High-Latitude Anticyclonic Rossby Wave Breaking and High-Latitude Heat Waves over Parts of the Northern Hemisphere during Late June 2021

Lance F. Bosart1, Tyler C. Leicht1, Alex K. Mitchell1, Minghao Zhou1, Kevin A. Biernat2, and Daniel Keyser1

1Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, NY
2National Research Council, Naval Research Laboratory, Monterey, CA

1) Purpose
- Illustrate upstream flow conditions over the North Pacific (NPAC) that contributed to the Pacific Northwest heat wave of late June 2021.
- Document the evolution of the large-scale flow pattern over the eastern NPAC and western North America during the heat wave.
- Link the Pacific Northwest heat wave to a subsequent high-latitude Eurasian heat wave.

2) Overview
- Illustrate the Pacific Northwest heat wave via selected standardized anomaly maps valid 0000 UTC 29 June 2021 (source: Alicia Bentley).

3) Climate Context
Unprecedented heat in the Pacific Northwest: Quillayute, WA, reached 110°F (43.3°C) on 28 June. Previous monthly record was 92°F (33.3°C).

4) North Pacific Large-Scale Flow Pattern Perspective: 25–27 June 2021

5) Did TC Champi Contribute to Downstream Baroclinic Development Prior to the Pacific Northwest Heat Wave?
- Little evidence for significant negative PV advection by the irrotational wind in the upper troposphere downstream of TC Champi.
- Better evidence that tropical moisture advection contributed to deep cyclogenesis in the Gulf of Alaska and downstream ridge amplification.

6) Conclusions
- Downstream baroclinic development (DBD) occurs across the NPAC during late June 2021.
- Strong cyclogenesis in the Gulf of Alaska fueled by tropical moisture induces strong ridge amplification over western Canada.
- Pacific Northwest experiences a deep ESE (offshore) flow equatorward of the western Canada ridge.
- Combination of a strong ridge to the north and an offshore trough drives a hot and dry downslope offshore flow.
- An extremely hot, subsidence-warmed air mass (30°C at 850 hPa) supports widespread record-breaking temperatures.

7) Postscript
- Is there any linkage between the Eurasian and Pacific Northwest heat waves of late June 2021?
- DBD occurs across the NH during the latter half of June 2021.
- Whether or not TC Champi’s interaction with the NPAC jet stream induces further DBD is still an open question.
- Hovmöller analyses are inconclusive as to whether the June 2021 Eurasian and Pacific Northwest heat waves are linked.
- NH dynamic tropopause analyses suggest, but *do not* prove, that the Eurasian and Pacific Northwest heat waves may be linked.

8) Postscript Conclusions
- DBD occurs across the NH during the latter half of June 2021.
- Whether or not TC Champi’s interaction with the NPAC jet stream induces further DBD is still an open question.
- Hovmöller analyses are inconclusive as to whether the June 2021 Eurasian and Pacific Northwest heat waves are linked.
- NH dynamic tropopause analyses suggest, but “do not” prove, that the Eurasian and Pacific Northwest heat waves may be linked.