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ABSTRACT

Despite recent improvements made to tropical cyclone intensity predictions, this study investigates a dif-

ferent approach than those attempted thus far. Here, the overall environmental setup at genesis is evaluated

to determine whether it predisposes a storm to reach its future maximum intensity. Variables retrieved from

ERA-Interim are used to generate storm-centered composites at the time of genesis for Atlantic basin, main

development region TCs from 1979–2015. Composites are stratified by their maximum attained intensity:

tropical depressions (GTD), tropical storms (GTS), minor hurricanes (GMN), or major hurricanes (GMJ). A

multiple-parameter linear regression is then used to associate the eventual attained intensity of tropical cy-

clone to the obtained variables at genesis. The regression has an adjusted r 2 of 0.39, which indicates that a

statistical relationship is present. Regression coefficients, along with the spatial distribution of variables in the

storm-centered composites, indicate that storms that reach higher intensities are associated at genesis with

stronger, more compact, low-level vortices, better-defined outflow jets, a more compact region of high

midlevel relative humidity, and higher atmospheric water vapor content.

1. Introduction

Tropical cyclone (TC) intensity prediction remains a

critical issue in operational meteorology despite recent

improvements in intensity forecasts (DeMaria et al.

2014). The current literature focuses on factors behind

1) along-track intensity fluctuations and 2) whether

tropical cyclogenesis will occur. An area of research

missing from the literature and explored here is

whether a more favorable environment at genesis might

initially predispose a storm to reach its future maximum

achieved intensity.

Along-track intensity fluctuations, both external in-

teractions and internal processes, are the focus of the

majority of the research on TC intensity (e.g., Alvey

et al. 2015). Externally induced fluctuations can occur

as TCs traverse thousands of kilometers and interact

with differing environments. Such interactions include

movement into areas with varying sea surface tem-

peratures, which can alter both surface fluxes and

ocean mixing, and the interaction with upper-level

troughs that can change both the vertical wind shear

and eddy momentum fluxes (e.g., Challa and Pfeffer

1980; Pfeffer and Challa 1981; Holland and Merrill

1984; Molinari and Vollaro 1990; DeMaria 1996; Shay

et al. 2000; Shen and Ginis 2003). However, some

studies have shown that the environment a TC interacts

with along its path does not have a significant impact on

intensity (e.g., Hendricks et al. 2010). Regardless, TCs

can resist external influences if the storm is associated

with high inertial stability (Rappin et al. 2011). In-

tensity fluctuations can also be induced through in-

ternal processes such as eyewall replacement cycles,

barotropic instability, and axisymmetrization of vorti-

cal hot towers (VHTs) via vortex Rossby waves (e.g.,

Schubert et al. 1999; Landsea et al. 2004; Montgomery

et al. 2006; Sitkowski et al. 2011; Montgomery and

Smith 2012). These processes can occur once, multiple

times, or not at all along a TC’s path.

One well-known statistical model that attempts to

include these external and internal forcings in their
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TC intensity predictions is the Statistical Hurricane

Intensity Prediction Scheme (SHIPS). SHIPS predicts

TC intensity changes through multiple regression

techniques using climatological, persistence, and

synoptic predictors (DeMaria and Kaplan 1994, 1999;

DeMaria et al. 2005). The model was used in the

creation and tuning of a rapid intensity index (RII) for

the Atlantic basin to account for rapid intensification

cases (Kaplan and DeMaria 2003; Kaplan et al. 2010,

2015). Research relating the intensity of TCs to the

surrounding large-scale environments has also been

performed using linear regression modeling (Lee et al.

2015, 2016).

Related to the intensity change prediction problem

of an established TC, there is also active research on

whether, and how, a tropical disturbance intensifies

into a tropical depression (e.g., McBride and Zehr

1981; Pfeffer and Challa 1981; Smith and Montgomery

2012; Komaromi 2013; Zawislak and Zipser 2014b;

Helms and Hart 2015). Often, comparisons are made

between developing and nondeveloping TCs through

composite analyses to further understand distinguish-

ing factors for genesis. These factors include moisten-

ing of midlevels, an increase in the cyclonic relative

vorticity at inner radii in the lower troposphere, the

development of a strong warm core, and intense

widespread convection. There are two major pathways

for genesis that highlight some of these favorable

conditions and provide the disturbances with sufficient

surface cyclonic vorticity (Braun et al. 2010; Zawislak

and Zipser 2014a). The first pathway is the bottom-up

theory, which involves low-level potential vorticity

anomalies interacting with an existing mesoscale vor-

tex to enhance the convergence near the surface

(Hendricks et al. 2004; Montgomery et al. 2006; Bell

and Montgomery 2010). The second is the top-down

theory, where stratiform rain evaporates near the

surface causing subsidence that advects positive vor-

ticity from aloft to lower levels (Bister and Emanuel

1997; Ritchie and Holland 1997; Simpson et al. 1997).

There has also been recent research on the top-down

method and the ways that the midlevel vortex can re-

sult in a TC. For example, Nolan (2007) focused on the

importance of saturation of the mid- to upper levels for

intensification of the midlevel vortex. Also, Gjorgjievska

and Raymond (2014) showed that convergence near the

surface is forced by large gradients of vertical mass flux,

which are due to moist convection induced by the mid-

level vortex.

Here, the relationship between TCs at genesis and their

maximum attained intensity is investigated for TCs

within the Atlantic basin main development region

(MDR) over a 37-yr period (1979–2015) through a

multiple-parameter linear regression analysis of storm-

centered composites. Composites are generated using

the European Centre for Medium-Range Weather

Forecasts (ECMWF) interim reanalysis (ERA-Interim,

hereafter ERA-I; Dee et al. 2011) and are stratified by

their maximum attained intensity. In this paper, the

methods and results from the regression index will be first

discussed. Subsequently, the relationship of the re-

gression index to the spatial distribution shown in storm-

centered composites is detailed.

