05° spatial 
and monthly temporal resolution.

Moreover, extreme climatic events such as droughts can introduce 
variability in LAI and phenology. To account for this, we classified the 
studied DBFs into several drought groups. Pixels that experienced 
severe drought events were used to assess the impacts of drought 
on these responses (Supplementary Fig. 13). Notably, a month was 
classified as experiencing severe drought if the anomaly of Palmer 
Drought Severity Index71,72 fell more than 1.5 standard deviation below 
the 2002–2021 monthly mean73. A year was considered as a drought year 
for a given pixel if it experienced four consecutive months of drought 
between the start (SOS) and end (EOS) dates of the growing season 
period (see definition in ‘Exploring relationships between ΔLAImax and 
ΔLOS’ section). Notably, for each given pixel, we identified the SOS and 
EOS for each year and used the multiple-year averaged SOS and EOS as 
the time nodes to count the drought events during the study period.

Exploring relationships between ∆LAImax and ∆LOS
We utilized the GLASS LAI (01B01.V60) product (2002–2021)27, with a 
spatial resolution of 0.05° and an 8-day temporal resolution, to calcu-
late ΔLAImax. During this period, the GLASS LAI data were derived from 
MODIS surface reflectance data using the bidirectional LSTM deep 
learning model27. We first downloaded the Maturity_1 and Senescence_1 
layers from the MODIS global vegetation characterization product 
(MCD12Q2, 500 m resolution)28 via Google Earth Engine at a 0.05° 
resolution. These layers represented the dates when EVI2 first (leaf 
maturity) and last (leaf senescence) crossed the 90% of the segment 
amplitude threshold28, corresponding to the leaf maturity and senes-
cence stages, respectively. We then calculated the mean LAI during this 
period as LAImax for each pixel (Supplementary Fig. 2).

We used the MCD12Q2 phenology products to calculate ΔLOS. The 
MCD12Q2 phenology products used a dynamic phenological extraction 
threshold (EVI20) based on a simple linear function (equation (1)) of the 
minimal (EVI2min) and maximal (EVI2max) values of EVI2 to determine the 
start (SOS) and end (EOS) dates of the growing season28:

EVI20 = EVI2min + 15% × (EVI2max − EVI2min) , (1)

where EVI20 represents the dynamic threshold of EVI2 used to identify 
SOS and EOS.

SOS is defined as the day when the EVI2 seasonal curve crosses 
EVI20 within the green-up segment, while EOS is defined as the day 
when the EVI2 curve crosses EVI20 within the green-down segment.

The layers of Greenup_1 and Dormancy_1 in the MCD12Q2 product 
(version 6.1) were produced on the basis of equation (1) to represent 
SOS and EOS, respectively. Here, we computed the length of the grow-
ing season (LOS) using equation (2).

LOS = EOS − SOS. (2)

Notably, the MCD12Q2 time series after 2012 were corrected using 
a different method than those used for the time series before 201246, 
leading to potential discontinuity for LOS time series. Thus, in this 
study, temporal changes in LOS, denoted as ΔLOS, were calculated as 
the mean of ΔLOS between the periods 2002–2004 and 2010–2012 and 
ΔLOS between the periods 2013–2015 and 2019–2021 (Fig. 1b). The same 
was done for calculating corresponding ΔLAImax (Fig. 1a).

To assess uncertainties caused by interannual data variability, 
we randomly selected different time frames to calculate ΔLAImax and 
ΔLOS. Specifically, for each pixel, we used the MATLAB’s random 
number generators to randomly generate pairs of years that were 
at least 5 years apart from each other within the study period. Then, 
we calculated the ΔLAImax and ΔLOS between each randomly selected 
pair of years. This random sampling approach was applied to all pixels 
independently to ensure that the time frame for each pixel was set ran-
domly. Similarly, to mitigate potential impacts from this discontinuity 
before and after 2012, the random time frame testing was performed 
for the periods 2002–2012 and 2013–2021, respectively (Supplemen-
tary Fig. 10). In addition, we tested the contrasting change in LAImax 
and LOS with time using temporal trends for the periods 2002–2012 
and 2013–2021, respectively (Supplementary Fig. 11). The trends of 
temporal changes in LAImax and LOS were defined as the slopes of 
the linear correlation between time-series of LAImax (slopeLAImax), LOS 
(slopeLOS) and time.

