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ABSTRACT

This study simulates the impacts of real-world wind farms on land surface temperature (LST) using the

Weather Research and Forecasting (WRF) Model driven by realistic initial and boundary conditions. The

simulated wind farm impacts are compared with the observations from the Moderate Resolution Imaging

Spectroradiometer (MODIS) and the first Wind Forecast Improvement Project (WFIP) field campaign.

Simulations are performed over west-central Texas for the month of July throughout 7 years (2003–04 and

2010–14). Two groups of experiments are conducted: 1) direct validations of the simulated LST changes

between the preturbine period (2003–04) and postturbine period (2010–14) validated against the MODIS

observations; and 2) a model sensitivity test of LST to the wind turbine parameterization by examining LST

differences with and without the wind turbines for the postturbine period. Overall, the WRF Model is

moderately successful at reproducing the observed spatiotemporal variations of the background LST but has

difficulties in reproducing such variations for the turbine-induced LST change signals at pixel levels.However,

themodel is still able to reproduce coherent and consistent responses of the observed LST changes at regional

scales. The simulated wind farm–induced LST warming signals agree well with the satellite observations in

terms of their spatial coupling with the wind farm layout. Moreover, the simulated areal mean warming signal

(0.208–0.268C) is about a tenth of a degree smaller than that from MODIS (0.338C). However, these results

suggest that the current wind turbine parameterization tends to induce a cooling effect behind the wind farm

region at nighttime, which has not been confirmed by previous field campaigns and satellite observations.

1. Introduction

Widely acknowledged as a key resource to reduce the

world’s dependence on fossil fuels and decrease carbon

emissions, wind energy has experienced a remarkable

growth in recent years [(American Wind Energy Asso-

ciation) AWEA 2015] and the number of wind turbines

is expected to increase nearly fivefold by 2030 (U.S.

DOE 2015). The richest resources of onshore wind

power in the United States are over the Great Plains,

home tomost of the nation’s wheat and corn production.

While the collocation of wind farms with intensively

managed agricultural production is possible, it brings up

the concern of whether the widespread deployment of

wind farms may affect agricultural activity through their

interactions with the planetary boundary layer (PBL)

(Rajewski et al. 2013, 2014; Armstrong et al. 2014; Tang

et al. 2017; Xia and Zhou 2017). Hence, understanding

wind farms and PBL–microclimate interactions will be

critical for the sustainable growth of wind energy in the

United States.

Using in situ observations, Baidya Roy and Traiteur

(2010) first found that large wind farms tend to induce

surface warming when the boundary layer is stably strat-

ified at nighttime, but cause surface cooling at daytime.

Similar nighttime impacts were also confirmed by Smith

Supplemental information related to this paper is available at

the Journals Online website: https://doi.org/10.1175/MWR-D-16-

0401.s1.

Corresponding author: Geng Xia, gxia@albany.edu

DECEMBER 2017 X IA ET AL . 4813

DOI: 10.1175/MWR-D-16-0401.1

� 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

https://doi.org/10.1175/MWR-D-16-0401.s1
https://doi.org/10.1175/MWR-D-16-0401.s1
mailto:gxia@albany.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


et al. (2013) and Rajewski et al. (2013, 2014, 2016) from

their field campaigns but no obvious daytime impacts

were found. Zhou et al. (2012, 2013a,b), using Moderate

Resolution Imaging Spectroradiometer (MODIS) data

(Wan 2008), observed an area mean land surface tem-

perature (LST) warming signal up to 0.78C that is spatially

well coupled with several wind farms in west-central

Texas during summer (June–August) nighttime, but

found no significant impacts at daytime. Following the

approaches in Zhou et al. (2012), Harris et al. (2014) and

Slawsky et al. (2015) identified similar LST changes over

wind farms in Iowa and Illinois; Chang et al. (2016) found

similar nighttime LST impacts from a large-scale wind

farms in Guazhou, China. Using sonic detection and

ranging (sodar) observations from the first Wind Forecast

Improvement Project (WFIP; Wilczak et al. 2015) and

MODIS data, Xia et al. (2016) showed that variations in

the ratio of turbulence kinetic energy (TKE) induced by

wind turbines relative to the background TKE help to

explain not only the day–night contrast of the wind farm

impact on LST, but also most of the seasonal variability in

the turbine-induced nighttime LST changes.

Because of the limited availability of field data, nu-

merical modeling continues to be a primary tool to study

the effects of wind farms onmeteorology at a wide range

of spatial and temporal scales. Wind turbine parame-

terization has been employed in three distinct modeling

contexts: 1) large-eddy simulation (LES) models (Cal

et al. 2010; Calaf et al. 2010, 2011; Lu and Porté-Agel

2011; Porté-Agel et al. 2011; Wu and Porté-Agel 2011,

2013; Churchfield et al. 2012;Mirocha et al. 2014; Creech

et al. 2015), 2) mesoscale models (Baidya Roy et al.

2004; Baidya Roy 2011; Fitch et al. 2012, 2013a;

Cervarich et al. 2013), and 3) global climate models

(Keith et al. 2004; Kirk-Davidoff and Keith 2008; Barrie

and Kirk-Davidoff 2010; Wang and Prinn 2010, 2011).

High-resolution LES is computationally too expensive

to simulate large operational wind farms (more than

1000 wind turbines), while coarse-resolution climate

models may fail to accurately recreate turbulence in

turbine wakes (Fitch et al. 2013b; Fitch 2015). Hence,

mesoscale models provide an optimal way of in-

vestigating wind farm impacts at regional scales.

Baidya Roy et al. [2004; see also Baidya Roy (2011)]

first used a mesoscale approach to simulate hypothetical

wind farms in Oklahoma and developed a parameteri-

zation scheme that approximated the effect of a wind

turbine as a sink of momentum or mean state kinetic

energy and source of TKE. Using a similar approach,

Fitch et al. (2012) developed a more sophisticated wind

turbine parameterization for the Weather Research

and Forecasting (WRF) Model (Skamarock and Klemp

2008) and produced results comparable with those

simulated with LES and observed in wind tunnels. Fitch

et al. (2013a) examined the influences of wind farms

throughout a diurnal cycle in an idealized simulation

and found a near-surface warming of 0.5K and cooling

up to 20.3K downwind (10–20 km) of the wind farms.

Typically, the warming occurred during the night and

early mornings when the environment was stably strat-

ified whereas the small cooling signal was seen during

the morning transition.

Although previous modeling results have shown some

skill in reproducing potential local and regional effects

of wind farms on weather and climate, direct and com-

prehensive validation of model output against observa-

tions is still very limited. This is because most of the

studies have used hypothetical wind farms often with

idealized initial and boundary conditions. Cervarich

et al. (2013) first tried to evaluate the ability of meso-

scale models in simulating seasonal-scale changes in

LST over real-world wind farms in west-central Texas

for the summer of 2010 under realistic boundary con-

ditions. They confirmed the major observational find-

ings of Zhou et al. (2012), but their simulated LST

impacts were too weak and did not show strong spatial

correspondence to the layout of wind turbines shown in

MODIS observations. In addition, there were only 4

levels in the lowest 300m in their simulations, which is

probably not adequate to resolve vertical turbulent

transport within the wind farms [the typical turbine ro-

tor plane for 1.5MWwind turbine spans 40–120m above

ground level (AGL)]. Furthermore, their monthlong

simulation was initialized only once and thus surface

conditions may have drifted from the forcing reanalysis

during the course of long integration (Lo et al. 2008).

