Large-Scale Midlatitude–Polar Flow Interactions Leading to Rapid Surface Ice Melt over Greenland and Sea Ice Volume Loss over the Arctic Ocean in June 2019

#### Lance F. Bosart, Kevin A. Biernat, and Daniel Keyser

Department of Atmospheric and Environmental Sciences University at Albany, State University of New York

> American Geophysical Union Fall Meeting 2019 San Francisco, CA 94103 Thursday 12 December 2019 Session A43B-06

Research Supported by ONR Grant N00014-18-1-2200

#### Purpose

 Investigate upstream antecedent atmospheric conditions associated with massive Greenland surface ice melt event of June 2019

#### Data

- CFSR gridded analyses at 0.5° resolution (Saha et al. 2010)
- GFS forecasts at 0.5° resolution (NOAA/NCEP Central Operations)

#### **Motivation**

#### Greenland Melt Extent 2019



#### **Motivation**



"Steffen Olsen, an Arctic researcher with the Danish Meteorological Institute, and dogs set out to retrieve oceanographic moorings and a weather station over meltwater topping sea ice in northwest Greenland on Thursday." (Photo credit: Steffen Olsen). Source: Jason Samenow, Washington Post, 14 June 2019;

https://www.washingtonpost.com/weather/2019/06/14/arctic-ocean-greenland-ice-sheet-have-seen-record-june-ice-loss/

#### **Motivation**

ECMWF 6-hourly Snapshot 2-meter Temp Anomaly [°F] INIT: 00Z12JUN2019 fx: [018] hr --> Wed 18Z12JUN2019

Anomaly Min|Max -21.1° | 40.4°F



18-h forecast of 2-m temperature anomaly (°F) valid at 1800 UTC 12 June 2019 from ECMWF model initialized at 0000 UTC 12 June 2019.

Source: Jason Samenow, Washington Post, 14 June 2019;

https://www.washingtonpost.com/weather/2019/06/14/arctic-ocean-greenland-ice-sheet-have-seen-record-june-ice-loss/

### Negative NAO (26 Apr-23 Jun 2019)



**Source: NOAA Climate Prediction Center** 

### Negative NAO (26 Apr-23 Jun 2019)



26 Apr–23 Jun 2019 time-mean 300-hPa geopotential height (dam, black) and time-mean standardized anomalies of geopotential height (σ, shaded)

## Upstream Antecedent North Pacific Circulation Regime Evolution 1–9 Jun 2019

#### 0000 UTC 1 Jun 2019



| 26         | 64                                                                                                                                                                     | 270 | 276 | 282 | 288 | 294 | 300 | 306 | 312 | 318 | 324 | 330 | 336 | 342           | 348                   | 354                    | 360                  | 366                     | 372                   | 378            | 384 K               |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------------|-----------------------|------------------------|----------------------|-------------------------|-----------------------|----------------|---------------------|
|            |                                                                                                                                                                        |     |     |     |     |     |     |     |     |     |     |     |     |               |                       |                        |                      |                         |                       |                |                     |
|            |                                                                                                                                                                        |     |     |     |     |     |     |     |     |     |     |     |     |               |                       |                        |                      |                         |                       |                |                     |
|            |                                                                                                                                                                        | 20  |     | 25  | 3   | 30  | 35  | 5   | 40  |     | 45  |     | 50  |               | 55                    | 6                      | 0                    | 65                      | 5                     | 70             | mm                  |
|            |                                                                                                                                                                        |     |     |     |     |     |     |     |     |     |     |     |     |               |                       |                        |                      |                         |                       |                |                     |
| Po<br>925– | Potential temperature (K, shaded) and wind<br>(kt, flags and barbs) on 2-PVU surface;<br>925–850-hPa cycl. rel. vort. (0.5 × 10 <sup>-4</sup> s <sup>-1</sup> ; black) |     |     |     |     |     |     |     |     |     |     |     |     | a ge<br>nd ba | o. he<br>arbs)<br>and | eight<br>, and<br>d PW | (dan<br>tem<br>⁄ (mn | n, bla<br>pera<br>n, sh | ack),<br>ture<br>aded | wind<br>(°C, I | l (kt, fla<br>red), |

