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Abstract The Mongolian Plateau, comprising the

nation of Mongolia and the Inner Mongolia Autono-

mous Region of China, has been influenced by

significant climatic changes and intensive human

activities. Previous satellite-based analyses have sug-

gested an increasing tendency in the vegetation cover

over recent decades. However, several ground-based

observations have indicated a decline in vegetation

production. This study aimed to explore long-term

changes in vegetation greenness and land surface

phenology in relation to changes in temperature and

precipitation on the Plateau between 1982 and 2011

using the normalized difference vegetation index

(NDVI). Across the Plateau, a significantly positive

trend in the growing season (May–September) NDVI

was observed from 1982 to 1998, but since that time,

the NDVI has not shown a persistent increase, thus

causing an insignificant trend over the entire study

period. For the steppe vegetation (a major vegetation

type on the Plateau), the NDVI increased significantly

in spring but decreased in summer. Precipitation was

the dominant factor related to changes in steppe

vegetation. Warming in spring contributed to earlier

vegetation green-up only in meadow steppe vegeta-

tion, implying that water deficiency in typical and

desert steppe vegetation may eliminate the effect of

warming. Our results also suggest a combined effect of

climatic and non-climatic factors and highlight the

need to examine the role of regional human activities

in the control of vegetation dynamics.

Keywords Climate change � Human activity �
Normalized difference vegetation index (NDVI) �
Phenology � Vegetation activity � Mongolian Plateau

Introduction

The Mongolian Plateau, a major component of the

Eurasian Steppe, plays an important role in regulating

biospheric feedbacks to climate change (Hall et al.

1995). Thus, timely and accurate monitoring of
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vegetation dynamics can contribute to grassland

biomass estimations, grazing capacity predictions,

and ecosystem protection (Myoung et al. 2012; Wang

et al. 2013). The increasing populations of humans and

livestock as well as the reclamation of grasslands for

grain production and the influence of development,

including mining and urbanization, have been deemed

the major causes of grassland degradation on the

Mongolian Plateau (Zhao et al. 2005; Addison et al.

2012; Leisher et al. 2012). Groundmeasurements have

suggested that these human disturbances, coupled with

the warmer climate, have reduced both biodiversity

and ecosystem function within this region (Tong et al.

2004; Li et al. 2008; Zhang et al. 2011). However,

recent publications using satellite data have recog-

nized a more neutral situation, involving both declines

and increases in vegetation activities in steppe areas

(Peng et al. 2011; Sternberg et al. 2011; Li et al. 2012).

Remote sensing satellite imageries can provide

consistent long-term, large-scale data for monitoring

vegetation changes. Normalized difference vegetation

index (NDVI) data derived from the Advanced Very

High Resolution Radiometer (AVHRR) of the National

Oceanic and Atmospheric Administration (NOAA)

have been used to indicate vegetation changes from

global to regional scales (e.g., Myneni et al. 1997; Piao

et al. 2003; Xu et al. 2013). Previous studies have

shown that NDVI datasets can be used as a good proxy

for estimating changes in grassland vegetation cover

and biomass production (Prince 1991; Verbesselt et al.

2007;Ma et al. 2010; Gao et al. 2012). Furthermore, the

trends in the NDVI are clearly of great relevance to

changes in climatic drivers (e.g., air temperature and

precipitation), and they may also be related to non-

climatic factors (e.g., rangeland management) (Nich-

olson 2005; Seaquist et al. 2008; Addison et al. 2012).

In contrast to phenological events in individual

plants, satellite-observed phenology is related to can-

opy characteristics and can be used to indicate pheno-

logical patterns at the landscape scale (Reed et al. 1994;

Schwartz 1998). The onset date of green-up is of high

relevance to the beginning of the vegetation growth

period in spring. Recent studies showed that the green-

up of vegetation advanced in the temperate grasslands

of China from 1982 to 2010 (Cong et al. 2013), but

several other studies have not suggested a significant

trend in vegetation green-up timing for eitherMongolia

or the Inner Mongolia Autonomous Region (IMAR) of

China (Miao et al. 2013).

In this study, we use global inventory modeling and

mapping studies (GIMMS) NDVI3g datasets contain-

ing a long-term time-series covering the last three

decades (1982–2011), together with information on the

climate and vegetation types, to provide spatially and

temporally consistent analyses of the trends of vegeta-

tion cover over thePlateau.The investigation focuses on

grassland, and particularly steppe vegetation, which

occupies the largest rangeland area on the Plateau.