At the same time, running a long-term mesoscale sim-

ulation in sequence of short runs with multiple re-

initialization has been increasingly used (Pan et al. 1999;

Qian et al. 2003; Lo et al. 2008; Conil and Hall 2006;

Jiménez et al. 2010, 2015) and was recently adopted in

wind farm modeling. For instance, Jiménez et al. (2015)
compared the WRF-simulated power deficits associated

with wind turbine wakes with observations created

from a supervisory and data acquisition system. They

prescribed a total of 36 vertical levels, 5 of which were

within the lowest 200m of the atmosphere, and con-

ducted simulations with a 2-day reinitialization for a 3-yr

period. Their results indicated that the WRFModel can

qualitatively reproduce the turbine–flow interactions

under different atmospheric conditions but the model

tended to underestimate the power deficit. This re-

initialization method has the advantage of frequently

updating realistic surface conditions. However, it is still

unclear which initialization method (continuous vs re-

initialized) is more suitable for wind farm modeling as
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both have limitations. For the continuous simulation,

the surface condition was initialized only once in the

beginning of the simulation and thus may have drifted

from the forcing reanalysis if the simulation period is too

long. However, the continuous simulation can allow for

persistent and physically consistent wind farm effects,

since soil properties are not constantly reinitialized. The

reinitialized simulation has the advantage of frequent

updated surface conditions but the uncertainties caused

by abrupt surface changes (e.g., soil moisture) between

short runs may produce large uncertainties because of a

lack of adequate spinup (Pan et al. 1999; Qian et al.

2003). Such uncertainties will be smaller because of

consistent surface conditions in the continuous runs.

Here we assess the WRF Model’s ability in simulating

real-world wind farm effects on LST to address one im-

portant question: How accurate is the WRF’s wind tur-

bine parameterization in reproducing the LST changes

observed by MODIS? Both the continuous and 3-day

reinitialized simulations are performed. The simulated

LST responses to operational wind farms are validated

against the MODIS observations and the simulated wind

conditions are validated against the WFIP measure-

ments. The region of interest is a collocation of several

large wind farms located in west-central Texas. This area

is particularly rich in wind resources and has been ex-

plored in previous studies (Zhou et al. 2012, 2013a,b; Xia

et al. 2016). The remainder of the paper is divided into

four sections. The data and methods employed are de-

scribed in section 2. The model’s ability to reproduce the

observed LST signal is analyzed in detail in section 3.

Uncertainties associated with the model simulation, data,

and methodology are discussed in section 4, followed by

the conclusions in section 5.

2. Observations, experiment design, and
methodology

a. Study region and period

Our study region (Fig. 1) is in west-central Texas

covering a group of large wind farms consisting of 2358

wind turbines. This region has previously been exam-

ined using the observational data from MODIS (Zhou

et al. 2012, 2013a,b) and the first WFIP field campaign

(Xia et al. 2016). These studies show that the strongest

wind farm impact signal on LST and its best spatial

coupling with the wind turbines occur during the sum-

mer months. The geographic location and operational

date for each turbine are obtained from the Federal

Aviation Administration Obstruction Evaluation/Air-

port Airspace Analysis dataset (https://www.fws.gov/

southwest/es/Energy_Wind_FAA.html). Among the

2358 wind turbines, 2122 (;90%) were built during the

period 2005–09. Following Xia et al. (2016), our study

covers the period 2003–14 and we choose the preturbine

period from 2003 to 2004 and the postturbine period

from 2010 to 2014 for the comparative analyses. Because

of the limitation of computational resources for high-

resolution WRF simulations, we focus only on the

month of July for both periods.

b. Data and experiment design

1) MODIS LST DATA

Version 6 MODIS 8-day average 1-km LST products

(Wan 2008) are used in this study. MODIS is a key sci-

entific satellite instrument launched by NASA on board

the Terra andAqua platforms. TheMODIS LST images

consist of four acquisition times:;1030 and;1330 local

solar time (LT) during the day and;2230 and;0130 LT

at night. The retrieved MODIS LST data are known to

be most accurate during cloud-free conditions (Wan

2002, 2008). For every MODIS 8-day average image,

only the best quality clear-sky pixels are chosen to rep-

resent LST measurements within each 8-day period

based on MODIS quality assurance information fol-

lowing the methodology of Zhou et al. (2013a). The

MODIS data for the period 2003–14 are processed using

the methodology of Xia et al. (2016) to produce the

monthly mean LST and LST anomalies. Readers are

encouraged to refer to this paper for full details.

2) SODAR DATA

Sodar data from the first WFIP field campaign

(Wilczak et al. 2015; Freedman et al. 2014) are used to

validate the simulated wind conditions. The first WFIP

field campaign includes sodar observations from mid-

July 2011 to September 2012 and so validation efforts

focus on the simulated wind climate in July 2012. We

computed the hourly wind speed and wind direction

from the postprocessed sodar data from one WFIP

station, Colorado City, Texas (the green dot in

Fig. 1b), which is located 11 km away from the targeted

wind farms. However, there are only 11 days of ob-

servations available in July 2012 because of a lightning

strike that destroyed the site. Please refer to Xia et al.

(2016) for more details about the first WFIP and the

sodar data.

3) WRF MODEL AND EXPERIMENT DESIGN

The numerical model chosen for our simulations is the

Advanced Research WRF (WRF-ARW, v3.6.1), which

is a fully compressible and nonhydrostatic model. Its
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vertical coordinate is a terrain-following hydrostatic

pressure coordinate. The grid staggering is the Arakawa

C grid. Themodel uses theRunge–Kutta third-order time

integration schemes, and fifth- and third-order advection

schemes in the horizontal and vertical, respectively.

It uses a time-split small step for the acoustic and gravity

wave modes. The model configuration (physics param-

eterization) is summarized in Table 1. Both the bound-

ary and initial conditions are from the North American

Regional Reanalysis (NARR; 32-km resolution). Note

that soil moisture as well as soil temperature profiles

(four layers) are also obtained from NARR. The topog-

raphy, soil characteristics, and USGS-based land cover

data are obtained from the WRF standard datasets. In

addition, horizontal advection of TKE by the model dy-

namics is employed. At higher resolution (,1km), it

becomes essential to advect TKE downstream before

being dissipated (Fitch et al. 2012).