2. Data

a. TC data

Four times daily, Atlantic basin TC location and in-

tensity track data over a 37-yr period (1979–2015) were

obtained from theNHC ‘‘best track’’ hurricane database

(HURDAT2; Landsea and Franklin 2013). Because of

the subjective nature of HURDAT2, uncertainties in

position, intensity, and pressure data retrieved are

present. A detailed description of uncertainties present

is provided in Torn and Snyder (2012) and in Landsea

and Franklin (2013).

Tracks were stratified into four intensity groupings

defined as storms that 1) did not intensify beyond trop-

ical depression status (GTD), 2) intensified to tropical

storm status (GTS), 3) achieved minor hurricane in-

tensity status (GMN), and 4) reached major hurricane

intensity status (GMJ).

Within each grouping, genesis points were extracted

at the first instance along a track where a TC achieved

tropical depression status. Storm motion was then

calculated by taking the one-sided difference between

this genesis point and the subsequent center point

location.

Two filters were then applied to the genesis point data.

First, genesis points were spatially restricted to the

MDR (58–208N, 708–108W) to eliminate latitude and

longitude biases, as well as to include storms that

form through similar dynamical processes (McTaggart-

Cowan et al. 2008). Second, genesis points were tem-

porally restricted by the number of 6-h periods until a

storm reached its maximum intensity. Only storms that

took between 1 and 9 days to reach their maximum in-

tensity, the 10th and 90th percentiles, respectively, were

included. This restriction was applied to minimize po-

tential biases caused by storm length, which, for exam-

ple, could introduce external interactions or allow for

internal processes to occur that might cause intensity

fluctuations.

Table 1 lists the original and remaining sample sizes

of TC genesis points that fit the time and location
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criteria, where 35% of storms remain after subsetting.

The spatial distribution of remaining genesis points are

shown in Fig. 1. Hereafter, mention of genesis points

refers to this subsetted data.

b. Numerical model analyses

Storm-centered, storm-relative composites were

computed from the 6-hourly ERA-I by extracting data

from a 1408 longitude 3 1128 latitude box centered on

each genesis point identified. Storm-relative flow at

various levels was calculated by subtracting the storm

motion from the zonal and meridional wind. The ERA-I

dataset is available on 37 pressure levels with a hori-

zontal resolution of 0.78 3 0.78.

3. Methods

a. Environmental variables

Variables included in this study are those discussed in

the literature as being influential in TC genesis: midlevel

relative humidity (RH), local (single column) deep

layer, local vertical wind shear (LWS),1 low-level rela-

tive vorticity z, upper-level divergence D, sea surface

temperature (SST), and total column water (TCW)

(Gray 1968, 1979; Emanuel and Nolan 2004; Camargo

et al. 2007; Tippett et al. 2011). Units and levels2 chosen

are found in Table 2. Two measures of moisture are

chosen, as the humidity at one atmospheric level is not

necessarily correlated with the moisture in an entire

atmospheric column.

It is important to understand how asymmetries in the

environmental setup might lead to a more viable storm

at genesis. Based on azimuthal averages of relative vor-

ticity, the dominant cyclonic circulation extends from

the center to about 500km in ERA-I (see Fig.). Thus,

values within twenty-five 5.68 longitude by 5.68 latitude
boxes3 were averaged (Fig. 2). The inner grid (blue

boxes) focuses on the four quadrants of the TC—

northwest, northeast, southeast, and southwest. The

middle grid (green boxes) focuses on the boundary be-

tween the TC and the environment and also incorpo-

rates the entire TC center itself (Fig. 2, box M5). The

outer grid (pink boxes) focuses on the immediate envi-

ronment surrounding the storm.

Spatial differences between all intensity groupings

at 95% confidence were determined through boot-

strap testing with 1000 iterations. Differences be-

tween intensity groupings at the storm center position

itself were determined through similar bootstrap

testing, but at the 99% confidence level, unless oth-

erwise specified.

b. Statistical model

This study investigates the relationship between the

environmental parameters listed in section 3a at genesis

and the maximum intensity achieved by each individual

storm as identified in HURDAT2 by applying an em-

pirical multiparameter linear regression:

ŷ5 a1 �
n

i51

b
i
X

i
, (1)

where ŷ is the predicted intensity with units of knots (kt;

1 kt ’ 0.51 m s21) per unit of the specified variable, a is

the intercept term, n is the total number of predictors,

and bi is a regression coefficient multiplied by Xi, the

respective average value within a given longitude-by-

latitude box shown in Fig. 2.

TABLE 1. The original and remaining number of TC genesis

points after applying two filters to the data: geographical restriction

to the MDR (F1) and temporal restriction from 1 to 9 days (F2).

Label Original F1 F1 and F2

Tropical depression 141 48 31

Tropical storm 176 67 62

Minor (category 1 and 2) hurricanes 111 43 34

Major (category 3–5) hurricanes 92 68 57

FIG. 1. Spatial distribution of TC genesis points in theMDR from

January 1979 to December 2015 colored by their achieved maxi-

mum intensity grouping: GTD (green), GTS (yellow), GMN (or-

ange), and GMJ (red). Genesis points shown take between 1 and

9 days to reach their respective maximum intensity grouping.

1 Local vertical wind shear was calculated at each point. Thus,

close to the TC shear is storm dominated. Outside the main storm

circulation, shear represents the environmental shear.
2Multiple levels were tested with similar results. Therefore,

levels aligned with those found in the literature were chosen to be

used in this study.

