Using airborne measurements to evaluate forecasts of freezing drizzle aloft: results from the WINTRE-MIX field campaign

Megan R. Schiede, Justin R. Minder University at Albany, State University of New York

> 105th AMS Annual Meeting 25th Conference on Aviation, Range, and Aerospace Meteorology New Orleans, LA January 14th, 2025

Funding provided by NSF Grant AGS-2113995

PRECIPITATION PROCESSES OF SLD

- Supercooled large droplets (SLD) are water droplets that are in a liquid state below 0°C that have a diameter greater than 100 μm
- Significant icing hazard as SLD accretes on aircraft
- Intricate precipitation processes pose a challenge to numerical weather prediction (NWP) when predicting SLD (*Jensen et al. 2023*)

ICING FORECAST CHALLENGES

- Microphysical properties remain a challenge for NWP as liquid water content (LWC) and drop size distribution (DSD) fail to be modeled correctly (*Thompson et al. 2008, Thompson et al. 2017, Bernstein et al. 2019, Tessendorf et al. 2021*)
- Aviation forecasts use highresolution operational models given their use of multiple hydrometeor, mixed-phased microphysics (*Benjamin et al. 2016*)

Code of Federal Regulations Title 14 Chapter 1 Part 25 Small Drop → Appendix C Large Drop → Appendix O **Evaluate the capability of operational high-resolution model** (HRRR) to accurately predict FZDZ aloft

Understand sources of biases in model forecasts of FZDZ aloft

Perform WRF simulation to match HRRR configuration

Conduct additional sensitivity experiment to mitigate biases

WINTRE-MIX OVERVIEW

- The Winter Precipitation Type Research Multiscale Experiment (WINTRE-MIX) conducted
 11 intensive observing periods (IOPs) in winter
 2022 (*Minder et al. 2023*)
- Aimed to improve observations and forecasts of mixed precipitation in complex terrain

WINTRE-MIX OVERVIEW

- The Winter Precipitation Type Research Multiscale Experiment (WINTRE-MIX) conducted 11 intensive observing periods (IOPs) in winter 2022 (*Minder et al. 2023*)
- Aimed to improve observations and forecasts of mixed precipitation in complex terrain
- Leg0 of the first flight of IOP9 will be focus of this analysis due to ...
 - Widespread FZDZ observations in abnormally cold cloud top temperatures < -15°C
 - Significant evidence of SLD by in-situ measurements on aircraft

METHODS – OBSERVATIONS

	Instrument	Variable Measured	C-TNIC
	Cloud Droplet Probe (CDP)	LWC, Number concentration	
Micro- physical	2D-Stereo Probe (2DS)	Number concentration, Size distribution	C C C C C C C C C C C C C C C C C C C
	High Volume Precipitation Spectrometer (HVPS)	Number concentration	 Used instrumentation on board NRC Convair-580 aircraft Developed "Roundness Algorithm" to classify roundness of particles for confirmation of pure liquid conditions
	Nevzorov Hot-wire Probe	LWC, TWC	
Aircraft State	Rosemount Total Air Temperature Probe	Temperature	
	Rosemont Icing Detector	Icing detector magnetostrictive oscillator (MSO) frequency	
Radar	NRC W-band Airborne Radar (NAW)	W-band radar reflectivity	 Input data provided by Dr. Jeff French and Eden Koval

METHODS – NUMERICAL WEATHER PREDICTION

- **Operational model** (*HRRR*) and WRF simulations are initialized at 1200 UTC 7 March 2022
- 1600 UTC 2000 UTC were examined [FH04 FH08]

Control experiment (*CTRL***)**

- WRF simulations forced using RAP data
- HRRR-like configuration
 - 3-km resolution
 - Thompson Aerosol-Aware Microphysics Scheme (*Thompson and Eidhammer*, 2014)
 - Aerosols sourced from climatology
- CR-SIM post-processing used to simulate cloud radar reflectivity (*Oue et al. 2020*)

METHODS – NUMERICAL WEATHER PREDICTION

- **Operational model** (*HRRR*) and WRF simulations are initialized at 1200 UTC 7 March 2022
- 1600 UTC 2000 UTC were examined [FH04 FH08]

Control experiment (*CTRL***)**

- WRF simulations forced using RAP data
- HRRR-like configuration
 - 3-km resolution
 - Thompson Aerosol-Aware Microphysics Scheme (*Thompson and Eidhammer*, 2014)
 - Aerosols sourced from climatology

• CR-SIM post-processing used to simulate cloud radar reflectivity (*Oue et al. 2020*)

Sensitivity experiment (UpperDry)

- Same HRRR-like configuration as CTRL
- Decreasing RH above approximately 5 km to less than or equal to 30% in the WRF initial conditions

OBSERVATIONS (OBS.)

OBSERVATIONS (OBS.)

OBS. & MODEL COMPARISON – TEMPERATURE

Model analysis include a 9 km x 9 km horizontal buffer (shading)

Cloud top temperature $< -15^{\circ}C$

HRRR captures temperature well

CTRL shows warm bias following aircraft's initial ascent

OBS. & MODEL COMPARISON – MICROPHYSICS

OBS. & MODEL COMPARISON – CLOUD RADAR REFLECTIVITY

OBS. & MODEL COMPARISON – CLOUD RADAR REFLECTIVITY

MODEL COMPARISON – AVG. VERTICAL PROFILES

- The removal of seeding mechanisms aloft increases rain mixing ratios but does not stop partial glaciation of the lower-level cloud
- Partial glaciation bias points to existence of additional microphysical errors within models
 Subsequent sensitivity experiments will include modification of aerosols and ice initiation

SUMMARY

- WINTRE-MIX observations revealed aircraft encountered hazardous icing conditions (LWC_{max} = 0.157 g m⁻³) aloft in abnormally cold cloud top temperatures (T < -15°C)
- Operational model (HRRR) & HRRR-like simulations (CTRL) reveal similar bias of the underproduction of SLD and overproduction of snow
- Removing the upper-level cloud to inhibit seeding led to an increase in rain mixing ratios but did not prevent partial glaciation of the lower-level cloud
- Simulations in progress to further isolate sources of bias in simulated SLD formation

Contact info: Megan Schiede mschiede@albany.edu

SUPPLEMENTAL SLIDES

NO

Not all Spherical

EXAMPLE CLASSIFICATIONS FROM ALGORITHM

OBS. & MODEL COMPARISON – TEMPERATURE

OBS. & MODEL COMPARISON – MICROPHYSICS

MODEL COMPARISON – MIXING RATIO CATEGORIES

MODEL COMPARISON – MIXING RATIO CATEGORIES

