# Data Fusion: A Machine Learning Tool for Forecasting Winter Mixed Precipitation Events

Brian Filipiak, Kristen Corbosiero, Andrea Lang, Ross Lazear, and Nick Bassill

University at Albany, SUNY Albany, NY

102<sup>nd</sup> AMS Annual Meeting 01/26/2022

NWS Focal Points: Christina Speciale (ALB), Neil Stuart (ALB)





### Background

- Numerous sources of data for forecasters
- Develop algorithm to breakdown conditions surrounding an event
- Identify important environmental variables for each type of precipitation
- Synthesize data and conditions to improve forecasting ability



### Random Forest

- 'Forest' of decision trees
- Identify patterns and nonlinear interactions in data
- Train the trees to make a prediction from its previous knowledge
- Generate a probabilistic outcome and relative feature importance
- Promotes explainable AI





#### Data Sources

- CoCoRaHS Reports
  - Trained, consistent observations
- New York State Mesonet (NYSM)
  - Hourly Statistics
  - 5-minute observations
- Upper Air Soundings
  - BUF, ALB, OKX offices and WMW (Canada)
- North American Mesoscale (NAM) Forecast Model
  - 4km resolution from BUFKIT



| 10 m Winds (sonic) |
|--------------------|
| 10 m Winds (prop)  |
| 9 m Temperature    |
| 2 m Temperature    |
| Relative Humidity  |
| Solar Insolation   |
| Precipitation      |
| Snow Depth         |
| Camera             |
| Pressure           |
| 5 cm Soil          |
| 25 cm Soil         |
| 50 cm Soil         |



### Random Forest Methods & Evaluation

- Configuration: 650 trees, 75/25 training and testing split, stratified
- Accuracy, Precision, Recall, F1 Scores





#### Random Forest Framework

State University of New York

#### **Testing Data Sets**



#### Random Forest Results (NYSM)



**Original Soundings-**NWS Buffalo, Albany, and Upton HAVG RCO: NYSM Hourly Averaged Raw and Calculated Original HAVG RO: NYSM Hourly Averaged Raw Original HAVG CO: NYSM Hourly Averaged **Calculated Original** OBS5 RCO: NYSM 5minute observations Raw and Calculated Original OBS5 RO: NYSM 5minute observations Raw Original OBS5 CO: NYSM 5minute observations **Calculated Original** ALL RCO: ALL NYSM Raw and Calculated Original ALL RO: ALL NYSM Raw Original ALL CO: ALL NYSM **Calculated Original** 



### Random Forest Results (NYSM)





## Random Forest Results (NAM)

- NAM 4km sounding profile dataset
- Uses forecast hour timing to match with events



NAM\_RCO: NAM Raw and Calculated Original NAM\_RO: NAM Raw Original NAM\_CO: NAM Calculated Original



#### Random Forest Results (NAM)



NAM\_RCO: NAM Raw and Calculated Original NAM\_RO: NAM Raw Original NAM\_CO: NAM Calculated Original

NAM\_RCN: NAM Raw and Calculated New NAM\_RN: NAM Raw New NAM\_CN: NAM Calculated New



#### Random Forest Results (NAM)





#### Random Forest Results (Updated NYSM)



Original Soundings- NWS Buffalo, Albany, and Upton Updated Soundings- NWS Buffalo, Albany, Upton and Maniwaki, Quebec or NAM ALL\_RCO: ALL NYSM Raw and Calculated Original ALL\_RO: ALL NYSM Raw Original ALL\_CO: ALL NYSM Calculated Original

ALL\_RCN: ALL NYSM Raw and Calculated New ALL\_RN: ALL NYSM Raw New ALL\_CN: ALL NYSM Calculated New

ALL\_NAM\_RCN: ALL NYSM and NAM Raw and Calculated New ALL\_NAM\_RN: ALL NYSM and NAM Raw New

ALL\_NAM\_CN: ALL NYSM and NAM Calculated New



## **Operational Product**

- Develop web-based product for operational use
- Live updating map of probabilities with radar/reflectivity
- Incorporate information about most important variables





#### **Operational Product**

#### Data Fusion Operational Website: http://www.atmos.albany.edu/student/ filipiak/op/



# SCAN ME



#### NYSM and Upper Air Raw and Calculated Data

Home NYSM & Upper Air NAMNEST Data and Methods Training

#### \*\*\*\*EXPERIMENTAL\*\*\*\*

Please click any button to view the map of your choice

|--|

#### **Top 10 Most Important Variables**

| temp_2m_min | temp_2m_avg | temp_2m_max | temp_2m  | Geopotential     | Temperature at | Temperature at | Temperature at | 700hpa Wet Bulb | 850hpa Wet Bulb |
|-------------|-------------|-------------|----------|------------------|----------------|----------------|----------------|-----------------|-----------------|
| [degC]      | [degC]      | [degC]      | [degC]   | Height at 500hpa | 850hPa         | 700hPa         | 925hPa         | Temperature     | Temperature     |
| 0.07293     | 0.068204    | 0.06617     | 0.065254 | 0.032656         | 0.031072       | 0.02952        | 0.02824        | 0.024154        | 0.023014        |

Dec 7, 2021

01:31:11 UTC

Contact: Brian Filipiak bfilipiak@albany.edu







| NAMNEST Raw and Calculated Data                        |                  |                             |                  |          |  |  |
|--------------------------------------------------------|------------------|-----------------------------|------------------|----------|--|--|
| Home                                                   | NYSM & Upper Air | NAMNEST                     | Data and Methods | Training |  |  |
| ****EX                                                 | KPERIMENTAI      | Dec 7, 2021<br>01:31:24 UTC |                  |          |  |  |
| Please click any button to view the map of your choice |                  |                             |                  |          |  |  |

Sleet

All Mixed

Freezing Rain

State University of New York

Dominant

Feature Table for Each Forecast Hour

Contact: Brian Filipiak bfilipiak@albany.edu

Snow

Rain



Dominant Precipitation Probabilities with NAM Composite Reflectivity Valid at 01\_19\_2022\_1800Z



г 75

- 65

55

- 45 25 Refectivity dBZ

25

- 15

>



### Recent/Future Work

- Studied individual variable impact more in depth
- Add in additional data sources and combinations
- Develop metrics to identify how our product compares to other methods

Albany

 Evaluate and complete verification of website products over winter months

State University of New York



|          | Phenomenon obse      |                      |                           |  |
|----------|----------------------|----------------------|---------------------------|--|
| Forecast | Yes                  | No                   | Metrics                   |  |
| Yes      | True positives (TP)  | False positives (FP) | Precision                 |  |
|          | Hits                 | False alarms         | ТР                        |  |
|          |                      |                      | $\overline{TP + FP}$      |  |
| No       | False negatives (FN) | True negatives (TN)  | Negative predictive value |  |
|          | Misses               | Correct negatives    | TN                        |  |
|          |                      |                      | FN + TN                   |  |
| Metrics  | Sensitivity          | Specificity          | Accuracy                  |  |
|          | TP                   | TN                   | TP + TN                   |  |
|          | $\overline{TP + FN}$ | $\overline{FP + TN}$ | TP + FP + FN + TN         |  |

#### Conclusions

- The random forest can accurately identify different winter precipitation types
- Specific data types and combinations of may need to be treated differently
- There will always be room for human interpretation of ML generated guidance





#### Questions?

#### Contact: Brian Filipiak, bfilipiak@albany.edu

http://www.atmos.albany.edu/student/filipiak/ op/