Specifically, themain questions that our studyaddresses

are as follows: (1) Did the Mongolian Plateau experi-

ence a greening trend over the period from 1982 to

2011? (2) Do the inter-annual trends in the NDVI

change among different seasons, vegetation types and

precipitation zones? (3) Is the trend of the NDVI in

spring induced by an advance/delay in the onset data of

green-up? (4) Are climatic changes and human activ-

ities the causes of the observed NDVI trends?

Study area

The Mongolian Plateau is mainly occupied by Mon-

golia in the north and the IMAR of China in the south.

Steppe vegetation, including meadow, typical, and

desert steppe vegetation, is the most widespread

vegetation type on the Plateau, occupying almost half

of the entire vegetation area (Table 1). Among the three

major steppe types, the highest annual mean temper-

ature appears in desert steppe (1.2 �C in Mongolia and

5.3 �C in the IMAR), followed by typical steppe

(0.0 �C vs. 3.9 �C), and meadow steppe (-1.1 �C vs.

1.9 �C), whereas the annual precipitation shows the

reverse order. The climate for steppe vegetation in the

IMAR is generally warmer and wetter than that in

Mongolia. The average growing season NDVI varies

with the vegetation type, showing the highest value in

forests and the lowest value in desert. Compared with

the IMAR, the average value of the NDVI for most

vegetation types is lower in Mongolia, consistent with

the average annual precipitation.

Data

NDVI products

We used the NOAA/AVHRR GIMMS NDVI3g

archive (0.083� spatial resolution, bimonthly fre-

quency, spanning 1982–2011) to explore vegetation
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activity on the Mongolian Plateau. This dataset is one

of the most accurate products for assessing changes in

vegetation growth (Tucker et al. 2005; Beck et al.

2011; Fensholt and Proud 2012), and it is widely used

to depict long-term change in global and regional

terrestrial vegetation cover (de Jong et al. 2013; Xu

et al. 2013).

The monthly NDVI was obtained via the maximum

value composite method to minimize the effects of

cloud contamination, atmospheric conditions and the

solar zenith angle (Holben et al. 1986). To eliminate

spurious NDVI trends caused by winter snow, our

analysis focused on the interannual vegetation

changes during the growing season from May to

September. Furthermore, we calculated the average

monthly NDVI in spring (March to May), summer

(June to August), and autumn (September to Novem-

ber) to further examine seasonal contributions. To

reduce the impact of snow in early spring as well as

bare soil, pixels showing seasonal temperatures of

\0 �C andmean NDVI values of\0.05 were removed

from the analysis (Fang et al. 2004; de Jong et al.

2012).

Climate and vegetation type data

The monthly surface air temperature (at 1.5 meters

above ground) and precipitation in the IMAR were

obtained from 50 meteorological stations (National

Meteorological Information Center of the China

Meteorological Administration, http://www.nmic.

gov.cn). We interpolated climate data to grid cells

with a spatial resolution of 0.083� using a kriging

interpolation algorithm (Piao et al. 2003). Tempera-

ture and precipitation data for Mongolia were derived

frommonthlymean temperature and precipitation data

from the University of East Anglia Climatic Research

Unit’s Time Series 3.2 datasets for the period

1982–2011 (CRU TS3.2, http://www.cru.uea.ac.uk/

cru/data/) (Harris et al. 2013). The CRUTS3.2 product

is a gridded 0.5� 9 0.5� product based on meteoro-

logical station data, which were converted to geo-

graphic grid cells with 0.083� 9 0.083� spacing to

match the NDVI dataset using the bilinear resampling

method.

The spatial distribution of IMAR vegetation was

obtained from a digitized Atlas of China’s Vegetation,

which has a scale of 1:1,000,000 (Editorial Board ofT
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Vegetation Map of China, 2001). For Mongolia, we

digitized an ecosystem map with a scale of 1:1,000,000

(Institute of Botany, Mongolia Academy of Science,

1995). Six vegetation types were identified on the

Mongolian Plateau: tundra and cushion vegetation,

forest, shrub, grassland, desert, and cropland (Fig. 1).

Shrub vegetation was not included in this analysis

because it occupies less than 1 % of the total study area.