3 This size box corresponds to 8 3 8 grid boxes at the 0.78 reso-
lution of ERA-I. Boxes of different sizes were explored and

qualitatively similar results were found. Using 8 3 8 grid boxes

yielded the highest r2 value in the regression analysis.
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A forward stepwise selection function was used to

reduce the total number of variables in the regression.

The goal of variable reduction is to remove meteoro-

logical predictors that could strongly correlate with each

other and provide a false improvement in correlation

(Nelson 2015). The forward stepwise selection function

used in this study chooses predictors based upon the

Akaike information criterion (AIC; Akaike 1974). AIC

is a criterion that evaluates the goodness of fit in amodel

to the number of predictors included in the model and is

calculated by

AIC5 2n2 2 log(L) , (2)

where n is the number of predictors and L is the

maximum of the likelihood function (Akaike 1974).

Therefore, the most optimum regression will have a low

AIC (Akaike 1974). Specifically, the step-AIC function

from the Modern Applied Statistics with S (MASS) R

package was used.

In an effort to even further eliminate the number of

parameters included in the regression, a cross-validation

approach was used to remove variables from the stepwise

forward selection regression. Themean and one standard

deviation of the deviance from10 tenfold cross-validation

simulations as a function of the number of predictors

were obtained followingmethods inDitchek et al. (2016).

From the resulting distribution of deviance values, when

the mean cross-validated deviance stops decreasing with

the addition of more variables, the remaining variables

can be excluded from the model.

4. Results

a. Regression index

From an initial 150-parameter selection,4 the AIC for-

ward stepwise selection technique selected a 74-parameter

model with an overall correlation coefficient r2 of 0.86 and

an adjusted r2 of 0.77. However, the inclusion of this many

variables in the regression equation may provide a false

increase in the r2 value.

Applying the cross-validation approach indicates that

the regression can be reduced to seven parameters

(Fig. 3), since the addition of more variables beyond

seven does not reduce the deviance further. The relative

importance of these variables and their individual con-

tribution to the overall r2 is shown in Fig. 4. The term

RHO7 contributes the least to the total r2 value (1.98%).

This suggests that while RHO7 may help the overall

performance of the regression, it is not as statistically

significant individually as the other variables included in

the regression. However, physically it does have con-

siderable meaning and positively adds to the total r2

value. Thus, this variable is still included in the index.

The final seven-parameter cross-validated linear re-

gression is given by the following:

ŷ523561:421 1:35TCW
I1
1 1:63LWS

M9

1 11:71TCW
M5

2 1:44LWS
O4

2 0:39RH
O7

1 14:79z
M5

1 1:20TCW
O1

, (3)

where subscripts indicate the box where the given vari-

able is selected (see Fig. 2).

This seven-parameter linear regression has an overall

r2 of 0.41 and an adjusted r2 of 0.39, with an F statistic of

17.5 and a p value of ,2 3 10216. There is a decrease

in both the overall r 2 and the adjusted r 2 from the

74-parameter model, but this decrease is associated with

the removal of correlated parameters and overfitting the

data. The r2 between the variables in the seven-parameter

model is weak, ranging from close to 0.00 to 0.22 with a

mean of 0.053 and a standard deviation of 0.058, in-

dicating that variables are not highly correlated and

TABLE 2. Candidate variables for the regression.

Variable Abbreviation Units Vertical level

Divergence D 1025 s21 200 hPa

Relative humidity RH % 500 hPa

Relative vorticity z 1025 s21 850 hPa

Sea surface

temperature

SST K Surface

Total column

water vapor

TCW kgm22 Column integrated

Local vertical

wind shear

LWS m s21 850–200 hPa

FIG. 2. A schematic of the 25 boxes chosen surrounding a genesis

point (black dot) on an inner grid (blue; 4 boxes), middle grid

(green; 9 boxes), and outer grid (pink; 12 boxes). Values within

each sector were averaged for each genesis point. Colors shown for

each grid will be used in subsequent figures.

4 For each of the six variables listed in section 3a, there are 25

area-averaged boxes as described in section 3b.
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further validating their use in the regression. It is pos-

sible that the regression could exhibit artificial skill due

to preferential predictor screening (DelSole and

Shukla 2009). To specifically verify and test the ro-

bustness in skill, the regression would need to be tested

on independent data. However, the purpose of the re-

gression presented here is not to serve as an opera-

tional metric of forecasting future TC intensity. Rather,

the regression is used to indicate key areas in storm-

centered composites, as described later, where there

is a relationship between environmental variables and

future maximum attained intensity.

Using Eq. (3), one can interpret how these terms at

genesis individually affect the subsequent intensity with

all else equal (Table 3). To achieve a high-intensity TC,

at genesis there should be high total column water in the

inner northwest quadrant of the TC (box I1), large deep-

layer, local vertical shear to the southeast of the TC (box

M9), high total column water near the TC genesis point

(box M5), weak deep-layer vertical shear to the north-

east of the TC (box O4), low midlevel relative humidity

to the west-southwest of the TC (box O7), strong posi-

tive low-level relative vorticity near the TC genesis point

(box M5), and high total column water to the northwest

of the TC (box O1). The implications of these relation-

ships to the maximum achieved intensity will be exam-

ined in section 4b with storm-centered composites.