FIG. 1. The three simulation domains and elevationmap (m): (a) the simulation region along

with the three nested domains and (b) the elevation map of Domain 3. The blue asterisks in

(a) and the red crosses in (b) mark the locations of individual wind turbines. The green dot in

(b) indicates the location of the WFIP station, Colorado City, TX, where the sodar measure-

ments were taken.
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The simulations are performed with three nested do-

mains centered at 32.508N latitude, 100.3758W longitude

(Fig. 1a) in the study region. Domain 1, the coarsest

domain, consists of 55 3 46 grid points with horizontal

grid spacing of 25 km. The two nested domains, domain

2 and domain 3, have horizontal grid spacing of 5 km

(91 3 76) and 1km (151 3 126), respectively. Corre-

sponding geographic and topographic datasets from the

U.S. Geological Survey with similar resolution (20 km,

4m, and 1km) are chosen to match each grid spacing.

The boundary of the innermost domain is determined so

that the turbines are located at least 25 km from the

domain edge to ensure that numerical boundary feed-

back issues do not create artificial signals. The three

domains communicate via an interactive two-way nest-

ing scheme. Note that cumulus convection is treated

explicitly in domain 3 but is parameterized in the other

two domains. The Mellor–Yamada–Nakanishi–Niino

PBL scheme (MYNN; Nakanishi and Niino 2009) is

used because it is the only PBL scheme that is compat-

ible with the current wind turbine parameterization. A

stretched vertical grid consisting of 39 levels is employed

with finer resolution at lower levels and coarser resolu-

tion at higher levels. The grid contains 10 levels within

the lowest 200m to represent vertical transport in the

wind turbine layer. The soil model is 2m deep with 4

levels stretched in the vertical with higher resolution

near the surface and lower resolution at deeper levels.

The WRF wind turbine parameterization was de-

veloped by Fitch et al. (2012). The parameterization

represents the effect of a wind turbine by imposing a

momentum sink term and a TKE source term onto the

model layer containing the wind turbine. In this study, we

use the 1.5-MW Pennsylvania State University Generic

turbine coefficients (Schmitz 2012). For uniformity, all

wind turbines are assumed to have 80-m hub height, 80-m

rotor diameter, 3ms21 cut-in speed, and 25ms21 cut-out

speed. The cut-in and cut-out speeds represent the range

at which the wind turbine operates. If multiple turbines

are located within a single grid cell, changes in kinetic

energy andTKEaremultiplied by the number of turbines

within the cell and integrated over the cell. The turbine

blades are assumed to be oriented perpendicular to the

wind as this is how turbines operate.

Two groups of experiments are conducted for the

month of July during the pre- and postturbine periods.

The first group of experiments (EXP1) aims to directly

compare the simulated LST changes with MODIS ob-

servations to assess the model’s ability to simulate the

real-world wind farm impacts on LST. In EXP1, the

actual number of wind turbines is included in the simu-

lations. Figure 2a shows the geographical location of wind

turbines for the preturbine (204 turbines, red crosses) and

postturbine (2358 turbines, black crosses) periods, re-

spectively. Essentially, EXP1 is a test of model skills but

has the disadvantage by introducing additional LST un-

certainties because of themodel’s difficulty in reproducing

the observed natural year-to-year variability. The second

group of experiments (EXP2) aims to assess the sensitivity

of LST to thewind turbine parameterization by examining

theLSTdifferenceswith andwithout the presence of wind

turbines for the postturbine period. It is a controlled ex-

periment where only the presence of wind turbines is al-

tered. Thus, the results are easier to interpret physically.

The trade-off is that there is no equivalent experiment in

the observations to validate such results.

For each experiment, we use two types of initializa-

tions: 1) a 3-day reinitialization (referred to as 3Day),

and 2) a continuous run (referred to as CON). Each

3Day simulation is initialized at 0000 UTC and run for

72 h, providing 15 short segments of 3Day runs, each

with one day overlap, for 30 days of July. The first day of

each 3Day run is discarded as spinup and the next two

days are retained for further analysis. In each CON run,

the simulation is initialized at 0000 UTC 1 July and run

for 30 days until 0000 UTC 31 July.

Table 2 shows a summary of the experiments performed

for this study. We ran the WRF Model for both the pre-

and postturbine periods. For each period, we conduct

monthly simulations with two different initialization

methods and with or without the wind turbine parame-

terization. In total, there are 14 sets of monthly experi-

ments (7 with the wind turbine parameterization and

7 without) conducted for both the 3Day and CON

simulations.

c. Methodology

1) SEPARATING SIMULATION DAYS INTO CLOUDY

AND CLOUD-FREE DAYS

Separating cloudy days and cloud-free days in our

simulations is essential as the MODIS data provide the

TABLE 1. Summary of WRF Model configuration.

Shortwave Dudhia scheme (Dudhia 1989)

Longwave Rapid Radiative Transfer Model

(Mlawer et al. 1997)

Microphysics WRF single-moment

3-class (Hong et al 2004)

Cumulus Kain–Fritsch scheme

(Kain 2004)

Boundary layer MYNN 1.5-order scheme

(Mellor and Yamada 1982;

Nakanishi and Niino 2009)

Land surface Noah-MP (Yang et al. 2011;

Niu et al. 2011)
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best retrievals under cloud-free conditions.We calculate

the cloud liquid water path (CLWP; kgm22) from the

WRF default output and use it as an indicator to quan-

tify the cloud cover (CC) in the domain. The equation is

given below:

CLWP 5

ðztop
zbot

r
z
q
c
dz , (1)

where ztop and zbot are the vertical height at the bottom

and top of the model domain, respectively; rz is the air

density (kgm23); qc is the cloud water mixing ratio

(kg kg21); and dz is the height between two neighboring

vertical levels (m).

Since MODIS measurements are instantaneous

values at ;2230 and ;0130 LT, we calculate CLWP at

pixel level for every hour but only average those be-

tween 2200 and 0200 LT to create the CC map for each

day. If a day has CC exceeding a threshold value of

0.02 kgm22 for more than 15% of the entire wind farm

region and its immediate vicinity (;5 km around the

wind farm region), we consider that day as a cloudy day.

The numbers of cloudy, cloud-free, and the total simu-

lated days are listed in Table 3. There are considerably

more cloud-free days than cloudy days, consistent with

the study region’s semiarid climate. Overall, 15% of all

the simulated days (30 days) are considered as cloudy. In

addition, there are no differences in the numbers of

cloudy and clear-sky days selected for both the 3Day

and CON runs, with 95% of the selected days being the

same for both runs. To validate our simulations against

the MODIS observations, only the model results from

cloud-free days are used.

2) VALIDATING SIMULATED WIND CONDITIONS

WITH SODAR OBSERVATIONS

Validating simulated wind conditions with sodar ob-

servations is essential as it enables us to properly

characterize the resulting simulated wind farm impact

on LST. The simulated wind over the grid cell closest

to a WFIP field campaign site is used to compare with

sodar observations. The elevation of the campaign site

is 673m whereas it is 675m in the WRF Model. Since

the turbine hub height and the turbine diameter are

80m, we consider vertical ranges from 40 to 120m

AGL, corresponding to elevations between 710 and

790m, to compute wind speed and wind direction sta-

tistics from both the WRF simulations and sodar. Note

that the vertical resolution of sodar profiles is 10m

whereas it is 20m for the lowest 200m AGL in the

WRF. In addition, only the results from the targeted

nighttime hours (2200–0200 LT) for the 11 days are

compared. Overall, 495 measurements from sodar are

validated against 275 data points from the 3Day (or

CON) simulations.