Methods

Interannual trend estimation and linear correlation

analysis

Ordinary least-squares analyses were applied for each

vegetation pixel to estimate the linear time trends of

the NDVI across the study period, and the significance

level (p) of these variables was assessed using F-tests.

Plateau-wide trends were derived as the average of all

grid cells. The same analyses were performed at the

regional scale for each vegetation type. In addition, we

calculated the Pearson correlation coefficients

between the detrended NDVI and climate variables

(temperature and precipitation) in different seasons to

investigate potential climatic drivers of the growing

season NDVI trends. We assumed that the interannual

variability in the NDVI was related to temporal

variability in climate variables when the correlation

coefficients were statistically significant.

Distinguishing human-induced vegetation

dynamics from climate change: the residual trends

(RESTREND) method

The RESTREND method, based on the perception that

vegetation growth in arid and semi-arid regions is

mainly limited by precipitation, has been widely used

to examine non-climatic effects on vegetation dynam-

ics by removing the effects of precipitation (Evans and

Geerken 2004). For each pixel, we first established

linear models between the annual NDVImax (the

averaged value during July and August) and the

cumulative precipitation in different periods (from July

to August, fromMay to August, and from the preceding

October to August) during 1982–2011. Then, the

statistically significant linear model (p\ 0.05) with

the highest R2 value was chosen to generate residuals

(observed vs. predicted). When no trend existed in the

residuals across the study period, the changes in the

NDVI were assumed to be induced by precipitation,

whereas an increased or decreased trend suggested that

a greening or browning trend might be attributed to

human activities (Li et al. 2012).

Extracting data on the onset of green-up

Numerous methods exist for estimating satellite-based

phenological events; however, no method is accepted

universally (White et al. 2009; Schwartz and Hanes

2010). Here, using the pixel NDVI threshold approach,

which can be applied easily and is suitable for different

vegetation types, we extracted the time of vegetation

green-up in each pixel for each year. First, the Savitzky

and Golay smoothing filter (Savitzky and Golay 1964)

was used to execute data filtering and to reconstruct the

annual NDVI time series curve. Second, the onset of

green-up was defined as having occurred once the

NDVI exceeded the annual mean value on three

consecutive occasions. Finally, the inter-annual trends

in the timing of the onset of green-upwere examined by

performing a linear regression of the green-up onset

dates against the year from 1982 to 2011. Negative and

positive values indicated advanced or delayed green-

up, respectively.

All statistical analyses were conducted in MAT-

LAB for Windows (Version 2010b, The MathWorks,

Inc., USA) and ArcGIS (Version 9.3, ESRI, Inc.,

USA).

Results

Annual and seasonal NDVI changes

The interannual variations in the growing season

NDVI were analyzed to reveal the trend of vegetation

growth on the Mongolian Plateau over the past

30 years (Fig. 2). We did not observe a statistically

significant trend in the NDVI across the entire study

period. However, there was a distinct period showing a

significant increase (0.001 y-1) from 1982 to 1998

(r2 = 0.44, p\ 0.01), followed by a sharp decrease

until 2007 and a subsequent increase. This pattern can

be explained partly by the variation in annual precip-

itation (r2 = 0.37, p\ 0.01), which increased prior to

1998 and then declined rapidly after 1999. The

interannual variations of the NDVI were similar in
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different precipitation zones, except for in the most

humid area (mean annual precipitation[ 400 mm),

where a weak increase was observed (r2 = 0.12,

p = 0.06) (Fig. 3).

The spatial patterns of the seasonal NDVI trends

also showed high heterogeneity (Fig. 4). In general,

the NDVI in the growing season increased in 11 % of

the study area, mainly in the forests and meadows of

northern Mongolia and IMAR, the croplands in the

south of the Horqin sandy land, and the steppes of the

Ordos highland. Significantly negative NDVI trends

were found across 19 % of the Plateau, mainly in

northern Mongolia and east of the IMAR, which were

areas dominated by steppe vegetation. In spring, the

NDVI exhibited a significantly positive trend over

29 % of the study area, whereas only 8 % of the study

area showed an increase in summer, which mainly

occurred in the Hangai Mountains of Mongolia, south

of the Horqin sandy land, and the in Ordos highland in

the IMAR. In summer, a decrease in the NDVI

occurred in 21 % of the area, which was twice the

percentage in spring (13 %) and autumn (12 %).

