The Influence of Boundary Layer Mixing on the 26–28 January 2015 "Twitter" Snowstorm

Matthew Vaughan and Robert Fovell 18th Cyclone Workshop 5 October 2017

Motivating Question

 How do physics parameterizations affect extratropical cyclone (ET) development and evolution?

Motivating Question

How do physics parameterizations affect ET development and evolution?

Motivating Question (more focused)

 How does boundary layer mixing strength effect ET development and evolution within WRF

How can the boundary layer affect ET development and evolution?

- How can the boundary layer affect ET development and evolution?
 - Adamson et al. (2005) highlighted PV generation (dry) through Ekman pumping and baroclinic processes

- How can the boundary layer affect ET development and evolution?
 - Adamson et al. (2005) highlighted PV generation (dry) through Ekman pumping and baroclinic processes
 - Stoelinga (1996) found PV generated from latent heating was crucial to cyclone evolution
 - ~70% of the low-level nondivergent circulation
 - PBL can influence thermal and moisture profiles

 Beare (2007) found Ekman pumping, forced mostly by the cold conveyor-belt, important to cyclone evolution.

PBL Mixing Sensitivity

- Turning off PBL mixing in the unstable cold-sector boundary layer increased deepening by 22.5 hPa
- Turning off all mixing produced ~25hPa of deepening

Figure 10. Time series of (a) the minimum meansea-level pressure over the cyclone for the coarse sensitivity experiment. (Beare 2007)

 Motivated by these results, we use WRF to assess the impact of PBL mixing on extratropical cyclones.

PBL Processes in WRF

 Turbulent PBL processes are too small to resolve for km-scale models

Subgrid scale processes must be parameterized

- Goal is to describe the mean turbulent vertical transport of heat, momentum and moisture by eddies
 - One common approach is through a nonlocal (e.g., YSU), K-profile scheme

All about the eddies

FIG. 1. Typical variation of eddy viscosity K with height in the boundary layer proposed by O'Brien (1970). Adopted from Stull (1988).

- How do you obtain an eddy diffusivity (K) profile?
 - Develop it (MYJ)
 - Enforce it (YSU)

$$-\overline{(w'\phi')} = K_{\phi}\frac{\partial\overline{\phi}}{\partial z},$$

Coniglio et al. (2013)

- YSU scheme estimates PBL height and imposes K-profile shape function
 - PBL height (h) is where the bulk Richardson number equals the critical Richardson number (BCR)

$$K_{zm} = \kappa w_s z \left(1 - \frac{z}{h}\right)^2$$

$$\operatorname{Rib}(z) = \frac{g[\theta_{v}(z) - \theta_{s}]z}{\theta_{va}U(z)^{2}}$$

Hong (2006)

YSU scheme estimates PBL height and imposes
 K-profile shape function
 Appropriate surface potential temp

$$K_{zm} = \kappa w_s z (1 - \frac{z}{h})^2 \qquad \text{Rib}(z) = \frac{g[\theta_v(z) - \theta_s]z}{\theta_{va} U(z)^2}$$

Potential temp at lowest model level
Critical Richardson number varies with version (~0.75–0.0).

FIG. 1. Typical variation of eddy viscosity K with height in the boundary layer proposed by O'Brien (1970). Adopted from Stull (1988).

 Iterative process to find PBL height

FIG. 1. Typical variation of eddy viscosity K with height in the boundary layer proposed by O'Brien (1970). Adopted from Stull (1988).

is less than critical Ri

FIG. 1. Typical variation of eddy viscosity K with height in the boundary layer proposed by O'Brien (1970). Adopted from Stull (1988).

found...

FIG. 1. Typical variation of eddy viscosity K with height in the boundary layer proposed by O'Brien (1970). Adopted from Stull (1988).

Prescribe mixing profile

Project Question

• What significance does critical bulk Richardson number have on winter cyclones?

EVENT HISTORY & EXPERIMENTAL DESIGN

26–28 January Snowstorm

 Coastal extratropical cyclone impacting New England and parts of the Mid-Atlantic

0600 UTC 27 January 2015 "Twitter" snowstorm

"My deepest apologies to many key decision makers and so many members of the general public," said Gary Szatkowski, meteorologist-incharge at the National Weather Service in Mount Holly (NJ.com)

Courtesy: H. Archambault

26–28 January Snowstorm Crippling snowfall over much of the Northeast. Sharp gradient on Long Island

WeatherBell

26–28 January Snowstorm

Substantial spread within the models

Experimental Design

- Vary the critical bulk Richardson number in a WRF simulation of the 27 January 2015 snowstorm
 - 0000 UTC 26 to 0000 UTC 29 January 2015

Recall iterative process used by YSU scheme

 Altering critical Richardson number effectively
 changes the strength and depth of PBL mixing

Experimental Design

- Initial and boundary conditions: ERA-I
- Triple Nest
 4-km inner domain,
- Similar physics to RAP
 Benjamin et al. (2016)
- Use YSU PBL scheme
- Set critical Richardson number to 0.0 or 0.25

Experimental Design

- Initial and boundary conditions: ERA-I
- Triple Nest
 - 4-km inner domain,
- Similar physics to RAP
 Benjamin et al. (2016)
- Use YSU PBL scheme
- Set critical Richardson number to <u>0.0</u> or <u>0.25</u>

Radius vs. height cross-sections showing the temporally-averaged symmetric components of water vapor (shaded) and eddy diffusivity applied to vapor (*Kh*; 10 m2 s–1 contours) using YSU with (a) Rib*cr*=0.25, and (b) the default setup. (Bu et al. 2017)

Vertical Profiles in the Warm Sector

 Results for eddy diffusivity, wind speed, and mixing ratio all are consistent with prior PBL studies

Vertical Profiles in the Warm Sector

 Results for eddy diffusivity, wind speed, and mixing ratio all are consistent with prior PBL studies

RESULTS

Remarks

- Less mixing storm has generally higher precipitation totals and lags behind more mixing case
 - What does the mixing do to the lower-tropospheric PV field?

Total Snowfall Difference (less mixing–more mixing) and MSLP (Magenta contours = less mixing) at 0600 UTC 28 January 2015

Remarks

- Less mixing storm
 has higher low-level
 PV to the north and
 west
 - Likely influences lowlevel circulation
 - What may cause the additional PV?

925–800-hPa PV Difference (Fill, PVU, less mixing–more mixing) and MSLP (Red contours = less mixing) at 1800 UTC 27 January 2015

Concluding Remarks

- Less mixing leads to more precipitation and a less progressive storm
- Stronger PV evident on the north and west side of the cyclone in the less-mixing case
- Preservation of PBL theta-e within the less-mixing case may lead to more PV generation upon release of instability.
- Storm may be less progressive due to influence of PV on storm low-level circulation (Stoelinga 1996) and/or enhanced divergent outflow via latent heating

Future Work

 Trajectory analysis and PV inversion (Stoelinga 1996)

Test additional cases (varying PWAT)

Swing by the poster: *The Influence of Boundary Layer Mixing on the 27–28 January 2015 "Twitter" Snowstorm: Sensitivity Experiments*

I was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

Extra Slides

Poor Man's Warm Sector

- Used layer-averaged 950–800-hPa theta to compute anomalies for each time-step within the domain
- Used positive anomalies for designating the warm sector

NOLH & Control

950–700-hPa PV (00Z 28 Jan)

950–700-hPa PV (00Z 28 Jan)