#### 0000 UTC 3 Jun 2019





#### 0000 UTC 5 Jun 2019





#### 0000 UTC 7 Jun 2019





#### 0000 UTC 9 Jun 2019





### Summary (1)

- Tibetan Plateau "heat burst" enables NPAC anticyclonic wave breaking (AWB) and subtropical jet (STJ) extension
- AWB allows potential vorticity streamers (PVSs) to form east of the Dateline and poleward of the NPAC STJ corridor
- Subtropical moisture is advected toward California and Mexico along this NPAC STJ corridor
- Cyclonic wave breaking (CWB) events that occur poleward of this STJ corridor facilitate an eastward STJ extension

### North America Circulation Regime Evolution 3–9 Jun 2019

#### 0000 UTC 3 Jun 2019



|    | 6  |    | 8  | 3    |    | 10   |    | 12   |   | 16  |   | 20  |   | 2   | 4 |   | 28 10 | ) <sup>−5</sup> s <sup>−1</sup> |
|----|----|----|----|------|----|------|----|------|---|-----|---|-----|---|-----|---|---|-------|---------------------------------|
|    |    |    |    |      |    |      |    |      |   |     |   |     |   |     |   |   |       |                                 |
|    |    |    |    |      |    |      |    |      |   |     |   |     |   |     |   |   |       |                                 |
| -6 | -5 | -4 | -3 | -2.5 | -2 | -1.5 | -1 | -0.5 | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 4 | 5     | 6σ                              |

500-hPa geo. height (dam, black), temp. (K, red), cycl. rel. vort. ( $10^{-5}$  s<sup>-1</sup>, shaded),  $\omega$  (5 ×  $10^{-3}$  s<sup>-1</sup>, blue), and wind (kt, flags and barbs)

#### 0000 UTC 5 Jun 2019



|    | 6  |    | 8  | 3    |    | 10   |    | 12   |   | 16  |   | 20  |   | 2   | 4 |   | 28 10 | ) <sup>-5</sup> s <sup>-1</sup> |
|----|----|----|----|------|----|------|----|------|---|-----|---|-----|---|-----|---|---|-------|---------------------------------|
|    |    |    |    |      |    |      |    |      |   |     |   |     |   |     |   |   |       |                                 |
|    |    |    |    |      |    |      |    |      |   |     |   |     |   |     |   |   |       |                                 |
| -6 | -5 | -4 | -3 | -2.5 | -2 | -1.5 | -1 | -0.5 | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 4 | 5     | 6σ                              |

500-hPa geo. height (dam, black), temp. (K, red), cycl. rel. vort. ( $10^{-5}$  s<sup>-1</sup>, shaded),  $\omega$  (5 ×  $10^{-3}$  s<sup>-1</sup>, blue), and wind (kt, flags and barbs)

#### 0000 UTC 7 Jun 2019



|   |    | 6  |    | 8  | 3    |    | 10   |    | 12   |   | 16  |   | 20  |   | 2   | 4 |   | 28 10 | ) <sup>-5</sup> s <sup>-1</sup> |
|---|----|----|----|----|------|----|------|----|------|---|-----|---|-----|---|-----|---|---|-------|---------------------------------|
|   |    |    |    |    |      |    |      |    |      |   |     |   |     |   |     |   |   |       |                                 |
|   |    |    |    |    |      |    |      |    |      |   |     |   |     |   |     |   |   |       |                                 |
| _ | -6 | -5 | -4 | -3 | -2.5 | -2 | -1.5 | -1 | -0.5 | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 4 | 5     | 6σ                              |

500-hPa geo. height (dam, black), temp. (K, red), cycl. rel. vort. ( $10^{-5}$  s<sup>-1</sup>, shaded),  $\omega$  (5 ×  $10^{-3}$  s<sup>-1</sup>, blue), and wind (kt, flags and barbs)