TABLE 2. Summary of WRF experiments performed in this study.

Simulation period Wind turbine parameterization

3-day reinitialization (3Day)

Jul 2003–04 On

Jul 2003–04 Off

Jul 2010–14 On

Jul 2010–14 Off

Continuous simulation (CON)

Jul 2003–04 On

Jul 2003–04 Off

Jul 2010–14 On

Jul 2010–14 Off

FIG. 2. The geographical location of actual wind turbines, WFPs,

DNWFPs, and UNWFPs: (a) wind turbines in black used for the

simulations conducted for the postturbine period whereas wind tur-

bines in red for the preturbine period, (b) wind farm pixels (WFPs; 917

pixels in red), downwind nonwind farm pixels (DNWFPs; 940 pixels in

blue), and upwind nonwind farm pixels (UNWFPs; 940 pixels in

green). WFPs contain all 1-km grids with one or more wind turbines

while DNWPFs (UNWFPs) represent pixels that are within 11–20 km

(1–10 km) north (south) from WFPs.
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3) VALIDATING SIMULATED BACKGROUND LST
WITH MODIS OBSERVATIONS

Validating simulated background LST with MODIS

observations can assess whether the model can re-

alistically simulate the spatiotemporal variability of LST

over the study region. We compare the simulated spatial

patterns of LST climatology and interannual variations

of areal mean LST over the targeted region with the

MODIS observations during July for 7 years (2003–04

and 2010–14).

4) VALIDATING SIMULATED TURBINE-INDUCED

LST WITH MODIS OBSERVATIONS

Following Zhou et al. (2012, 2013a), if the operational

wind turbines affect LST, the observed or simulated

changes in LST should couple spatially with the layout

of wind turbines. In EXP1, we estimate the wind farm

impacts by examining the spatial patterns of LST

changes between the pre- and postturbine periods.

Since wind turbines are working during both periods

(Fig. 2a), only the simulations with the wind turbine

parameterization are used. In EXP2, the wind farm

impact on LST is the difference between simulations

with and without the wind turbine parameterization for

the postturbine period.

Following Zhou et al. (2012, 2013a), we also quantify

the wind farm impact on LST by comparing wind farm

pixels (WFPs) with their nearby nonwind farm pixels

(NNWFPs). The WFPs contain all the 1-km grids with

one or more wind turbines. Since the wind is mostly

southerly during the targeted nighttime hours (Zhou et al.

2013a), we consider two types of NNWFPs: 1) downwind

nonwind farm pixels (DNWFPs; pixels within 11–20km

north from WFPs) and 2) upwind nonwind farm pixels

(UNWFPs; pixels within 1–10km south from WFPs).

Note that DNWFPs are at least 10km away from WFPs

tominimize the downwind farm impacts. Figure 2b shows

the geographic locations of WFPs (in red, 917 pixels

in total), DNWFPs (in blue, 940 pixels in total), and

UNWFPs (in green, 940 pixels in total), respectively. The

Student’s t test is applied to quantify the statistical sig-

nificance of the observed and simulated LST changes

between the pre- and postturbine period for each group

of pixels. A t value exceeding the 90% confident level

(i.e., p , 0.1) is considered to be statistically significant.

The observed nighttime LST is the average of the two

MODIS measurements at ;2230 and ;0130 LT

whereas the simulated value is the 5-h average between

2200 and 0200 LT. The daytime comparison is omitted

because previous satellite and field campaign studies

suggest negligible wind farm impacts at daytime.

It is crucial to keep inmind that thewind farm impact on

LST is small in magnitude and is a low-frequency signal,

while the background LST varies dramatically on a daily

and yearly basis and is a high-frequency signal. Therefore,

we quantify the wind farm impact on LST via spatial and

temporal averaging to enhance the low-frequency wind

farm signal while minimizing high-frequency modeling

uncertainties or smaller-scale natural variability (e.g., me-

soscale storm systems) in individual runs. These points

have been discussed extensively in previous papers (Zhou

et al. 2012, 2013a,b; Harris et al. 2014; Slawsky et al. 2015;

Xia et al. 2016).

3. Results and discussion

a. Wind statistics from cloud-free days in the WRF

Information on wind speed and direction across the

rotor area is critical as it indicates whether the simulated

wind turbines are operating. In addition, it enables us to

properly characterize the resulting wind farm impact on

LST. Figures 3a and 3b show the frequency distribution of

wind speed and wind direction across the rotor area in the

model simulations. Note that the frequencies are only

calculated over the wind farm region during the targeted

nighttime hours (2200–0100 LT) on all cloud-free days

from the simulations without the wind turbine parame-

terization activated. Overall, only a negligible fraction of

the simulated wind speed, 2%, is less than the cut-in

(3ms21) threshold across the rotor plane heights andmost

wind peaks between 6 and 9ms21. These statistics indicate

that the wind turbines over our study region are operating

during most of the targeted nighttime hours in the WRF

Model. As for wind direction, more than 95% of the time

thewind is blowing from south or southeast, indicating that

there could be potential downwind impacts on the north-

western and northern sides of the wind farm region.

b. Model’s ability to simulate wind conditions

Figures 3c and 3d compare simulated wind conditions

across the rotor plane heights (40–120m AGL) from

2200 to 0200 LT for the 11 days in July 2012 with the

TABLE 3. The number of cloudy, cloud-free, and total days for all

experiments simulated with the wind turbine parameterization off.

Expt Cloudy days Cloud-free days Total days

Jul 2003 2 28 30

Jul 2004 9 21 30

Jul 2010 9 21 30

Jul 2011 0 30 30

Jul 2012 4 26 30

Jul 2013 2 28 30

Jul 2014 4 26 30

Ensemble 30 180 210
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sodar observations. The average wind speed magnitude

is 7.2m s21 from the sodar and 7.8m s21 from the WRF

simulations. Moreover, .85% of wind speeds from the

sodar and 95% from the simulations are within the range

of 3–12ms21. However, 15% of wind speeds measured

by the sodar fall below the cut-in wind speed (3ms21)

but these low wind speeds are not reproduced by

the simulations. This suggests that the WRF Model

may overpredict the wind speed magnitude and thus

overestimate the simulated wind farm impacts in July

2012. As for wind direction, the averaged wind direction

is 1618 from the simulations and 1608 from the sodar,

respectively. About 85% of the total simulated wind

directions and 84% of those from the sodar are between

1208 and 2008. Therefore, the wind is mostly southerly or

southeasterly over this region in July 2012. Overall, the

WRF Model can qualitatively but not quantitatively

reproduce the observed wind climate.

