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Overview 

•  Arctic cyclones (ACs) are synoptic-scale low pressure systems that frequently 
form over the Arctic or move into the Arctic from lower latitudes during summer.  

•  Forecast error growth associated with interactions between ACs and the synoptic-
scale flow over the Arctic, baroclinic processes, and latent heating may contribute 
to relatively low forecast skill of ACs and the synoptic-scale flow over the Arctic.  

•  Purpose: Examine various features and processes governing the evolution of 
ACs that are characterized by low forecast skill and that occur during periods of 
low forecast skill of the synoptic-scale flow over the Arctic during summer.  
 
 
 



Arctic forecast skill evaluation 

•  Utilize day-5 forecasts of 500-hPa geopotential height initialized at 0000 UTC 
during June, July, and August of 2007–2017 from 11-member 1° GEFS reforecast 
dataset v2 (Hamill et al. 2013). 

•  Calculate area-averaged root mean square error (RMSE) of 500-hPa 
geopotential height over the Arctic, using ERA-Interim as verification. 

  
•  Calculate standardized anomaly of area-averaged RMSE (σRMSE). 

•  Refer to forecast days valid at day 5 associated with the top 10% of σRMSE as low-
skill days and forecasts initialized 5 days prior to low-skill days as low-skill 
forecasts. 
 

•  Refer to time periods through day 5 encompassed by low-skill forecasts as low-
skill periods. 

 
 
 



Identification of low-skill ACs 

•  Create a climatology of ACs occurring during June, July, and August of 2007–
2017 by obtaining cyclone tracks from 1° ERA-Interim cyclone climatology 
prepared by Sprenger et al. (2017). 

•  Deem cyclones that last ≥ 48 h and spend at least some portion of their lifetimes 
in the Arctic (> 70°N) as ACs. 

•  Select ACs occurring during low-skill periods. 

 

 
 
 



Identification of low-skill ACs 

•  Track ACs in forecasts from GEFS reforecast dataset v2 by utilizing an objective 
sea level pressure (SLP)-based tracking algorithm (Crawford et al. 2020). 

•  Consider forecasts initialized 120 h prior to the time of lowest SLP of the ACs 
when located in the Arctic during low-skill periods. 

•  Calculate 120-h intensity RMSE based on minimum SLP of the ACs at the 
aforementioned time of lowest SLP, using ERA-Interim as verification.  

•  Refer to ACs associated with the top 25% of 120-h intensity RMSE as low-skill 
ACs during low-skill periods 

 

 
 
 



AC-centered composites 

•  Composite top 25% strongest low-skill ACs during low-skill periods (N = 14) at 
various lag times relative to the time of lowest SLP of the ACs when located in the 
Arctic using ERA5 (0.25° × 0.25°). 
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•  For each lag time: 

–  Determine mean latitude and longitude of ACs. 
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EASE2 Grid  
(source: NSIDC: https://nsidc.org/ease/ease-grid-

projection-gt) 
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SLP (black) on 25 × 25 km EASE2 grid (grid points 
in red) valid 1200 UTC 6 Aug 2012  



AC-centered composites 

•  Composite top 25% strongest low-skill ACs during low-skill periods (N = 14) at 
various lag times relative to the time of lowest SLP of the ACs when located in the 
Arctic using ERA5 (0.25° × 0.25°). 
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grid such that the AC center lies on                                                                  
y-axis (0° longitude) of the EASE2 grid. 

–  Shift projected grids to mean latitude of ACs. 

 
 
 

SLP (black) on 25 × 25 km EASE2 grid (grid points 
in red) valid 1200 UTC 6 Aug 2012  



AC-centered composites 

Grid before shifting to mean latitude Grid after shifting to mean latitude 



AC-centered composites 

•  Composite top 25% strongest low-skill ACs during low-skill periods (N = 14) at 
various lag times relative to the time of lowest SLP of the ACs when located in the 
Arctic using ERA5 (0.25° × 0.25°). 

 
•  For each lag time: 

–  Determine mean latitude and longitude of ACs. 

–  Rotate and project ERA5 grids to a 25 × 25 km                                                  
Equal-Area Scalable Earth 2.0 (EASE2)                                                             
grid such that the AC center lies on                                                                  
y-axis (0° longitude) of the EASE2 grid. 

–  Shift projected grids to mean latitude of ACs. 
 
–  Rotate shifted grids to mean longitude of ACs. 

 
 
 



AC location at lag 0 h (time of lowest SLP of AC in Arctic) 

Red lines show tracks of ACs during lag –48 h to lag 36 h,  
when valid. 
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Lag hour relative to time of lowest SLP of AC in Arctic  

AC-centered composites 

Time series of minimum SLP (hPa) of ACs (red) and of 
mean minimum SLP (hPa) of ACs (black) during lag –48 h 
to lag 36 h, when valid. 