#### 0000 UTC 9 Jun 2019



|    | 6  |    | 8  | 3    |    | 10   |    | 12   |   | 16  |   | 20  |   | 2   | 4 |   | 28 10 | ) <sup>–5</sup> s <sup>–1</sup> |
|----|----|----|----|------|----|------|----|------|---|-----|---|-----|---|-----|---|---|-------|---------------------------------|
|    |    |    |    |      |    |      |    |      |   |     |   |     |   |     |   |   |       |                                 |
|    |    |    |    |      |    |      |    |      |   |     |   |     |   |     |   |   |       |                                 |
| -6 | -5 | -4 | -3 | -2.5 | -2 | -1.5 | -1 | -0.5 | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 4 | 5     | 6σ                              |

500-hPa geo. height (dam, black), temp. (K, red), cycl. rel. vort. ( $10^{-5}$  s<sup>-1</sup>, shaded),  $\omega$  (5 ×  $10^{-3}$  s<sup>-1</sup>, blue), and wind (kt, flags and barbs)

### **Tropical Disturbance**



NHC Graphical Tropical Weather Outlook from 1800 UTC 3 June

### **Trajectories**



NOAA HYSPLIT forward trajectories starting at 0000 UTC 2 Jun 2019

# Summary (2)

- North Pacific AWB enables western North America ridging, Southwest troughing, and Gulf of Mexico moisture pooling
- Southwest trough draws tropical moisture poleward from the southern Gulf of Mexico after it reaches Texas
- A Gulf of Mexico tropical system enhances moisture over the Mississippi Valley as the Texas trough upscales and cuts off
- Western North American ridging allows a deepening downstream trough to phase with the Texas trough
- A deep moist southerly flow ahead of this phased trough allows deep tropical moisture to reach the Arctic

# Northeast (NE) Canada and Northern Greenland Ridging 10–14 Jun 2019

#### 0000 UTC 9 Jun 2019



blue), and wind (kt, flags and barbs)

wind (kt, flags and barbs), and standardized anomalies of PW ( $\sigma$ , shaded)

#### 0000 UTC 10 Jun 2019



blue), and wind (kt, flags and barbs)

standardized anomalies of PW ( $\sigma$ , shaded)

#### 0000 UTC 11 Jun 2019



blue), and wind (kt, flags and barbs)

standardized anomalies of PW (o, shaded)

#### 0000 UTC 12 Jun 2019



blue), and wind (kt, flags and barbs)

standardized anomalies of PW ( $\sigma$ , shaded)

#### 0000 UTC 13 Jun 2019



blue), and wind (kt, flags and barbs)

standardized anomalies of PW (o, shaded)

#### 0000 UTC 14 Jun 2019



#### 0000 UTC 9 Jun 2019





 $\begin{array}{l} 300-200\text{-hPa PV (PVU, gray),} \\ \text{nondivergent wind (m s^{-1}, vectors), and PV} \\ \text{advection by nondivergent wind (PVU d^{-1}, shading),} \\ \text{and } 600-400\text{-hPa }\omega (5 \times 10^{-3} \, \text{s}^{-1}, \, \text{red}) \end{array} \qquad \begin{array}{l} 300-200\text{-hPa PV (PVU, gray),} \\ \text{irrotational wind (m s^{-1}, vectors), and PV advection} \\ \text{by irrotational wind (PVU d^{-1}, shading),} \\ \text{and } 600-400\text{-hPa }\omega (5 \times 10^{-3} \, \text{s}^{-1}, \, \text{red}) \end{array}$ 