FIG. 3. Wind statistics across the rotor plane heights (40–120m AGL) between 2200 and 0200 LT: (a) wind speed

(m s21) distribution over the WFPs on all cloud-free days in WRF; (b) as in (a), but for wind direction; (c) wind speed

(m s21) distribution for the 10 days in July 2012 from the 3Day, CON, and sodar; (d) as in (c), but for wind direction.
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c. Model’s ability to simulate spatiotemporal
variations of background LST

Figure 4 compares the spatial pattern of monthly

averaged July nighttime LST climatology from MODIS

and theWRFModel for the pre- and postturbine periods.

Both the WRF simulations and MODIS depict similar

spatial patterns of LST with slightly warmer LST in

the southwestern and northeastern part of the study

domain and cooler LST over WFPs. The differences in

LST values are mainly attributed to the variations in to-

pography as shown in Fig. 1b, where the elevation is

FIG. 4. Spatial pattern of July nighttime background LST (8C) fromMODIS and theWRF simulations (3Day and

CON) for the pre- and postturbine periods: (a) MODIS, 2003–04; (b) MODIS, 2010–14; (c) 3Day, 2003–04;

(d) 3Day, 2010–14; (e) CON, 2003–04; and (f) CON, 2010–14. The black dots indicateWFPs. TheMODIS nighttime

LST is averaged from the two nighttimemeasurements at;2230 and;0130 LT and the simulated nighttime LST is

averaged from hourly model output between 2200 and 0200 LT.
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relatively high over the center of the domain and low near

the edge. The wind turbines are mostly located at the low

temperature regions of the domain as they are generally

built on topographic high ground. The simulated tem-

peratures lack the finer spatial details of the observations

because of the model’s smoothed terrain. However, the

simulated LST shows a positive bias (;38C) as compared

toMODIS observations. The uncertainty associated with

this warm bias is discussed in more detail in section 3e.

Nevertheless, this systematic bias is not expected to im-

pact our simulated wind farm effects significantly as we

are examining the simulated LST changes instead of the

absolute values.

Figure 5 shows the scatterplots of the background LST

climatology between MODIS and the WRF Model.

Figures 5a and 5b are the scatterplots between MODIS

and 3Day runs, and between MODIS and CON runs for

the preturbine period, respectively. Figures 5c and 5d are

similar to Figs. 5a and 5b but for the postturbine period.

In total, 2797 pixels are plotted in the figure. The red,

green, and blue dots indicate WFPs, DNWFPs, and

UNWFPs, respectively, whileR2 stands for the coefficient

of determination, indicating how much spatial variability

of the background LST fromMODIS are captured by the

WRF Model. The magnitude of the background LST

over WFPs and UNWPFs are smaller than that over

DNWFPs. The coefficient of determination (R2) varies

from 0.41 to 0.60, which, although not very high, is sta-

tistically significant (p , 0.001, n 5 2797 where n is the

sample size of pixel). Overall, the 3Day run has a higher

FIG. 5. Scatterplot of July nighttime background LST (8C) betweenMODIS and theWRF simulations (3Day and

CON): (a) MODIS and 3Day for the preturbine period, (b) MODIS and CON for the preturbine period,

(c) MODIS and 3Day for the postturbine period, and (d) MODIS and CON for the postturbine period. The red,

green, and blue dots represent WFPs (917 pixels), DNWFPs (940 pixels), and UNWFPs (940 pixels), respectively;

R2 stands for the coefficient of determination and is computed from all 2797 pixels. The black line represents the

best fitting using linear regression.
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R2 than the CON run because of reinitialization and there

is a systematic nighttime LST warm bias in the WRF

simulations compared to the MODIS observations.

To explore whether the interannual variations of the

observed backgroundLST can be simulated by theWRF

Model, we calculate the areal mean LST values over

WFPs, DNWFPs, and UNWFPs for each July month for

both pre- and postturbine periods (2003–04 and 2010–14)

fromMODIS and the model (Fig. 6). The simulated LST

captures the interannual variations of the observed LST

quite well, especially in the 3Day experiments. The sim-

ulated time series (3Day and CON) reproduce well the

temperature anomaly associated with the 2011 severe

drought in Texas. The correlation between the WRF

simulations and MODIS is 0.92 (p , 0.01, n 5 7) for the

3Day runs but 0.75 (p , 0.01, n 5 7) for the CON runs,

indicating the importance of having realistic surface

condition in simulating local to regional climate. As with

the previous plots, there is a clear warm bias in the model

compared to the observations.

FIG. 6. Interannual variation of areal mean July nighttime LST (8C) from MODIS (black), 3Day

(red), and CON (green) simulations over WFPs, DNWFPs, and UNWFPs for 7 years (2003–04 and

2010–14): (a) WFPs-averaged LST, (b) DNWFPs-averaged LST, and (c) UNWFPs-averaged LST.
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Overall, the spatial pattern and interannual variations

of LST inMODIS are generally reproduced by theWRF

simulations, indicating that the WRF Model, despite a

systematic warm bias, simulates the spatial and in-

terannual temporal LST variations over the study region

moderately well, especially when the model is reini-

tialized to the NARR every 3 days.

d. Quantifying wind farm impacts on LST changes

1) SPATIAL PATTERNS OF LST CHANGES

Figure 7a shows the spatial patterns of MODIS

nighttime LST changes in July between the post and

preturbine periods. The LST warming signals are spa-

tially well coupled with the wind farm layout, and most

of the warming signals are in the range of 0.158–0.558C,
with a maximum up to 1.208C. Even though the wind

direction is predominantly southeasterly and southerly,

no noticeable distant (10 pixels, ;10km) wind farm

wake effect is observed. Overall, this result is consistent

with previous studies (Zhou et al. 2012, 2013a; Xia et al.

2016). Note that there are patches of anomalous

warming and cooling outside the wind farm region.

Following Zhou et al. (2012, 2013a), a similar plot (see

online supplemental Fig. S1) is created for the entire

summer months and such signals either disappear or

weaken, indicating that those patches are mainly due to

high-frequency temporal LST variations, while the

warming signals over the wind farm region remain ro-

bust and persistent.

Figures 7b and 7c show that the spatial patterns of the

LST changes in both 3Day and CON are generally

spatially coupled with the layout of wind turbines.

For instance, 75% and 85% of WFPs in Figs. 7b and 7c

indicate warming signals, smaller than that (;95%)

in Fig. 7a. Note that the LST changes over WFPs

containing a small number of operating turbines during

the preturbine period (circled in green) do not show

warming signals for either the 3Day runs or CON but

they do show warming in the MODIS data. In general,

the CON run has a stronger spatial coupling between the

turbine layout and the LST warming signals while the

3Day run has a larger LST warming magnitude over

WFPs. In addition, the model simulations produce a

clear LST cooling signal downwind of the wind farm

region, which is not clearly seen in the MODIS obser-

vations. Nevertheless, the current wind turbine param-

eterization successfully reproduces the observed spatial

coupling between the warming signals and the wind

turbine layout.