To assess the statistical significance of each param-

eter included in the regression, the standard errors and

the p values of each predictor individually are sum-

marized in Table 3. The terms TCWI1 and TCWO1 have

the largest relative standard error compared to the

chosen coefficient. However, the p values associated

with all of the variables for this regression are less than

0.05, including TCWI1 and TCWO1. On the other hand,

the p values for TCWI1 and TCWO1 are high compared

to the other parameters in the regression. However, as

shown in Fig. 4, the contributions of TCWI1 and

TCWO1 to the overall r2 are large and on the same

order as the other variables chosen by the model, aside

from RHO7. This suggests that despite having a high

standard error and relatively higher p values, TCWI1

and TCWO1 are individually statistically significant.

Overall, the model performs well, illustrating a gen-

eral relationship between the genesis variables chosen

and subsequent maximum intensity. The model has an

acceptable correlation coefficient for both the overall r2

and the adjusted r2 as defined by Brooks and Carruthers

(1978).5 The regression has a small, near-negligible

positive bias of 1.09 3 10213 kt but has high mean ab-

solute error (MAE), root-mean-square error (RMSE)

and standard deviation (STD) (Table 3; units of kt).

Thus, on a long-term average across this dataset, the

regression will not produce much bias, but on an indi-

vidual storm-by-storm basis, there is potential for strong

deviations from the predicted value.

Figure 5 depicts the predicted intensity compared to

the observed intensity. Ideally, the regression should

follow the y 5 x line (Fig. 5, blue line). Rather, the

regression has a smaller slope (Fig. 5, red line), which

indicates that the regression underpredicts more in-

tense TCs and overpredicts weaker TCs. However, the

regression does depict GTS and GMN well. This is

expected when a linear regression model is applied to a

nonlinear relationship, which tends to reduce the re-

siduals in the middle of distributions but increases the

residuals at the extremes of distributions (e.g., Nelson

2015). Another explanation could be the strong vari-

ance in the GTD cases is skewing the regression line.

To examine the influence of the variance of the GTD

cases, all GTD storms were temporarily removed from

the dataset. A new multiparameter linear regression

FIG. 3. The mean (dots) and one standard deviation (error bars)

of the deviance from 10 tenfold cross-validation simulations as

a function of the number of predictors following methods in

Ditchek et al. (2016). After including seven (red) environmental

predictors, there is minimal increase in the model performance.

FIG. 4. Relative importance of each variable in relation to the

overall r2 value of the regression.

5 Brooks and Carruthers (1978) defined an acceptable correla-

tion as a correlation exceeding 0.5 or an r2 value exceeding 0.25 for

meteorological data.
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was then derived for the non-GTD cases. The new

model had an overall r2 of 0.38 and an adjusted r2 of

0.35. The fact that the overall and adjusted r2 is greater

for the original seven-parameter linear regression than

the non-GTD linear regression means that the strong

variance with GTD cases does not severely impact the

performance of the model. Further, the distribution of

residuals without the GTD cases (not shown) had a

very similar profile to the full, seven-parameter linear

regression residuals (Fig. 6b). While removing the

GTD cases did make the distribution more symmetric

and slightly decreased the amount of extreme negative

residuals, the changes in the distribution were not

drastic enough to warrant the complete removal of the

GTD cases. In addition, an adequate statistical model

of future TC intensity should incorporate storms that

did not intensify in order to understand why some TCs

intensify, while others do not. Therefore, a model can

be constructed with or without the GTD cases and the

overall r2 will be qualitatively the same.

Collectively, this suggests that in order to decrease the

deviance of the GTD cases and increase model perfor-

mance, more and different environmental parameters

should be included. It is possible that the strong variance

in the GTD cases is a result of not accounting for other

TC parameters. One parameter in particular, which is not

included in the derivation of the model, is a parameter

describing the convective intensity and/or distribution,

which plays a crucial role in the intensification process of

TCs (e.g., DeMaria et al. 2012; Kaplan et al. 2015).

Hereafter, all model evaluation refers to the original, full

dataset, seven-parameter linear regression [Eq. (3)].

Figure 6 contains four panels quantifying the re-

siduals with the regression. The fitted values in Fig. 6a

(otherwise known as ŷ) are the predicted intensity

corresponding to each data point (Holland 2011). The

regression residuals tend to fluctuate around zero (red

curve in Fig. 6a), but there is an extreme amount of

variation in the residuals for each predicted (fitted)

value, especially with GTD and GMJ.

The histogram of residuals (Fig. 6b) is approximately

normally distributed, having a slight positive skew,

which fits the above findings. This indicates that on a

long-term average with many data points, the model

does reduce the amount of residuals, but there is a signal

of strongest variation in the GTD composite.

The standardized residual and theoretical quantiles

plot, also known as a quantile–quantile (Q–Q) plot

(Fig. 6c), tests how normally distributed the residuals are

from the regression. TheQ–Q plot shows that the bulk of

the data points lie on the Q–Q line, except for two areas

near the tails of the line. While not extremely heavy

tailed, it shows that the actual negative residuals and ac-

tual positive residuals are slightly too negative and posi-

tive, respectively. This deviation from the Q–Q line

further validates the strong variance in the environment

with GMJ and, in particular, GTD. Physically, this means

that the environments in which GTD form are highly

variable and produce the most error in the model.

The last panel in Fig. 6 is an evaluation of the Cook’s

distance, which accounts for leverage and strength of the

residuals. A Cook’s distance is considered to be heavily

influential on the regression line if it has a value greater

than 0.5 (Holland 2011). In this case, the largest Cook’s

distance is just over 0.04. This means that any one in-

dividual point can be removed from the dataset without

changing the coefficients or performance of the re-

gression line. This is likely due to the appreciably small

bias with strong deviations.

TABLE 3. Coefficients (kt per unit of the specified variable) and

associated standard errors, t values, and p values as determined by

a linear regression and cross validation. Five additional basic sta-

tistical measures calculated are shown in the last line of the table

and have units of kt, except for covariance, which has units of kt2.