#### 0000 UTC 10 Jun 2019





 $\begin{array}{c} 300-200\text{-hPa PV (PVU, gray),} \\ \text{nondivergent wind (m s^{-1}, vectors), and PV} \\ \text{advection by nondivergent wind (PVU d^{-1}, shading),} \\ \text{and } 600-400\text{-hPa }\omega (5 \times 10^{-3} \, \text{s}^{-1}, \, \text{red}) \end{array} \qquad \begin{array}{c} 300-200\text{-hPa PV (PVU, gray),} \\ \text{irrotational wind (m s^{-1}, vectors), and PV advection} \\ \text{by irrotational wind (PVU d^{-1}, shading),} \\ \text{and } 600-400\text{-hPa }\omega (5 \times 10^{-3} \, \text{s}^{-1}, \, \text{red}) \end{array}$ 

#### 0000 UTC 11 Jun 2019



 $\begin{array}{l} 300-200\text{-hPa PV (PVU, gray),} \\ \text{nondivergent wind (m s^{-1}, vectors), and PV} \\ \text{advection by nondivergent wind (PVU d^{-1}, shading),} \\ \text{and } 600-400\text{-hPa }\omega (5 \times 10^{-3} \, \text{s}^{-1}, \, \text{red}) \end{array} \qquad \begin{array}{l} 300-200\text{-hPa PV (PVU, gray),} \\ \text{irrotational wind (m s^{-1}, vectors), and PV advection} \\ \text{by irrotational wind (PVU d^{-1}, shading),} \\ \text{and } 600-400\text{-hPa }\omega (5 \times 10^{-3} \, \text{s}^{-1}, \, \text{red}) \end{array}$ 

#### 0000 UTC 12 Jun 2019



 $\begin{array}{l} 300-200\text{-hPa PV (PVU, gray),} \\ \text{nondivergent wind (m s^{-1}, vectors), and PV} \\ \text{advection by nondivergent wind (PVU d^{-1}, shading),} \\ \text{and } 600-400\text{-hPa }\omega (5 \times 10^{-3} \, \text{s}^{-1}, \, \text{red}) \end{array} \qquad \begin{array}{l} 300-200\text{-hPa PV (PVU, gray),} \\ \text{irrotational wind (m s^{-1}, vectors), and PV advection} \\ \text{by irrotational wind (PVU d^{-1}, shading),} \\ \text{and } 600-400\text{-hPa }\omega (5 \times 10^{-3} \, \text{s}^{-1}, \, \text{red}) \end{array}$ 

#### 0000 UTC 13 Jun 2019





 $\begin{array}{c} 300-200\text{-hPa PV (PVU, gray),} \\ \text{nondivergent wind (m s^{-1}, vectors), and PV} \\ \text{advection by nondivergent wind (PVU d^{-1}, shading),} \\ \text{and } 600-400\text{-hPa }\omega (5 \times 10^{-3} \, \text{s}^{-1}, \, \text{red}) \end{array} \qquad \begin{array}{c} 300-200\text{-hPa PV (PVU, gray),} \\ \text{irrotational wind (m s^{-1}, vectors), and PV advection} \\ \text{by irrotational wind (PVU d^{-1}, shading),} \\ \text{and } 600-400\text{-hPa }\omega (5 \times 10^{-3} \, \text{s}^{-1}, \, \text{red}) \end{array}$ 

#### 0000 UTC 14 Jun 2019





 $\begin{array}{c} 300-200\text{-hPa PV (PVU, gray),} \\ \text{nondivergent wind (m s^{-1}, vectors), and PV} \\ \text{advection by nondivergent wind (PVU d^{-1}, shading),} \\ \text{and } 600-400\text{-hPa }\omega (5 \times 10^{-3} \, \text{s}^{-1}, \, \text{red}) \end{array} \qquad \begin{array}{c} 300-200\text{-hPa PV (PVU, gray),} \\ \text{irrotational wind (m s^{-1}, vectors), and PV advection} \\ \text{by irrotational wind (PVU d^{-1}, shading),} \\ \text{and } 600-400\text{-hPa }\omega (5 \times 10^{-3} \, \text{s}^{-1}, \, \text{red}) \end{array}$ 