The statistical significance of the observed (Fig. 7a)

and simulated (Figs. 7b,c) LST changes are examined

and compared. For the MODIS observations, about

65% of the WFPs indicate statistically significant (p ,
0.01, n 5 7) warming signals whereas less than 20% of

the DNWFPs and UNWFPs indicate significant LST

changes (warming or cooling). In EXP1, only 50%of the

WFPs from the 3Day simulation and 53% from the

CON simulation indicate statistical significant warming

signals. Furthermore, 60% and 55% of the DNWFPs

from the 3Day and CON simulations indicate statistical

significant cooling signals whereas less than 15% of the

UNWFP suggest significant LST changes (warming or

cooling). Therefore, theWRF produces a less significant

warming over the WFPs but a much more significant

cooling over the DNWFPs as compared to the MODIS

observations.

Figure 8 shows the results from EXP2, which aims to

assess the sensitivity of LST to the wind turbine pa-

rameterization by examining the LST differences with

and without the presence of wind turbines for the post-

turbine period. The LSTwarming pattern between 3Day

(Fig. 8a) and CON (Fig. 8b) are very similar. Both the

magnitude of the LST warming signal and its spatial

coupling with the wind turbine layout are stronger in

EXP2 than EXP1. More than 92% of WFPs show a

warming signal. This increase in the percentage of the

warming pixels is mostly contributed by WFPs during

the preturbine period (circled in green). Furthermore,

the cooling signal is mostly confined to the north of

WFPs in EXP2 but more widely distributed in EXP1

possibly due to the residual signals of natural variations.

However, there is a distinct downwind cooling effect in

both EXP1 and EXP2 extending as far as 40 km away

from the wind farms, which is less clear in the MODIS

observations.

Figures 9a and 9b show the scatterplots of the LST

changes between MODIS and 3Day runs, and between

MODIS and CON runs from EXP1; Figs. 9c and 9d are

the same but for EXP2. Evidently, R2 for the LST

changes is much smaller than that in Fig. 4, indicating

that the WRF Model has difficulties in reproducing the

spatial variations of observed LST changes at pixel

levels, possibly due to simplified representation of sur-

face heterogeneities (e.g., elevations, land use/soil clas-

sifications). However, the WRF Model is still able to

reproduce the coherent responses of the observed LST

changes for WFPs. For instance, more than 75% (90%)

of WFPs in EXP1 (EXP2) indicate a warming signal. As

in the observations, UNWFPs show noisy LST changes

with both negative and positive values in both experi-

ments. In contrast, more than 80% (95%) of DNWFPs

in EXP1 (EXP2) indicate a cooling signal, while

MODIS shows both negative and positive values. The

consistent and coherent responses of the LST change

signals between simulated and observed overWFPs, not
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FIG. 7. July nighttime LST (8C) differences between the post- and preturbine periods (2010–14 av-

eragesminus 2003–04 averages): (a) LST changes fromMODIS observations, (b) LST changes from the

3Day simulations in EXP1, and (c) LST changes from the CON simulations in EXP1. The black dots

indicateWFPsand the green circles indicate the locationofWFPsbuilt during thepreturbineperiod.The

MODIS nighttimeLST is averaged from the two nighttimemeasurements at;2230 and;0130 LT and

the simulated nighttime LST is averaged from hourly model output between 2200 and 0200 LT.
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at pixel levels, point out the model’s potential of using

the current wind turbine parameterization to assess real-

world wind farm impacts at regional scales.

2) AREAL MEAN LST CHANGES

Using the predefinedWFPs, DNWFPs, and UDWFPs,

the areal mean LST changes are shown in Table 4. Over

WFPs, the WRF Model produces a significant warming

signal (;0.208C) but the magnitude is about a tenth of

degree smaller than the observations (0.338C). As for

DNWPFs, no significant changes (20.068C) are detected
from the observations but a significant cooling signal is

simulated (20.158 to 20.208C). Both MODIS and the

model show negligible temperature changes over the

UNWFPs. Note that defining DNWFPs and UNWFPs

even farther away (5km) from the wind farm region do

not change the results significantly. Overall, the spatial

coupling and the magnitude of LST changes from EXP2

are more consistent with the MODIS observations than

those from EXP1 mainly because we compare the LST

differences between two different periods in EXP1,

which contain more high-frequency signals (natural

variability).

Our results indicate that the current wind turbine

parameterization in the WRF Model has some difficul-

ties in reproducing the observed LST variability at pixel

FIG. 8. July nighttime LST (8C) differences between simulations with and without the wind turbine

parameterization for the postturbine period (2010–14): (a) LST changes from the 3Day simulations in

EXP2and (b)LSTchanges fromtheCONsimulations inEXP2.Theblackdots indicateWFPsand the

green circles indicate the location ofWFPs built during the preturbine period. The simulated nighttime

LST is averaged from hourly model output between 2200 and 0200 LT.
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levels, but can capture the observed average warming

anomalies at regional scales over WFPs although the

simulated anomalies have a smaller magnitude than the

MODIS observations. In contrast to the MODIS ob-

servations, the model also produces a significant surface

cooling effect over DNWFPs.

e. Sensitivity tests to other possible factors

There are several other factors including topography,

surface layer schemes, land surface models, and vertical

resolution that may influence the simulated LST

changes. We conduct sensitivity tests to confirm that the

simulated wind farm–induced warming and cooling

signals are robust. These tests cannot be performed in

the manner as precisely as for EXP1 and EXP2 due to

lack of computer resources. Instead, we run a 3-day

simulation from 30 June to 2 July 2011, and calculate the

LST changes between 2200 and 0200 LT for the last two

nights (the first day is treated as spinup). We choose

these two nights (1–2 July 2011) as they are cloud free.

1) SENSITIVITY TO VARIATIONS IN TOPOGRAPHY

To test the role of topography in the down-wake

cooling effect, we conducted simulations on three con-

trasting terrains (downslope, flat, and upslope) with 400

(203 20) artificial wind turbines (one turbine per pixel).

Figures 10a–c indicate the geographical locations of the

artificial wind turbines (black pixels) for these three

terrains. Note that Figs. 10a and 10c share the similar

topography. The distance between the wind farm in

FIG. 9. Scatterplot of July nighttime LST (8C) differences betweenMODIS and theWRF simulations (3Day and

CON): (a) MODIS and 3Day from EXP1, (b) MODIS and CON from EXP1, (c) MODIS and 3Day from EXP2,

and (d) MODIS and CON from EXP2. The red, green, and blue dots represent WFPs (917 pixels), DNWFPs (940

pixels), andUNWFPs (940 pixels), respectively;R2 stands for the coefficient of determination and is computed from

all 2797 pixels. The black line represents the best fitting using linear regression.
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Figs. 10a and 10b is about 100km. Figures 10d–f show

the spatial pattern of the LST changes with and without

the wind turbine parameterization for these three ex-

periments. Evidently, the pattern and magnitude of the

cooling signals from these experiments are very similar,

indicating that the variations of topography are not the

primary factor for creating the downwind cooling signal.

Over the artificial wind farm region, the warming signal is

spatially coupled with the wind turbine location in all

three experiments. However, the averaged warming sig-

nal varies: 0.238C in Fig. 10d, 0.558C in Fig. 10e, and

0.368C in Fig. 10f, possibly due to the differences in ele-

vation and land surface properties (e.g., land cover, soil

moisture, and vegetation type/amount). Based on these

results and the observational study of Zhou et al. (2013b),

we believe that the variation in topography is not the

major cause of the simulated down-wake cooling effect.