To examine the relationship between ΔLAImax and ΔLOS in DBFs 
with varying stand age (Aage), we used the widely adopted Max Planck 
Institute for Biogeochemistry (MPI-BGC) stand age (Aage) dataset at 1 km 
spatial resolution74. The gridded Aage data were derived from a machine 
learning model trained on over 40,000 forest plots, integrating for-
est inventory data, biomass and climate variables74. This dataset also 
accounts for variations in tree cover thresholds through aboveground 
biomass maps74. We then analysed the changes in Arealeaf/Areasapwood, 
LAImax, LOS, leaf properties (LMA and LMC) and LUE with rising Aage. The 
sapwood area (Areasapwood) data were obtained from Liu et al.40 and He 
et al.41, while datasets for other leaf traits, such as LMA, LMC and LUE, 
are introduced in the following sections.

Notably, EVI20 in equation (1) depends on EVI2min and EVI2max. 
While EVI2min remained relatively stable, EVI2max varied annually, largely 
influencing the value of EVI20 and in turn introducing uncertainties in 
calculating ΔLOS (refer to the first paragraph in ‘Potential uncertainties 
and caveats’ section in the Results). In other words, ΔLOS computed 
using this method may be inherently related to ΔLAImax (ref. 42). To 
account for this dependency, we replaced the EVI2max of the starting 
year with that of the final year within the selected time frame to obtain 
new LOS data for each pixel. The differences between this new and the 
original LOS data were quantified as LOS uncertainties (ΔLOSuncertainty) 
caused by the dynamic phenological extraction threshold method (that 
is, changes in EVI2max) (Supplementary Fig. 8). Furthermore, we also 
used three fixed EVI2 thresholds (0.2, 0.25 and 0.30) to extract SOS and 
EOS, and then LOS to test the robustness of the negatively relationship 
between ΔLAImax and ΔLOS (Supplementary Fig. 9).

Validations using in situ and high-resolution satellite data
We further validated the robustness of the negative correlations 
between ΔLAImax and ΔLOS using higher-resolution satellite-based 
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MOD13Q1 v061 EVI 50 (https://lpdaac.usgs.gov/products/
mod13q1v061/) and field-observed LOS data from global phenology 
networks47–49 (http://www.pep725.eu/; https://doi.org/10.1038/s41597-
020-0376-z and https://www.usanpn.org/results/data). The MOD13Q1 
EVI dataset (2002–2021) was derived from Terra sensors with a spatial 
resolution of 250 m and a temporal resolution of 16 days50.

Field-based LOS data were calculated using the EOS and SOS infor-
mation provided by the Pan European Phenology Network (PEP725)48, 
the Russian ‘Chronicles of Nature’ Network49 and the USA National 
Phenology Network47. PEP725 offers over 13 million records for 201 
species from 26,000 sites in Europe, with data dating back to 186848. 
The Russian ‘Chronicles of Nature’ Network provides data from 471 
sites across Russia, Ukraine, Uzbekistan, Belarus and Kyrgyzstan49, 
while the USA National Phenology Network includes 3,000 records 
across the USA47. For the European and Russian observation sites, the 
SOS was defined using records coded as ‘BBCH11’, while the EOS was 
defined using codes of ‘BBCH94’. At the USA sites, SOS and EOS were 
defined on the basis of records of ‘Breaking leaf buds’ and ‘≥50% of 
leaves coloyred (deciduous)’, respectively. The LOS was calculated 
using equation (2).

Notably, we focused exclusively on DBF observation sites. To 
ensure the robustness of long-term phenological records, we included 
sites with more than 5 years of observations for the random time frame 
analysis in European and Russian observation sites. By contrast, for 
the USA, where SOS and EOS are generally shorter, we included sites 
with at least 2 years of observations. We calculated ΔLOS based on 
phenological time series records for each genus or species at each 
observation site. Specifically, ΔLOS was derived by subtracting the LOS 
in the initial year from that in the final year for each species at each site. 
For each site, we calculated ΔEVImax using data corresponding to the 
years and time frames used to determine LOS. The results are shown 
in Supplementary Figs. 15–17.