NDVI changes by vegetation type

Over the past three decades, the NDVI showed no

statistically significant linear trend for any vegetation

type in summer, autumn, or the growing season (Table 2;

Fig. 5). However, during spring, a conspicuous increase

occurred in grasslands and cultivated vegetation, both of

which displayed an average annual increase of

0.5 9 10-3 y-1 (p\0.05). We also found that all three

steppe types exhibited a significantly positive trend

acrossMongolia (p\0.05). Large increases appeared in

the typical steppe vegetation, with a total increase of

13 % being recorded, followed by the meadow steppe

(11 %) and desert steppe (1 %). However, in the IMAR,

a significantly increasing trend was found only in the

meadow steppe (7 %) and typical steppe vegetation

(5 %) (p\0.05).

We further explored the interannual variations in the

percentages of the land area showing different NDVI

levels for steppe vegetation in the IMAR (Fig. 6a) and in

Mongolia (Fig. 6b) during the growing season from1982

to 2011. Despite finding no significant linear trends in the

Fig. 1 Location of the Mongolian Plateau (a) and maps of elevation (b), vegetation types (c), and the average monthly NDVI in the

growing season (May–September) (d) from 1982 to 2011 across the Plateau
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area of each NDVI level, spatial expansion of greening

(referred to here as the increase in the area with an NDVI

[0.5) occurred mainly in the 1980s and 1990s, reaching

percentages of 48 and 41 % in 1998 for the IMAR and

Mongolia, respectively. Compared with steppe vegeta-

tion in Mongolia, the average area with an NDVI\0.2

(often corresponding to desert steppe) was clearly lower

in the IMAR (6 vs. 13 %), while the area with an NDVI

[0.6 (often corresponding to meadow steppe) was

slightly higher (15 vs. 13 %) from 1982 to 2011.

Interannual variations in the vegetation green-up

time

As a 30-year average, the estimated date of green-up

onset was between late April and late May, with an

early to late progression being observed from southern

to northern Mongolia, although oscillation was

recorded in central Inner Mongolia (Fig. 7a). The date

of green-up onset advanced for forest (-1.2 days/

decade, p\ 0.05) and meadow steppe vegetation

(-1.6 days/decade, p\ 0.01), whereas no widespread

advance was found for the other vegetation types in the

IMAR. In Mongolia, only meadow steppe vegetation

showed a weak advance in the date of green-up onset

(-1.3 days/decade, p = 0.06). Thus, an advancing

trend in green-up onset occurred mostly over the

northern part of the Plateau, whereas a delaying trend

appeared sporadically in highly populated southern

areas, such as on the Hetao plain in the IMAR (Fig. 7b).

Fig. 2 Interannual

variations in the growing

season NDVI and annual

precipitation (expressed as

Z-scores) on the Mongolian

Plateau from 1982 to 2011.

The inset graph denotes the

relationship between the

NDVI and annual

precipitation

Fig. 3 Interannual variations in the growing season NDVI in

different precipitation zones (mean annual precipitation

\200 mm; 200–300 mm; 300–400 mm; [400 mm) on the

Mongolian Plateau from 1982–2011. a Distribution of precip-

itation zones and b interannual changes in the NDVI anomaly

(%) in different precipitation zones
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Climatic drivers of NDVI change

The annual temperature showed a remarkable increase

in both Mongolia and the IMAR, with a rate of

0.04 �C y-1 (p\ 0.01) (Table 3). The monthly mean

temperature for all seasons other than winter increased

significantly, with the largest magnitude occurring in

summer. However, for seasonal precipitation a signif-

icant decrease appeared in summer, showing a rate of

1.40 mm y-1 (p\ 0.05) in Mongolia and

2.13 mm y-1 in the IMAR (p\ 0.01). The annual

precipitation decreased over the Mongolian Plateau,

despite the marginal increase recorded in spring for

Mongolia and in winter for the IMAR. Overall,

continuous warming and fluctuations in precipitation

have clearly occurred on the Mongolian Plateau over

the last three decades.