2) SENSITIVITY TO SURFACE LAYER SCHEMES

AND LAND SURFACE MODELS

To explore the sensitivity of themodel LST biases and

simulated changes to the choice of surface layer schemes

and the land surface models, we choose two land surface

models [Noah (Chen and Dudhia 2001) and Noah-MP

(Niu et al. 2011)] and two surface layer schemes [Re-

vised MM5Monin–Obukhov (MO; Jiménez et al. 2012)
and MYNN (Nakanishi and Niino 2009)] to conduct our

experiments. In total, there are four combinations: 1)

NoahMP-MYNN, 2) NoahMP-MO, 3) Noah-MYNN,

and 4) Noah-MO. We also analyze the daily MODIS

images for 1–2 July 2011 as observations.

Figure 11a shows the spatial pattern of the back-

ground LST from the MODIS observations while

Figs. 11b–e are that from each combination. Clearly, the

WRF Model creates a warm bias over the study region,

despite different combinations of surface layer schemes

and land surface models. Therefore, we believe that the

model’s warm bias is systematic and independent on the

choice of surface layer schemes or land surface models.

Moreover, similar nighttime warm biases have been

documented in recent studies (Liu et al. 2017; Chen et al.

2014) as well. Both studies used Noah-MP as the land

surface model but different initialization datasets (ERA-

Interim and CFSR). Although the temporal and spatial

scales in their simulations are different from this study,

the summer nighttime near-surface (2m) warm bias over

Texas is evident. However, neither of these two studies

provides any reasoning for why this warm bias occurs. To

further examine this warmbias, we compare the observed

2-m air temperature from the same field campaign site

with the model simulations and find similar warm bias

(figure not shown). Understanding the cause for this

warm bias is beyond the scope of this study but the un-

certainties associated with it are addressed in section 3e.

Figure 12 shows the spatial pattern of the LST changes

from our four experiments. The spatial pattern of LST

changes (warming and cooling signals) exhibit very sim-

ilar features among the four plots. There is surface

warming over the wind farm region and surface cooling

behind the wind farm region. However, Noah-MO seems

to produce a weaker LST response as compared to the

other three experiments. For example, the areal mean

warming and cooling signals in Fig. 12d are less significant

(;0.18C) as compared to Figs. 12a–c. Overall, this small

temperature difference due to different surface layer

schemes and land surface models has little impact on the

main conclusions of this work, that is the current WRF

wind turbine parameterization tends to underestimate

the observed surface warming signal and produce a

downwind cooling signal that have not been observed.

3) SENSITIVITY TO VERTICAL RESOLUTION

The sensitivity of our results to vertical resolution is

tested by conducting an additional experiment with 59

vertical layers (20 layers below 200m). Figures 13a and 13b

indicate the spatial pattern of the LST changes with 39

vertical levels (used in this study) and 59 vertical levels,

respectively. Increasing the vertical resolution reduces the

TABLE 4. Arealmean LST changes (DLST, 8C) ofWFPs,DNWFPs, andUNWFPs forMODIS, 3Day, andCON simulations fromEXP1

and EXP2. Areal mean LST changes in bold are statistically significant at the 10% level. (Note: The geographical locations of WFPs,

DNWFPs, and UNWFPs are defined in Fig. 2b.)

DLST in EXP1: Postturbine (2010–14) LST minus preturbine (2003–04) LST

WFPs DNWFPs UNWFPs

Observation 0.33 20.06 0.06

3Day 0.20 20.15 0.01

CON 0.20 20.20 20.01

DLST in EXP2: Postturbine (2010–14) LST with wind turbines minus postturbine (2010–14) LST without wind turbines

3Day 0.23 20.15 20.02

CON 0.26 20.16 20.01
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areal warming signals over WFPs by 0.058C but enhances

the areal cooling signal over DNWFPs by 0.158C. Similar

to the above sensitivity tests, these small changes in tem-

perature have little influence on our main conclusions.

4. Uncertainties

Zhou et al. (2013a,b) extensively discussed the data

uncertainties associated with the MODIS LST and

found that such uncertainties cannot explain the ob-

served warming signal over the wind farms. Here we will

discuss modeling uncertainties that are not addressed in

the previous studies.

The wind farm–induced LST signal is detected based

onMODIS observations under cloud-free conditions. To

make the comparison between the WRF simulations and

MODIS data meaningful, we calculate the CLWP to

represent CC and use the percentage of cloud-covered

pixels over the wind farm region and its immediate vi-

cinity as a threshold to decide whether it is a cloudy or

cloud-free day. A sensitivity test is conducted by in-

creasing or decreasing the threshold of cloud-covered

pixels (by an interval of 5%) but no change on the clas-

sification of the number of cloud-free days is found. In

addition, cloud-free days are defined at the pixel-level

in MODIS but at the regional level in the simulations.

FIG. 10. Spatial pattern of terrain elevation (m) and nighttime LST (8C) differences between simulations with andwithout the wind turbine

parameterization for 1–2 Jul 2011 used to test the sensitivity of wind farm–induced cooling signals to variations in topography: (a) Elevation

map of the downslope terrain, (b) elevation map of the flat terrain, (c) elevation map of the upslope flat terrain, (d) LST changes for the

downslope terrain, (e) LST changes for the flat terrain, and (f) LST changes for the upslope terrain. The black dots mark the locations of 400

(20 3 20) artificial wind turbines. The simulated nighttime LST change is averaged from hourly model output between 2200 and 0200 LT.
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The differences in cloud treatments betweenMODIS and

our methodology could introduce some uncertainties to

our results.

The model output is saved at hourly frequency.

Hence, there is no exact time output from our simula-

tions to match MODIS measurements. The simulated

nighttime LST used for our analysis is the 5-h average

from 2200 to 0200 LT whereas the MODIS nighttime

LST is the average of two observations at ;2230 and

;0130 LT. Our sensitivity tests using the hourly output

averaged between 2200 and 2300 LT (corresponding to

the;2230 LTMODISmeasurement time) and between

FIG. 11. Spatial pattern of background nighttime LST (8C) for 1–2 Jul 2011 used to test the sensitivity of the

simulated LST warm bias to land surface models and surface layer schemes: (a) MODIS, (b) NoahMP-MYNN,

(c) NoahMP-MO, (d) Noah-MYNN, and (e) Noah-MO. The MODIS nighttime LST is averaged from the two

nighttime measurements at;2230 and;0130 LT and the simulated nighttime LST is averaged from hourly model

output between 2200 and 0200 LT.
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0100 and 0200 LT (corresponding to the ;0130 LT

MODIS measurement time) indicate negligible differ-

ences from the 5-h average.