Exploring leaf physical, chemical and functional changes
We used satellite-based LMC29 products and model-derived LMA31,32 to 
examine the temporal changes in leaf physical and chemical properties. 
The daily LMC product (2002–2016) has a spatial resolution of 0.25° 
and provides global estimates of LMC with median, maximum and mini-
mum values to capture uncertainty. This study used the median LMC 
values for analysis. LMA data were derived from canopy-level reflec-
tance measurements from the MODIS MCD43A4 V6.1 (2002–2016) 
using the PROSPECT-5 and 4SAIL models31,32,75 (refer to the following 
section for the methods used in PROSPECT modelling of LMA based on 
satellite-derived canopy-level reflectance). We calculated interannual 
variability in growing-season (from the Greenup_1 to Dormancy_1 day)  
LMA (ΔLMA) and LMC (ΔLMC) between the periods 2002–2004 and 
2014–2016 to investigate changes in leaf physical and chemical prop-
erties over time.

We calculated temporal changes in growing-season LUE, denoted 
as ΔLUE (the 2014–2016 period minus the 2002–2004 period), to assess 
their influences on ecosystem functioning. LUE was calculated by divid-
ing GPP37 by the product of photosynthetically active radiation (PAR)38 
and the fraction of absorbed PAR (fAPAR)39. GPP data were derived 
from the BESS v2.0 model, a satellite-based coupled-process model for 
estimating global land–atmosphere fluxes37. This GPP dataset, with a 
spatial resolution of 0.05°, spans from 1982 to 2019 and provides daily 
cumulative data validated against FLUXNET observations, demonstrat-
ing reliable performance across different spatial and temporal scales. 
The daily PAR and fAPAR data were sourced from the GLASS04B01.V60 
and GLASS09B01.V60 products, respectively, both at a 0.05° spatial 
resolution. All the analysis data were resampled to a 0.05° resolution 
using bilinear interpolation.

LUE = GPP
fAPAR × PAR

. (3)

Modelling LMA using the PROSAIL model
The PROSPECT-5 model simulates leaf optical properties, specifically 
reflectance and transmittance across the 400–2,500 nm range75, which 
includes visible, near-infrared and shortwave infrared wavelengths 
that are critical for studying plant physiological properties, based 
on parameters such as leaf structure (N, dimensionless), chlorophyll 
content (Cab), equivalent water thickness (Cw) and LMA33. The 4SAIL 
model, meanwhile, simulates canopy reflectance, incorporating fac-
tors such as LAI, leaf angle distribution and soil background76,77. The 
combined PROSAIL model, integrating both PROSPECT-5 and 4SAIL, 
enables detailed spectral simulations from leaf to canopy levels based 
on these leaf traits, making it a widely used tool for studying tempo-
ral changes in leaf traits and relative reflectance75,78. In this study, we 
applied the PROSAIL model to derive LMA across DBFs in the middle 
to high latitudes during the 2002–2016 period79.

First, we input the leaf trait parameters (Supplementary Table 2) 
into the PROSAIL model to simulate leaf-level reflectance across DBFs 
in the middle to high latitudes from 2002 to 2016. The maximum and 
minimum values for parameters such as N, LAI, Cab, LMA and Cw were 
primarily derived from remote sensing data and prior knowledge from 
the literature77,80–83. Fixed values were assigned to parameters such as 
leaf brown pigment and the hot spot size parameter84,85. For each set of 
input parameter values, the PROSAIL model simulated leaf reflectance 
across the 400–2,500 nm spectrum. Reflectance was then extracted 
for seven specific spectral bands (visible: 459–479 nm, 545–565 nm 
and 620–670 nm; near-infrared: 841–876 nm; shortwave infrared: 
1,230–1,250 nm, 1,628–1,652 nm and 2,105–2,155 nm), matching the 
MODIS MCD43A4 reflectance imagery bands. These data were used 
to establish a look-up table, linking simulated leaf reflectance of the 
seven spectral bands to corresponding leaf traits such as LAI, Cab, 
LMA and Cw. Ultimately, 26,124,444 sets of reflectance and leaf traits 
were generated.

Next, we extracted satellite-observed reflectance for 
above-mentioned seven spectral bands from the MODIS Nadir 
BRDF-Adjusted Reflectance product (MCD43A4 V6.1) for each DBF 
grid cell during the 2002–2016 period. The MCD43A4 V6.1 product pro-
vides daily MODIS band 1–7 surface reflectance at 500 m resolution30. 
To ensure data quality, we applied the quality assurance flag to exclude 
cloud-affected pixels. The optimal reflectance was determined when 
the mean squared error between the simulated and observed spectra 
was minimized, calculated using equation (4)82. The LMA correspond-
ing to the optimal reflectance was determined as the model-simulated 
LMA for each DBF grid cell.