### Sounding (0000 UTC 13 Jun 2019)



Source: University of Wyoming

#### **Time Series**



#### **Time Series**



#### **Time Series**





### **Trajectories**



NOAA HYSPLIT backward trajectories ending at (left) 1200 UTC 12 Jun 2019 and (right) 0000 UTC 13 Jun 2019



- Initial ridging over northeastern Canada occurs east of a long tropical moisture axis
- Subsequent ridging occurs over northeastern Greenland to the north of a deep cutoff cyclone
- Negative PV advection by the nondivergent and irrotational winds builds Canada and Greenland ridges
- Ridging over Canada and Greenland is further enhanced by diabatically driven ridge building

### Summary of Flow Evolution 3–14 June 2019

#### 0000 UTC 3 Jun 2019



#### 0000 UTC 4 Jun 2019



#### 0000 UTC 5 Jun 2019



#### 0000 UTC 6 Jun 2019



#### 0000 UTC 7 Jun 2019



#### 0000 UTC 8 Jun 2019



#### 0000 UTC 9 Jun 2019



#### 0000 UTC 9 Jun 2019



#### 0000 UTC 10 Jun 2019



#### 0000 UTC 11 Jun 2019



#### 0000 UTC 12 Jun 2019



#### 0000 UTC 13 Jun 2019



#### 0000 UTC 14 Jun 2019





500-hPa geo. height (dam, black), temp. (K, red), cycl. rel. vort. ( $10^{-5} \text{ s}^{-1}$ , shaded),  $\omega$  (5 ×  $10^{-3} \text{ s}^{-1}$ , blue), and wind (kt, flags and barbs) from GFS



500-hPa geo. height (dam, black), temp. (K, red), cycl. rel. vort. ( $10^{-5} \text{ s}^{-1}$ , shaded),  $\omega$  (5 ×  $10^{-3} \text{ s}^{-1}$ , blue), and wind (kt, flags and barbs) from GFS



500-hPa geo. height (dam, black), temp. (K, red), cycl. rel. vort. ( $10^{-5}$  s<sup>-1</sup>, shaded),  $\omega$  (5 ×  $10^{-3}$  s<sup>-1</sup>, blue), and wind (kt, flags and barbs) from GFS



500-hPa geo. height (dam, black), temp. (K, red), cycl. rel. vort. ( $10^{-5} \text{ s}^{-1}$ , shaded),  $\omega$  (5 ×  $10^{-3} \text{ s}^{-1}$ , blue), and wind (kt, flags and barbs) from GFS



500-hPa geo. height (dam, black), temp. (K, red), cycl. rel. vort. ( $10^{-5} \text{ s}^{-1}$ , shaded),  $\omega$  (5 ×  $10^{-3} \text{ s}^{-1}$ , blue), and wind (kt, flags and barbs) from GFS



500-hPa geo. height (dam, black), temp. (K, red), cycl. rel. vort. ( $10^{-5}$  s<sup>-1</sup>, shaded),  $\omega$  (5 ×  $10^{-3}$  s<sup>-1</sup>, blue), and wind (kt, flags and barbs) from GFS



500-hPa geo. height (dam, black), temp. (K, red), cycl. rel. vort. ( $10^{-5}$  s<sup>-1</sup>, shaded),  $\omega$  (5 ×  $10^{-3}$  s<sup>-1</sup>, blue), and wind (kt, flags and barbs) from GFS



500-hPa geo. height (dam, black), temp. (K, red), cycl. rel. vort. ( $10^{-5} s^{-1}$ , shaded),  $\omega$  (5 ×  $10^{-3} s^{-1}$ , blue), and wind (kt, flags and barbs) from GFS



- Origins of the Greenland surface ice-melt of June 2019 were over the Tibetan Plateau ("heat burst") and North Pacific
- "Heat burst" leads to NPAC anticyclonic wave breaking, a jet extension, and western North America ridging
- Western North America ridging leads to trough deepening and trough phasing east of the Rockies
- Trough phasing enables a deep southerly flow of moist tropical air to reach the Arctic
- Greenland ridging is driven by negative PV advection by the nondivergent and irrotational winds