Region Coefficient Std err t value Pr(.jtj)
(Intercept) 23561.42 1047.51 23.40 0.00083

TCWI1 1.35 0.51 2.63 0.0094

LWSM9 1.62 0.50 3.23 0.0015

TCWM5 11.71 3.51 3.33 0.0010

LWSO4 21.44 0.31 24.64 6.68 3 1026

RHO7 20.39 0.13 22.97 0.0034

zM5 14.79 4.60 3.22 0.0015

TCWO1 1.19 0.45 2.67 0.0083

Bias MAE RMSE Covariance STD

1.09 3 10213 22.12 22.47 565.99 23.79 FIG. 5. The predicted intensity (kt) by linear regression com-

pared to the actual achieved intensity (kt) of genesis points in the

dataset, colored by achieved intensity. Included in the lower right is

the r2 value and adjusted r2 value along with the y 5 x line (blue)

and the regression line (red).
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It is therefore concluded fromTable 3 and Fig. 6 that the

bulk of the regression does reduce the size of residuals in a

long-term application, which indicates some degree of

skill. However, the authors explicitly ascertain that this

regression is not an operational statistical model that

will accurately predict intensity of a single TC in time

and space as defined by maximum attained wind speed.

Rather, this multiparameter linear regression serves as

an exploratory method of evaluating the potential for

specific environmental variables at genesis to affect the

subsequent maximum intensity. It also serves as a

method of synthesizing themyriad of initial variables in

this study into a small subset of variables for further

statistical analysis.

b. Regression-related storm-centered composites

To further understand the contribution of the pa-

rameters chosen in Eq. (3) to the eventual attained in-

tensity of TCs, boxes following the coloring scheme

applied in Fig. 2 were overlaid on the regions chosen by

the seven-parameter linear regression [Eq. (3)] in

Figs. 7–13. Only the GMJ and GTD composites are

shown, along with their difference field, since the

environmental structure directly surrounding the com-

posite center for each variable generated was similar in

the GTD, GTS, GMN, andGMJ groupings. Specifically,

differences manifested primarily from changes in the

magnitude for each variable.

1) TOTAL COLUMN WATER

The seven-parameter, cross-validated linear regres-

sion identified TCW as a key variable in three locations:

the blue inner northwest box (I1; the first chosen pre-

dictor), the greenmiddle center box (M5; the third chosen

predictor), and the pink outer northwest box (O1; the

seventh chosen predictor).

All three coefficients associated with TCW are posi-

tive (Table 3, rows 1, 3, and 7), implying that a more

moist environment at genesis leads to an eventual higher

intensity storm. This is most clearly seen in Fig. 7c, which

indicates that the three boxes are located in an area of

significantly higher TCW in the GMJ composite com-

pared to the GTD composite.

As expected, the amount of TCW decreases radially

outward from the storm center. The GMJ composite

storm center itself has 3.81 kgm22 more water than the

FIG. 6.Quantification of residuals associatedwith the linear regression: (a) predicted values and their residuals from

the linear regression line, (b) a histogram of residuals, (c) a Q–Q plot, and (d) Cook’s distance.
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GTD composite, significant at the 99% confidence level.

This difference is clearly seen by the area occupied by the

warmest colors around the center of the storm when

comparing Figs. 7a and 7b. Additionally, there is spatially

more vertically integrated moisture north of GMJ storms

than north of GTD storms.

This moister environment can be more conducive to

sustaining deep convection and thus would help spur

further development of the storm. Higher TCW can

lead to more efficient lift, which aids in mass transport

and modulates the secondary circulation. Additionally,

higher TCW could imply fewer convective downdrafts,

which would allow for boundary layer warming. Higher

TCW also increases CAPE. Overall, this should

strengthen the vertical velocity of VHTs in the bottom-

up method. In the top-downmethod, it is more moisture

to work with. Moisture to the north and northwest was

also found to be a key factor for developing African

easterly waves by Brammer and Thorncroft (2015).

2) LOCAL VERTICAL SHEAR

The regression model selected two regions of vertical

wind shear: box O4 (Fig. 8, upper pink box) and box M9

(Fig. 8, lower green box). The area surrounding the

storm center had similar shear values in each composite.

Box O4 is associated with a negative regression co-

efficient (Table 3, row 4), implying that wind shear in this

area is detrimental to higher eventual attained intensities.

In that box, the GTD composite has vertical shear values

of around 13–20ms21 that cover most of the box (upper

pink box in Fig. 8b), while the GMJ composite has ver-

tical shear values of 13–15ms21 that cover only the top

third of the box (upper pink box in Fig. 8a). Overall, to

the north of the composite storm, moderate to high shear

begins at lower latitudes in the GTD composite than in

the GMJ composite, indicating that storms that do not

intensify beyond tropical depression (TD) status are sit-

uated in a more unfavorable large-scale environment

than storms that intensify to major hurricane status.

On the other hand, boxM9 is associated with a positive

regression coefficient (Table 3, row 5). Thus, vertical

shear present in that box is positively associated with

higher attainable intensities. In theGMJ composite, there

is 13–15ms21 of shear present in box M9 (lower green

box in Fig. 8a), while the GTD composite has less than

12ms21 of shear in box M9 (lower green box in Fig. 8b).