The systematic warm bias of the background LST is

expected to have a small impact on our conclusions as we

compare the LST differences between the control and

experiment runs, which cancel most of the model’s sys-

tematic warm bias. However, possibly it could poten-

tially impact the model stability and the wind turbines

performance (Barthelmie and Jensen 2010; Peña and

Rathmann 2014; Abkar and Porté-Agel 2015), and thus

to some extent, affect the simulated LST changes both

over the wind farm regions and the downwind areas.

The simulated wind farm impact on LST differs be-

tween the CON and 3Day runs, especially in EXP1, but

it is difficult to quantify which one is better in simulating

wind farm impacts as both have limitations (see more in

the introduction). Further attribution of the difference

between the CON and 3Day runs is beyond the scope of

this study, but future studies should be aware of such

initialization uncertainties and limitations when con-

ducting wind farm simulations using the WRF Model.

Wind validation with the sodar observations is only

conducted for July 2012 because of the lack of wind ob-

servations. To further confirm whether the low wind

speed bias is true, we conduct additional model simula-

tions for August 2012 when a full month of sodar obser-

vations are available and reach the same conclusion (see

online supplemental Fig. S2). This suggests that theWRF

Model most likely overestimates the turbine-induced

LST changes over our study region because of over-

predicted wind speed. Previous studies suggest that the

wind speed biases between observed and simulated are

often seen over land because of issues with the repre-

sentativeness of the mesoscale grid (Rife et al. 2004),

errors in the model-assigned surface roughness length,

and elevation (Horvath et al. 2012; Santos-Alamillos et al.

2013; Badger et al. 2014). However, the attribution of the

wind biases to these factors is beyond the scope of this

article. Note that we cannot validate the simulated wind

FIG. 12. Nighttime LST (8C) differences between simulationswith andwithout thewind turbine parameterization

for 1–2 Jul 2011 used to test the sensitivity of the simulated surface warming and cooling signals to land surface

models and surface layer schemes: (a) NoahMP-MYNN, (b) NoahMP-MO, (c) Noah-MYNN, and (d) Noah-MO.

The black dots indicate WFPs.
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conditions for other July months because there are no

sodar observations available. Moreover, there are multi-

ple wind turbines in one grid point (85.2% of the WFPs

have two or more wind turbines) and the model does not

take into account the fact that some of the wind turbines,

in reality, will be down for repair or maintenance, which

could also lead to a slight overprediction of the simulated

turbine impacts. However, if these factors were consid-

ered, the simulated turbine-inducedwarming signals over

WFPs would be even smaller.

Our simulations indicate a significant anomalous cooling

effect over the wind farm wake region in the downwind

direction. However, this far downwind (40km) cooling

effect has not been detected fromprevious field campaigns

and satellite observations. Note that Fitch et al. (2013b)

also produce near-surface (2m) cooling effects at night-

time in their idealized simulations. Together, this may

point to some possible limitations of the current wind

turbine parameterization, which deserve further attention

and observational validation.

5. Conclusions

This research examines the WRF Model’s ability in

simulating WF impact on LST by conducting real-world

wind farm experiments driven by realistic initial and

FIG. 13. Nighttime LST (8C) differences between simulations with and without the wind turbine

parameterization for 1–2 Jul 2011 used to test the sensitivity of the simulated surface warming and

cooling signals to the vertical resolution of the WRF simulations: (a) 39 vertical levels (10 layers

below 200m) and (b) 59 vertical levels (20 layers below 200m). The black dots indicate WFPs.
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boundary conditions. Two groups of experiments are

conducted over west-central Texas for the month of July

for 7 years (2003–04 and 2010–14) and are compared

with the observations from MODIS and the first Wind

Forecast Improvement Project (WFIP) field campaign.

The first group directly compares the simulated LST

changes between the pre- and postturbine periods with

MODIS observations to assess the model’s ability to

simulate the observed wind farm impact on LST. The

second group is a controlled experiment to directly as-

sess the sensitivity of the simulated LST to the wind

turbine parameterization by examining the LST differ-

ences with and without the presence of wind turbines for

the postturbine period. For each group, both continuous

(CON) and 3-day reinitialized (3Day) simulations are

considered. Overall, the WRF Model reproduces the

observed spatiotemporal variations of the background

LST moderately well but has difficulties in reproducing

such variations for the turbine-induced LST change

signals at pixel levels. However, the model is still able to

reproduce the coherent and consistent responses of the

observed LST changes at regional scales. The wind

farm–induced LST warming signals from the current

WRF wind turbine parameterization agree well with the

satellite observations in terms of their spatial coupling

with the wind farm layout. The simulated areal mean

wind farm impact on LST over the WFPs (0.208–0.268C)
is about a tenth of degree smaller than that from

MODIS (0.338C). However, our results also suggest that

the current wind turbine parameterization tends to

induce a cooling effect downwind of the wind farm re-

gion at nighttime, which has not been confirmed by any

previous field campaigns and satellite observations.

Numerous experiments are performed to test the sen-

sitivity of our results to several factors (e.g., topography

variations, scheme dependency, and vertical resolution)

and show negligible impacts on the above conclusions.

Note that the surface warming (or cooling) from both

the MODIS observations and model simulations

represent a redistribution of heat in the atmosphere, not

actual heating of the atmosphere by the turbines.

This study marks a major improvement over an earlier

effort (Cervarich et al. 2013) to simulate observed LST

changes due to operating wind farms. This improvement

occurs for three reasons. First, we compare the simulated

LST only for the cloud-free days to be consistent with

MODIS observations. Second, we use a multiyear aver-

age approach to better isolate the low-frequency wind

farm–induced LST signal from the background high-

frequency LST variations. This strategy is similar to the

spatial and temporal averaging approaches used effec-

tively in observations to obtain the wind farm signals

(Zhou et al. 2012, 2013a). Third, we use the sensitivity test

in EXP2 to further quantify the simulated wind farms

effects in a controlled manner by switching the turbine

parameterization on and off.

One possible reason for the simulated cooling effect

over the wind farm wake region is that the current wind

turbine parameterization has deficiencies in simulating

the wake processes. Hence, validating and potentially

improving the wind turbine representation for mesoscale

models should be a priority. A better wind turbine pa-

rameterization will improve the simulation of not only

temperature but also wind speed and power production,

thereby meeting a critical need for the wind energy in-

dustry. Unfortunately, data on turbulent processes in the

wake of wind farms are scarce because most field cam-

paigns are conductedwithin and in the immediate vicinity

of wind farms. Hence, more comprehensive field cam-

paigns are needed to study wind farm–ABL interactions,

and more measurements (heat and momentum fluxes)

over the wind farm wake region are needed to validate

and improve parameterizations of wind turbines in

numerical models.

The present paper focuses on validation of the current

wind turbine parameterization in simulating the real-

world wind farm impact on LST at the regional scales.

Uncovering physical processes behind the simulated

warming and cooling signals requires an extensive anal-

ysis of changes in the surface energy budget, variations of

vertical profiles of temperature as well as turbulent fluxes

of heat and momentum over the wind farms and their

wake regions. It will be detailed in another paper, which

will be beneficial for improving the current wind turbine

parameterization and understanding the physical mech-

anisms for the wind farm–induced LST changes.
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