No significant correlation between the growing

season NDVI and temperature was found in Mongolia,

whereas precipitation accounted for nearly half of the

variance in the NDVI (p\ 0.01). A similar NDVI-

climate relationship was observed in the IMAR, but

Table 2 Linear trends in the seasonal mean NDVI for major vegetation types from 1982 to 2011 on the Mongolian Plateau

Vegetation type Growing season Spring Summer Autumn

Slope r2 P value Slope r2 P value Slope r2 P value Slope r2 P value

TCV 3.21 0.04 0.30 5.50 0.12 0.06 5.30 0.04 0.27 4.55 0.05 0.26

Forest 2.50 0.02 0.42 5.57 0.06 0.19 -1.20 0.00 0.74 6.87 0.10 0.09

Grassland -0.34 0.00 0.92 5.41 0.31 0.00 -1.60 0.00 0.71 0.92 0.00 0.72

Desert -1.89 0.08 0.13 0.17 0.00 0.81 -2.44 0.12 0.06 -1.31 0.04 0.31

Cropland 1.08 0.00 0.75 4.81 0.23 0.01 -0.51 0.00 0.91 5.29 0.11 0.07

Notes TCV represents tundra and cushion vegetation, and the unit of the slope is 10-4

Bold numbers indicate statistically significant trends (p\ 0.05)

Fig. 4 Spatial patterns of NDVI trends in different seasons on

the Mongolian Plateau from 1982 to 2011: a spring (March–

May), b summer (June–August), c autumn (September–Novem-

ber), and d the growing season. The areas where the mean

seasonal NDVI was below 0.05 and the mean seasonal

temperature was lower than 0 �C were excluded from the

analysis to remove the bias caused by snow cover. Only pixels

showing a statistically significant trend (p\ 0.05) are colored,

and the gray areas indicate no significant change (p C 0.05).

(Color figure online)
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precipitation only accounted for 30 % of the variation

in the NDVI, indicating the existence of non-climatic

effects on NDVI dynamics in this area. Seasonal

precipitation, particularly in summer, showed signifi-

cant impacts on the variation in the growing season

NDVI for steppe vegetation in both Mongolia and the

IMAR (Table 4). Although the temperature in all

seasons displayed no significant correlation with the

growing season NDVI, a significant positive relation-

ship was observed between the NDVI and temperature

Fig. 5 Interannual

variability in the growing

season NDVI for meadow

steppe (a IMAR,

d Mongolia), typical steppe

(b IMAR, e Mongolia) and

desert steppe vegetation

(c IMAR, f Mongolia) from

1982 to 2011. The gray area

represents the range of the

NDVI between the 25 and

75 % quantiles. (Color

figure online)

Fig. 6 Interannual variations in the percentages of land areas

showing different growing season NDVI levels for steppe

vegetation from 1982 to 2011. The steppe vegetation includes

meadow steppe, typical steppe and desert steppe vegetation.

a IMAR of China; and b Mongolia
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in spring for meadow steppe vegetation in Mongolia

(r = 0.49, p\ 0.05) and in the IMAR (r = 0. 56,

p\ 0.01). Furthermore, the warming temperature in

spring advanced the onset of green-up for meadow

steppe vegetation in the IMAR (r = 0.38, p\ 0.05).

These results implied that the major drivers of seasonal

NDVI dynamics differ by season and vegetation type.

Non-climatic influence on changes in the NDVI

The RESTREND method was used to distinguish

vegetation changes caused by human activities from

those caused by climatic changes. The interannual

trends of the residuals from theNDVImax–precipitation

regressions exhibited similar spatial patterns to trends in

the growing season NDVI. The areas showing positive

NDVI trends in the southern Horqin sandy land and

western Mu Us sandy land (Fig. 4d) also displayed

positive residual trends (Fig. 8). A negative residual

trend was pronounced over the northern and central

areas of the Mongolian Plateau, encompassing areas

mainly occupied by forest and meadow steppe vegeta-

tion. In southern Mongolia and the western IMAR,

certain pixels of desert steppe vegetation also showed a

decreasing trend in the residuals.

Discussion

Spatiotemporal patterns of vegetation change

The average satellite-retrieved change in the NDVI

demonstrated that there was no linear trend in the

growing season NDVI across the Mongolian Plateau

from 1982 to 2011, whereas an overall greening

appeared during 1982–1998. This is in agreement with

the results of previous studies showing that piecewise

regression models work well in the eastern IMAR and

that no significant change, or even a declining trend,

occurred after the 1990s (Ma et al. 2010; Peng et al.