Examining the storm-relative flow at 850 and 200hPa,

the region of high shear in the GMJ composite is ex-

plained by the presence of 1) strong, westerly, storm-

relative flow at 850 hPa (not shown) associated with a

stronger low-level vortex than in the GTD composite

(Fig. 11) and 2) strong, northerly flow at 200hPa asso-

ciated with a more well-formed outflow jet that extends

FIG. 7. Plan-view, storm-centered composite of total column

water (kgm22; color shading interval is 5 kgm22): (top)–(bottom)

GMJ,GTD, andGMJ2GTD. The difference field shaded interval

is 1 kgm22. The white dot represents the storm center. White

contours in the difference field indicate locations where differences

between the GMJ and GTD figures are statistically significant at

the 95% confidence level. Overlying boxes indicate regions chosen

by the final model.
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farther northward before wrapping around the east side

of the composite storm (Fig. 9). Therefore, the moderate

shear values in box M9 are not indicative of a weaker

environmental setup. Rather, they suggest that storms

that reach higher intensities have a more defined outflow

jet at upper levels and a stronger low-level vortex.

Looking at the order in which the regression chose the

wind shear predictors, box O4 was the second predictor

chosen while box M9 was the fourth predictor chosen.

So, while storms that reach a higher intensity are asso-

ciated with less shear in the large-scale environment

north of the storm, more key in determining future in-

tensity is whether there is a defined outflow jet that

wraps around the east side of the storm.

3) RELATIVE HUMIDITY

The linear regression also included a relative hu-

midity parameter to the southwest of the TC genesis

point, as shown by the pink box in Fig. 10. The re-

gression coefficient for RH is negative (Table 3, row 6),

indicating that lower midlevel moisture to the west of the

storm results in a higher eventual attained intensity. In

the GMJ composite, RH values range from 40% to 50%

(pink box in Fig. 10a). The GTD composite had values

ranging from 35% to 55%, but over half of the box had

50%–55% RH (pink box in Fig. 10b).

These results appear to be counterintuitive since it

is well documented that a moist midlevel environment

is necessary for TC formation, persistence, and in-

tensification. However, the chosen box is 600–1200km

away from the storm center, located in the environment

directly outside the storm’s main cyclonic circulation

(see Figs. 14b,e). Thus, the tighter gradient of moisture

present in GMJ storms indicates a more compact storm

that is more isolated from its environment, rather than

indicating a storm with less moisture. This tighter gra-

dient of moisture is directly the result of 500-hPa east-

erlies (not shown) in theGMJ composite wrappingmore

strongly around the storm than in the GTD composite.

Therefore, in the GTD composite, higher values of RH

are advected westward away from the storm center

while in the GMJ composite, higher values of RH are

advected around the storm center.

Overall, the environment at the storm center had a

relative humidity 13.08% higher in the GMJ composite

than in the GTD composite, significant at the 99%

confidence level. The large-scale environment around

and to the north of the storm center has higher relative

humidity values in the GMJ composite as seen most

clearly in Fig. 10c. Mean, storm-relative, easterly flow in

both the GMJ and GTD composites (not shown) acts to

entrain the moist (less moist) air to the east of the storm

center into midlevels of the GMJ (GTD) composite.

FIG. 8. As in Fig. 7, but for 850–200-hPa vertical wind shear

(m s21; color shading interval is 1m s21). The difference field

shaded interval is 2m s21.
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This difference could induce less strengthening of the

GTD storms, perhaps explaining why GTD fails to in-

tensify beyond TD status.

4) RELATIVE VORTICITY

The regression model also includes one region of

850-hPa relative vorticity: box M5, which surrounds the

genesis point. The green box in Fig. 11 highlights this

location.

The zM5 coefficient is large and positive (Table 3, row

7), indicating that storms that reach stronger intensities

are associated with higher relative vorticity values

present at the genesis location. This is consistent with

results shown in Figs. 11a,b. It is evident that GMJ

storms have stronger relative vorticity with tighter gra-

dients on the periphery of the origin location. The

FIG. 10. As in Fig. 7, but for relative humidity at 500 hPa (%; color

shading interval is 5%). The difference field shaded interval is 2%.

FIG. 9. Plan-view, storm-centered composite of wind magnitude

and overlying wind vectors at 200 hPa (m s21; color shading in-

terval is 2m s21) for (top) GMJ and (bottom) GTD. The white dot

represents the respective composite storm center.
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difference is shown to be significant by the white con-

tours in Fig. 11c. At the composite storm center, values

of vorticity are 1.34 3 1025 s21 higher for GMJ storms

than GTD storms, a statistically significant value at the

99% confidence level.

In the large-scale environment, the vortex in both

composites is situated within the ITCZ—an area of cy-

clonic vorticity and associated with deep convection.

Also of note, the area of high relative vorticity at the TC

origin in the GMJ composite extends and connects to an

area of heightened relative vorticity to the storm’s east.

This extension is absent in the GTD composite. This

suggests that GMJ cases develop in a strong band of

continuous vorticity, whereas GTD cases are associated

with a discontinuous band of vorticity. As vorticity is

often tied to areas of convective activity, GMJ cases may

originate from areas of strong, continuous convection

off of Africa. While not captured by the regression, it is

still a notable feature that distinguishes GMJ from

GTD, which is statistically significant.

c. Other storm-centered composites

Two of the variables identified in Table 2 are not in-

cluded in the seven-parameter linear regression: sea

surface temperature and upper-level divergence. De-

spite not having strong, statistical relationships to the

eventual attained intensity of TCs, the large-scale spatial

structure may still impact the future intensity of a storm.

1) SEA SURFACE TEMPERATURE

The GMJ composite storm center is situated in waters

that are 0.89K warmer than the GTD composite center

(Fig. 12), significant at the 99% confidence level. On a

larger scale, the area north of the composite storm center

is warmer in the GMJ composite than in the GTD com-

posite. Warmer waters are not only more favorable for

genesis but are also more favorable for generating greater

instability, more surface fluxes, and a lower central pres-

sure due to latent heat release. In fact, the average central

pressure for GMJ is 2.38hPa lower than GTD, again a

statistically significant value at the 99% confidence level.