MSE =
∑n

λ=1(Rmeasured,i − RLUT,i)
2

n
(4)

where MSE is the mean squared error, Rmeasured,i is a measured reflec-
tance at wavelength i, RLUT,i is a modelled reflectance at wavelength i, 
and n is the number of wavelengths.

Validations using in situ SLA and LDMC data
We further validated the temporal changes in model-simulated LMA 
and satellite-inferred LMC using field-observed SLA (7,855 records) and 
LDMC (4,363 records) data from the TRY database (https://www.try-db.
org/) (Supplementary Fig. 6). SLA is the reciprocal of LMA, and LDMC 
is complementary to LMC43,44. The TRY database is a global repository 
containing over 2.88 million entries across approximately 69,000 
plant species35,36. Due to the lack of long-term time series records for 
SLA and LDMC at individual sites, we averaged the site-level SLA and 
LDMC within each 2° × 2° spatial grid cell, and then calculated ΔSLA 
and ΔLDMC by subtracting the SLA and LDMC values of earlier years 
from those of later years. Results based on field observations showed 
contrasting patterns of SLA and LDMC against Aage, consistent with 
those of model-simulated LMA and satellite-inferred LMC (Fig. 2b,d, 
black dots and line).
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Exploring impacts of ΔLMA and ΔLMC on ΔLUE
This study used SEM to investigate the paths through which ΔLMA 
and ΔLMC, along with climatic variability, influenced ΔLUE. The SEMs 
were constructed using the lavaan package in R (ref. 86). Path coeffi-
cients (Rpc) between variables were used to evaluate model fit. Notably, 
spatial climate variability may also bring uncertain impacts on the 
ΔLMA–ΔLUE and ΔLMC–ΔLUE relationships in the SEM model. Thus, 
to eliminate the impacts from spatial climate variability, we applied 
the SEM modelling analysis within each 2° × 2° moving window. The 
path coefficients in the SEM models in Fig. 3 and Supplementary Figs. 7 
and 14 are the average values of corresponding path coefficients in the 
SEM model applied in each 2° × 2° moving window across the selected 
DBFs. In addition, drought years were excluded from the SEM analysis 
in Fig. 3c, while analysis including the impacts of droughts are shown 
in Supplementary Fig. 14 for comparison.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All the relevant data come from publicly available sources. The GLASS 
LAI (01B01.V60) product is available at http://www.glass.umd.edu/LAI/
MODIS/0.05D/; the satellite leaf unfolding and dormancy dates prod-
uct is available at https://lpdaac.usgs.gov/products/mcd12q2v061/; 
the MPI-BGC stand age data are available at https://doi.org/10.17871/
ForestAgeBGI.2021; the MODIS Nadir BRDF-Adjusted Reflectance 
(NBAR) products (MCD43A4) are available via Google Earth Engine 
at https://developers.google.com/earth-engine/datasets/catalog/
MODIS_061_MCD43A4; the LMC data are available via Zenodo at 
https://doi.org/10.5281/zenodo.6545571; the BESS v2.0 GPP data are 
available at https://www.environment.snu.ac.kr/bessv2; the GLASS 
PAR (04B01.V60) product is available at http://www.glass.umd.edu/
PAR/; the GLASS fAPAR (09B01.V60) product is available at http://
www.glass.umd.edu/FAPAR/MODIS/0.05D/; the Global Land cover 
data are available at https://lpdaac.usgs.gov/products/mcd12c1v061/; 
the MOD13Q1 V061 EVI data are available at https://lpdaac.usgs.gov/
products/mod13q1v061/; the in situ leaf unfolding date products of 
Europe, Russia and the USA, respectively, are available at http://www.
pep725.eu, https://doi.org/10.1038/s41597-020-0376-z and https://
www.usanpn.org/data/observational; the TRY database is available 
at https://www.try-db.org/; the MODIS FireCCILT11 (version 1.1) data 
are available at https://catalogue.ceda.ac.uk/uuid/b1bd715112ca43ab-
948226d11d72b85e/; the GFW Global Forest Change v1.9 data are avail-
able at https://glad.earthengine.app/view/global-forest-change; the 
Palmer Drought Severity Index data are available at https://climate.
northwestknowledge.net/TERRACLIMATE.

Code availability
The code used for this study is available via Zenodo at https://doi.
org/10.5281/zenodo.15765680 (ref. 87).
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