2011). A similar reverse trend was evident on the

Mongolian steppe, with a 16 % decline in vegetation

cover being reported (Park and Sohn 2010; Sternberg

et al. 2011).

Regarding the spatial pattern of the change in the

NDVI, the growing season NDVI increased in only

11 % of the study area, mainly in the southern Horqin

sandy land and the Ordos highland. Possible drivers of

this increase include active measures to halt desertifi-

cation, such as grassland restoration and conservation,

rather than changes in precipitation (Xu et al. 2010; Li

et al. 2012). The bulk of pixels displaying a negative

trend was found in the central eastern IMAR, mainly

corresponding to typical and meadow steppe vegeta-

tion, where vegetation growth was constrained by a

blend of precipitation and human activities. For

example, Tong et al. (2004) and Kawada et al. (2011)

reported that farmingmay lead to desertification on the

Xilingol steppe and that the degraded areas of the

steppe increased dramatically from 1985 to 1999.

Although a widespread, but marginal, decreasing trend

is discernible in the Gobi desert, it should be verified

with a ground-based investigation due to the insuffi-

cient precision of the NDVI value obtained for such

limited vegetation cover (often presenting an annual

NDVI between 0.05 and 0.1) (Pettorelli et al. 2005;

Sternberg et al. 2011). In addition, linear trends are not

always meaningful in this highly dynamic

Fig. 7 Average green-up onset date (a) and its rate of change (b) on theMongolian Plateau from 1982 to 2011. Thewhite color denotes

sparse vegetation cover or pixels without a statistically significant trend (p\ 0.05). (Color figure online)
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environment, where considerable annual fluctuations

are the normal behavior, and change is not always

linear.

The positive NDVI trend observed in spring

appeared to be consistent across the three main steppe

types (meadow, typical, and desert steppe), implying

that the existence of an advanced green-up onset or

increased vegetation activity, despite the different

drivers involved. The satellite-derived phenological

trends confirmed that the onset of green-up advanced in

the meadow steppe vegetation. This result is similar to

those of Yu et al. (2003) and Cong et al. (2013), who

detected an earlier onset of green-up on the north

Mongolian Plateau. However, no trend of the onset date

was discerned in our study for the typical and desert

steppe vegetation types. It is noteworthy that the

changing trends in the green-up onset date may differ

among studies because of the different methods used to

retrieve phenological timing (Reed et al. 1994; White

et al. 2009; Cong et al. 2013). Other factors, such as

Table 3 Mean changes in annual and seasonal temperature and precipitation in Mongolia and Inner Mongolia from 1982 to 2011

Region Temperature (�C) Precipitation (mm)

Spring Summer Autumn Winter Annual Spring Summer Autumn Winter Annual

Mongolia 0.05* 0.09** 0.04 0.00 0.04** 0.40* -1.40* -0.32* 0.05 -1.26*

Inner Mongolia 0.04* 0.07** 0.04* 0.02 0.04** 0.32 -2.13** -0.14 0.09* -1.87*

Notes Double and single asterisks denote statistical significance at the 1 and 5 % levels, respectively

Table 4 Correlation coefficients between the growing season

NDVI and temperature (RNDVI-T) or precipitation (RNDVI-P) in

different seasons (the preceding winter, spring, summer, and

autumn) for the three main steppe types and all vegetated areas

in Mongolia and the Inner Mongolia Autonomous Region

(IMAR) from 1982 to 2011

Region Grassland type NDVI-Temperature (RNDVI-T) NDVI-Precipitation (RNDVI-P)

Win Spr Sum Aut Win Spr Sum Aut

Mongolia Meadow steppe -0.13 -0.35 -0.31 0.07 -0.13 -0.16 0.62** 0.38*

Typical steppe -0.14 -0.18 -0.23 0.05 0.11 0.09 0.57** 0.33

Desert steppe -0.08 -0.20 -0.15 0.01 0.07 0.21 0.55** 0.01

VA -0.07 -0.24 -0.17 0.04 0.01 0.04 0.63** 0.23

IMAR Meadow steppe 0.18 -0.07 -0.25 -0.05 -0.04 0.18 0.53** 0.37*

Typical steppe 0.25 0.03 -0.23 0.12 -0.19 0.28 0.61** 0.01

Desert steppe 0.15 0.05 -0.14 0.13 0.00 0.42* 0.66** -0.18

VA 0.24 0.01 0.08 0.06 0.00 0.34 0.47** 0.08

Notes VA represents all vegetated areas. Double and single asterisks denote statistical significance at the 1 and 5 % levels,