N = 14 N = 14 



(a) Lag = −48 h (N = 13) (b) Lag = −36 h (N = 13) (c) Lag = −24 h (N = 14) (d) Lag = −12 h (N = 14) 

(e) Lag = 0 h (N = 14) (f) Lag = 12 h (N = 13) (g) Lag = 24 h (N = 13) (h) Lag = 36 h (N = 12) 
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(a) Lag = −48 h (N = 13) (b) Lag = −36 h (N = 13) (c) Lag = −24 h (N = 14) (d) Lag = −12 h (N = 14) 

(e) Lag = 0 h (N = 14) (f) Lag = 12 h (N = 13) (g) Lag = 24 h (N = 13) (h) Lag = 36 h (N = 12) 
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(a) Lag = −48 h (N = 13) (b) Lag = −36 h (N = 13) (c) Lag = −24 h (N = 14) (d) Lag = −12 h (N = 14) 

(e) Lag = 0 h (N = 14) (f) Lag = 12 h (N = 13) (g) Lag = 24 h (N = 13) (h) Lag = 36 h (N = 12) 
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(a) Lag = −48 h (N = 13) (b) Lag = −36 h (N = 13) (c) Lag = −24 h (N = 14) (d) Lag = −12 h (N = 14) 

(e) Lag = 0 h (N = 14) (f) Lag = 12 h (N = 13) (g) Lag = 24 h (N = 13) (h) Lag = 36 h (N = 12) 
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(a) Lag = −48 h (N = 13) (b) Lag = −36 h (N = 13) (c) Lag = −24 h (N = 14) (d) Lag = −12 h (N = 14) 

(e) Lag = 0 h (N = 14) (f) Lag = 12 h (N = 13) (g) Lag = 24 h (N = 13) (h) Lag = 36 h (N = 12) 
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Summary 

•  Intense low-skill ACs during low-skill periods intensify downstream of a mid-to-
upper-tropospheric vortex in a region of relatively strong lower-to-midtropospheric 
baroclinicity, lower-to-midtropospheric ascent, tropospheric-integrated vapor 
transport, and upper-tropospheric divergence.  

•  A combination of baroclinic processes and latent heating likely plays important 
roles in the intensification of intense low-skill ACs during low-skill periods. 

 
 
 



Extra Slides 
 
 
 



0000 UTC positions of AC 

Red line shows track of AC during 13–19 Aug 2016.      
Numbers represent dates of 0000 UTC positions of AC. 
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Day in August 2016 labeled at 0000 UTC  

Example AC in Composite (AC during 13–19 Aug 2016) 

Time series of minimum SLP (hPa) of AC                        
during 13–19 Aug 2016. 
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300-hPa wind speed (m s−1) 
AC location 
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thickness (dam) 

(a) Lag = −48 h (0000 UTC 14 Aug 2016) (b) Lag = −36 h (1200 UTC 14 Aug 2016) (c) Lag = −24 h (0000 UTC 15 Aug 2016) (d) Lag = −12 h (1200 UTC 15 Aug 2016) 

(e) Lag = 0 h (0000 UTC 16 Aug 2016) (f) Lag = 12 h (1200 UTC 16 Aug 2016) (g) Lag = 24 h (0000 UTC 17 Aug 2016) (h) Lag = 36 h (1200 UTC 17 Aug 2016) 

Data source: ERA5 
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200-km area-averaged 500-hPa relative vorticity (10−5 s−1) 
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(a) Lag = −48 h (0000 UTC 14 Aug 2016) (b) Lag = −36 h (1200 UTC 14 Aug 2016) (c) Lag = −24 h (0000 UTC 15 Aug 2016) (d) Lag = −12 h (1200 UTC 15 Aug 2016) 

(e) Lag = 0 h (0000 UTC 16 Aug 2016) (f) Lag = 12 h (1200 UTC 16 Aug 2016) (g) Lag = 24 h (0000 UTC 17 Aug 2016) (h) Lag = 36 h (1200 UTC 17 Aug 2016) 

Data source: ERA5 
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(a) Lag = −48 h (0000 UTC 14 Aug 2016) (b) Lag = −36 h (1200 UTC 14 Aug 2016) (c) Lag = −24 h (0000 UTC 15 Aug 2016) (d) Lag = −12 h (1200 UTC 15 Aug 2016) 

(e) Lag = 0 h (0000 UTC 16 Aug 2016) (f) Lag = 12 h (1200 UTC 16 Aug 2016) (g) Lag = 24 h (0000 UTC 17 Aug 2016) (h) Lag = 36 h (1200 UTC 17 Aug 2016) 

Data source: ERA5 
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(a) Lag = −48 h (0000 UTC 14 Aug 2016) 
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