However, high sea surface temperatures often are not

sufficient enough to generate a favorable environment, as

the warm water layer might be shallow. Since the GMJ

andGTD storms, on average, form near the same location

and have similar distributions in formation time of year,6 it

FIG. 11. As in Fig. 7, but for relative vorticity at 850 hPa (1025 s21;

color shading interval is 0.23 1025 s21). The difference field shaded

interval is 0.1 3 1025 s21.

6 In this dataset, the number of storms in each month is close to a

normal distribution with a peak in August–September and a slight

positive skew to later months (not shown). Both GMJ and GTD

have similar distributions to the overall number of storms, and thus

the observed shift in sea surface temperatures in Fig. 12 is not due

to seasonal differences.
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can be assumed that their warm water volume is similar,

and thus the simply higher sea surface temperature in the

GMJ composite indicates a more favorable environment

for future attainable intensity.

2) DIVERGENCE

Upper-level divergence is shown in Fig. 13. The dif-

ference field between the GMJ and GTD composite

shows little significance when compared to other vari-

ables. However, directly surrounding the storm center

there is more divergence, and at the storm center there is

0.52 3 1025 s21 more divergence in the GMJ composite

than in the GTD composite, not significant at the 99%

level. Divergence at the storm center is associated with

upper-level outflow. The larger divergence surrounding

the GMJ composite is associated with the better-formed

outflow jet discussed previously in the vertical shear

section and shown in Fig. 9a.

5. Azimuthal averages

While specific levels were chosen in this study to

generate a multiple-parameter linear regression, dif-

ferences between GTD and GMJ storms are also found

at other levels. To succinctly view this, azimuthal

averages were generated by bilinearly interpolating

ERA-I data to cylindrical grids centered on each in-

dividual TC center radially every 100 km (from 100 to

2000 km outside the storm core) and vertically every

25 hPa (from 1000 to 50 hPa). Regions where GMJ

differed significantly from GTD at the 95% confidence

level were determined through bootstrap testing with

1000 iterations.

The azimuthally averaged radial wind for GMJ

(Fig. 14a) and GTD (Fig. 14d) show that storms that

reach higher intensities begin with stronger outflow and

inflow. Both also extend through a deeper layer in GMJ

storms than in GTD storms. This result corroborates

the positive coefficient associated with deep-layer wind

shear in box M9—a stronger, more well-defined out-

flow jet aloft is present in GMJ storms than in GTD

storms. Increased outflow aloft is also associated with

stronger vertical motion at inner radii through mass

continuity (not shown).

Figures 14b and 14e show that both TC relative

vorticity cores extend radially outward to 600 km.

However, the core of GMJ storms have stronger radial

gradients of vorticity and higher maximum cyclonic

vorticity in the core, as seen in Fig. 11. The cyclonic

core in GMJ storms also extends through a deeper

FIG. 12. As in Fig. 7, but for sea surface temperature (K; color shading interval is 0.2 K). The difference field shaded interval is 0.1 K. There

are no overlaying boxes since this variable was removed from the final model.

FIG. 13. As in Fig. 7, but for divergence at 200 hPa (1025 s21; color shading interval is 0.23 1025 s21). The difference field shaded interval is

0.1 3 1025 s21. There are no overlaying boxes since this variable was not one of the chosen variables in the final model.
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column than theGTD cases. The upper levels of the TC

are characterized by more negative relative vorticity in

the GMJ than the GTD composite. Together, this

suggests that a more intense, isolated cyclonic vortex,

with anticyclonic upper levels at outer radii, will more

likely develop into a GMJ storm.

Finally, Figs. 14c and 14f show the anomalous po-

tential temperature calculated relative to the mean

moist tropical sounding from Dunion (2011). The

GMJ storms have a stronger warm core, with a more

intense anomaly present in upper levels from 200 to

600 hPa and extending past 1200 km. While the cold

anomalies present above the warm core in the GMJ

composite are larger than in the GTD composite,

implying an elevated tropopause, differences are not

significant.

Overall, these results show that GMJ storms at

genesis have a more established primary and sec-

ondary circulations.

6. Discussion

This study has provided a first look at the possible

dependence of environmental conditions at genesis to

the maximum achieved intensity of TCs in the Atlantic

basin. Specifically, the application of a multiparameter

linear regression and cross-validation techniques re-

lated four variables in seven locations to storms, which

reached higher maximum intensities. Again, a more

favorable environment at genesis is defined in this

study as an environment associated with those condi-

tions favorable for genesis.

Figure 15 is a summary graphic highlighting the

variables and boxes chosen: 1) high total column

water in the inner northwest quadrant of the TC (box

FIG. 14. Azimuthally averaged, storm-centered composites of: (a),(d) radial wind (m s21; color shading interval is 0.2m s21); (b),

(e) relative vorticity (1025 s21; color shading interval is 0.5 3 1025 s21); and (c),(f) anomalous potential temperature (K; color shading

interval is 0.5 K) for (a)–(c)GMJ and (d)–(f)GTD. Stippling (dots) indicates locations of significant difference at the 95%confidence level

between the weakest (GTD) and strongest (GMJ) intensity of the same variable as calculated by a bootstrap test.