respectively

Fig. 8 Map of the statistical significance of the residual time

regression. The residuals were calculated as the difference

between the observed and predicted NDVI using a linear model

of NDVImax (the averaged value during July and August) and

precipitation (the accumulated value from three different

periods: July to August, May to August, and the preceding

October to August). Only pixels showing a statistically

significant trend (p\ 0.05) are colored, and the gray areas

indicate no significant change (p C 0.05). White coloration

denotes sparse vegetation cover or pixels without a statistically

significant correlation between NDVImax and precipitation

(p C 0.05). (Color figure online)
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differences in the sources of remote-sensing data and

study periods, may lead to reversal of the detected

trends (Yu et al. 2010; Piao et al. 2011; Zhang et al.

2013). In addition, the seasonal NDVI curves are likely

specific for different vegetation types, and the use of

only one method may result in limitations when

examining the date of the onset of vegetation green-up.

Controls of NDVI trends

The vegetation dynamics in most arid and semi-arid

areas are highly sensitive to changes in precipitation

(Nicholson 2005; Seaquist et al. 2008; Zhao et al. 2011;

Fensholt et al. 2012). This study showed that precipi-

tation is a primary determinant controlling the variation

of the NDVI for each vegetation type. Further investi-

gation revealed that the trend of the growing season

NDVI was positively correlated with precipitation

during summer, indicating that the effect corresponds

to the timing andmagnitude of climate variability (Fang

et al. 2005; Craine et al. 2011) (Table 4). Although our

results show that temperature exerts a minor or even

negative effect on the plant growth of steppe vegetation,

we also noted that warming was the most significant

contributor to the advancedonset of vegetationgreen-up

and increased vegetation growth in spring for the

meadow steppe vegetation type. These climate-driven

patterns confirm that increased temperature in relatively

wetter ecosystems could enhance vegetation growth,

whereas warming in water-limited ecosystems in semi-

arid regions, such as typical and desert steppes, may not

have any positive effect on vegetation growth (Lian-

court et al. 2012).

However, precipitation, which was identified as the

primary constraint on plant growth in the study area,

explained only approximately 30 % of the variance in

the annual NDVI in the IMAR.We detected increasing

NDVI trends in some areas, such as the Mu Us sandy

land, where precipitation did not show significant

changes during the study period (Fig. 4). Furthermore,

a positive trend in the residuals was observed in these

areas (Fig. 8). Possible explanations for these findings

could be associated with the active management

measures implemented by the government to halt

desertification (Runnstrom 2003; Xu et al. 2010).

Many studies have found that enhanced anthropogenic

activities in this area, such as afforestation and land

abandonment, may play an important role in vegeta-

tion recovery (Li et al. 2008; John et al. 2009; Li et al.

2012). In addition, we detected negative residual

trends in several areas where the NDVI decreased

despite an absence of significant changes in precipi-

tation. Overgrazing, land management, and mineral

extraction may cause rangeland degradation on the

plateau (Sankey et al. 2009; Addison et al. 2012). It

should also be noted that RESTREND analysis may

underestimate human impacts, particularly when

severe disturbance or land use change has occurred

(Wessels et al. 2012). RESTREND analysis is based

on the assumption of significant temporal correlation

between NDVImax and precipitation, but this rela-

tionship is lost when severe degradation occurs.

Conclusions

The analysis of a 30-year time series of satellite data in

this study provided a meaningful assessment of the

spatial and temporal changes in the NDVI on the

Mongolian Plateau. The results indicated that there

was no significant increase in the growing season

NDVI across the Plateau. However, local trends

revealed considerable variations in the direction and

magnitude of the changes that have occurred. Vege-

tation greening was detected for steppe vegetation in

spring, which was partially consistent with the

advanced onset of green-up. Precipitation was the

primary climatic constraint on plant growth in the

growing season, whereas temperature was positively

correlated with vegetation activity in meadow steppe

only in spring. Regional-scale greening/browning

patterns, likely due to regional policy and human

impacts, should be further examined using ground-

based investigations.
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