FIG. 15. As in Fig. 2, but with boxes shaded in black representing

those predictors selected by the model. To the left of each chosen

variable is a positive or negative sign related to the sign of the

coefficient.
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I1), 2) large deep-layer, local vertical shear to the

southeast of the TC (box M9), 3) high total column

water near the TC genesis point (box M5), 4) weak

deep-layer vertical shear to the northeast of the TC

(box O4), 5) low midlevel relative humidity to the

west-southwest of the TC (box O7), 6) strong positive

low-level relative vorticity near the TC genesis point

(box M5), and 7) high total column water to the

northwest of the TC (box O1), in order as chosen by

the regression.

Overall, storms that reach a higher intensity will

have a more localized, isolated, and relatively more

intense vorticity maxima near the core (Fig. 11) and a

stronger, tighter circulation through a deeper column

(Figs. 14b,e). As shown in previous studies, the pres-

ence of strong relative vorticity not only increases the

chances for genesis (Gray 1968, 1979; Emanuel and

Nolan 2004; Camargo et al. 2007; Tippett et al. 2011)

but also serves a role in the intensification process of

TCs via VHT axisymmetrization (Hendricks et al.

2004). Stronger storms are also associated with en-

hanced, better-defined upper-level outflow that wraps

around the east side of the storm at genesis. (Figs. 8, 9,

and 14a,d). With a more established, stronger circu-

lation overall, there would be more surface fluxes

present in the GMJ composite than in the GTD com-

posites, which supports the theory that intensity and

surface fluxes are highly connected (Emanuel 1986).

While SST was not chosen for the index, there is sta-

tistically warmer water located around the GMJ storm

(Fig. 12).7 This, coupled with the midlevel import of

moist air (Fig. 10) into and around the GMJ vortex by

the 500-hPa easterlies (not shown), the overall higher

moisture in general as seen in the TCW composites

(Fig. 7), and the warmer anomalous potential tem-

perature present aloft in GMJ storms at genesis

(Figs. 14c,f), could provide a more favorable environ-

ment at genesis for storms that reach higher intensities.

As seen in Fig. 15, the regression chose variables in the

environment on the periphery of the main TC circula-

tion, as well as down- and upstream of the TC. The

dominant flow patterns in the MDR thus act to advect

favorable or unfavorable conditions into the vortex.

Since GMJ storms are more isolated from their envi-

ronment than GTD storms, they can resist negative ef-

fects from the external advection of environmental

properties. The stronger, more resilient vortex for GMJ

storms supports the findings of Rappin et al. (2011),

where a TC with a stronger core can resist strong ex-

ternal forcings.

One potential interpretation of these results is that

tropical depressions with stronger tangential wind or

lower pressure at genesis become stronger TCs. The

HURDAT2 genesis sustained wind speed (pressure) is

only weakly, positively correlated to the eventual in-

tensity sustained wind speed (pressure), with r 5 0.19

(r 5 0.17). Correlations listed above give r2 values of

0.04 and 0.03, respectively. These values are well below

the Brooks and Carruthers (1978) threshold and the

performance of the regression developed in this study.

While ERA-I cannot resolve the radius of maximum

winds near the inner core, the maximum tangential wind

speed at genesis and at the maximum intensity of the

storm was still compared. Values had a correlation co-

efficient of r 5 0.48 and an r2 value of 0.23. The corre-

lation is higher than that in HURDAT2, but it is still

below the Brooks and Carruthers (1978) threshold. The

higher correlation is perhaps due to the low resolution of

ERA-I, which underestimates the radial and tangential

wind fields. However, results still imply that storms that

reach stronger intensities do not necessarily start out

with a deeper pressure or faster tangential wind speeds

at genesis.

The results found in this study indicate an underlying

relationship between the environment at genesis and the

subsequent achieved intensity. While this study does not

focus on along-track factors, it does not suggest that

along-track environment interactions are not important.

Rather, this study argues that a more well-formed vortex

and favorable environmental conditions at genesis

enables a vortex to be more resilient to environmental

influences at genesis and along its future track. Thus, the

structure at genesis can be related to future TC intensity

out to nine days.

Although beyond the scope of this study, it is impor-

tant to still note that if a multiparameter linear model

such as this were to be used operationally, more exten-

sive development and testing must be conducted. Test-

ing might include intrabasin (e.g., MDR vs Gulf of

Mexico), basin (e.g., western Pacific vs eastern Pacific),

or reanalysis dataset (e.g., ERA-I vs the Climate Fore-

cast System Reanalysis) comparisons of statistical in-

dexes in order to determine whether similar variables

at genesis were related to the eventual attained inten-

sity of TCs. Additionally, while this study used local

vertical shear as a predictor, it is possible to remove the

symmetric circulation, which would generate another

predictor to be used, and repeat the statistical analy-

sis. Furthermore, missing from the present statistical

7 Note that although the stronger circulation associated with

GMJ implies that the developing TC might be hindered by up-

welling of cooler waters throughEkman pumping, it is important to

remember that these analyses are for tropical depressions and not

for intense hurricanes. Therefore, the contribution of Ekman

pumping to weakening the TC should be inefficient (Price 1981).

4910 JOURNAL OF CL IMATE VOLUME 30



analysis is a measure of convection. Other studies that

use convection as a predictor use satellite imagery (e.g.,

Kieper and Jiang 2012; Rozoff et al. 2015; Tao and Jiang

2015). However, this was not ideal for the present study.

Although satellite imagery does extend to the beginning

of the ERA-I dataset, including a single predictor from

an outside dataset, while the rest were fromERA-I, may

introduce unforeseen errors. Therefore, in order to ensure

consistencywith the datasets used in this analysis, satellite

imagery representing convection, such as brightness

temperatures, was not included. Finally, it would be

valuable to construct a metric to classify how well orga-

nized (i.e., in terms of the regression results) a storm is at

genesis. Perhaps with such a metric, the regression index

could be used in predictive capabilities.
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