Brian Tang
Associate Professor
Department of Atmospheric and Environmental Sciences

Research Foci
![]() |
Tropical Cyclones (Hurricanes)→ How do clusters of thunderstorms in the tropics become tropical cyclones?→ How does environmental vertical wind shear, where the winds change with height, affect tropical cyclones?→ What factors determine when and if a tropical cyclone rapidly intensifies?→ How do midlatitude troughs, low-pressure areas at upper levels of the troposphere, interact with tropical cyclones? |
![]() |
Severe Thunderstorms and Hazards→ What role does terrain play in interacting with severe thunderstorms over the Northeast?→ What controls biases in convection-allowing numerical weather models in areas of complex terrain?→ How can we assess meteorological influences on the changing risk of severe weather events, including large hail and heavy rainfall? |
Publications
Submitted
- Johnson, N., B. Tang, K. Corbosiero, and J. Moskaitis, 2024: Observed downdrafts and ventilation during the rapid weakening of Hurricane Delta (2020). , , submitted.
Published
- Tang, B., 2024: Tropical Cyclones (Hurricanes). Encyclopedia of Atmospheric Sciences (Third Edition), , J. Martin, Eds., Academic Press, accepted.
- Rios-Berrios, R., B. Tang, C. Davis, and J. Martinez, 2024: Modulation of tropical cyclogenesis by convectively coupled Kelvin waves. Mon. Wea. Rev., 152, 2309-2322.
- Tang, B., R. Rios-Berrios, and J. Zhang, 2024: Diagnosing radial ventilation in dropsonde observations of Hurricane Sam (2021). Mon. Wea. Rev., 152, 1725-1739.
- Yu, C.-L., B. Tang, and R. Fovell, 2024: Tropical cyclone boundary-layer asymmetries in a tilt-following perspective. J. Atmos. Sci., 81, 1543-1563.
- Yu, C.-L., B. Tang, and R. Fovell, 2023: Diverging behaviors of simulated tropical cyclones in moderate vertical wind shear. J. Atmos. Sci., 80, 2837-2860.
- Li, Q., J. Wadler, J. Rudzin, B. de la Cruz, J. Chen, M. Fischer, G. Chen, N. Qin, and B. Tang, 2023: A review of recent research progress on the effect of external influences on tropical cyclone intensity change. Trop. Cyclone Res. Rev., 12, 200-215.
- Rivera-Torres, N., K. Corbosiero, and B. Tang, 2023: Factors associated with downshear reformation of tropical cyclones. Mon. Wea. Rev., 151, 2717-2737.
- Fischer, M., P. Reasor, B. Tang, K. Corbosiero, R. Torn, and X. Chen, 2023: A tale of two vortex evolutions: Using a high-resolution ensemble to assess the impacts of ventilation on a tropical cyclone rapid intensification event. Mon. Wea. Rev., 151, 297-320.
- Yu, C.-L., B. Tang, and R. Fovell, 2023: Tropical cyclone tilt and precession in moderate shear: Precession hiatus in a critical shear regime. J. Atmos. Sci., 80, 909-932.
- Richardson, J., R. Torn, and B. Tang, 2022: An analog comparison between rapidly and slowly intensifying tropical cyclones. Mon. Wea. Rev., 150, 2139-2156.
- LeBel, L., B. Tang, and R. Lazear, 2021: Examining terrain effects on an Upstate New York tornado event utilizing a high-resolution model simulation. Wea. Forecasting, 36, 2001-2020.
- Alland, J., B. Tang, K. Corbosiero, and G. Bryan, 2021a: Combined effects of midlevel dry air and vertical wind shear on tropical cyclone development. Part I: Downdraft ventilation. J. Atmos. Sci., 78, 763-782.
- Alland, J., B. Tang, K. Corbosiero, and G. Bryan, 2021b: Combined effects of midlevel dry air and vertical wind shear on tropical cyclone development. Part II: Radial ventilation. J. Atmos. Sci., 78, 783-796.
- Tang, B., J. Fang, A. Bentley, G. Kilroy, M. Nakano, M. Park, V. P. M. Rajasree, Z. Wang, A. Wing, and L. Wu, 2020: Recent advances in research on tropical cyclogenesis. Trop. Cyclone Res. Rev., 9, 87-105.
- Tang, B., V. Gensini, and C. Homeyer, 2019: Trends in United States large hail environments and observations. npj Climate Atmos. Sci., 2, 1-7.
- Fischer, M., B. Tang, and K. Corbosiero, 2019: A climatological analysis of tropical cyclone rapid intensification in environments of upper-tropospheric troughs. Mon. Wea. Rev., 147, 3693-3719.
- Fischer, M., B. Tang, K. Corbosiero, and C. Rozoff, 2018: Normalized convective characteristics of tropical cyclone rapid intensification events in the North Atlantic and eastern North Pacific. Mon. Wea. Rev., 146, 1133-1155.
- Tang, B., and N. Bassill, 2018: Point downscaling of surface wind speed for forecast applications. J. Appl. Meteor. Climatol., 57, 659-674.
- Vaughan, M., B. Tang, and L. Bosart, 2017: Climatology and analysis of high-impact, low predictive skill severe weather events in the northeast United States. Wea. Forecasting, 32, 1903-1919.
- Tang, B., 2017b: Coupled dynamic-thermodynamic forcings during tropical cyclogenesis: Part II. Axisymmetric experiments. J. Atmos. Sci., 74, 2279-2291.
- Tang, B., 2017a: Coupled dynamic-thermodynamic forcings during tropical cyclogenesis: Part I. Diagnostic framework. J. Atmos. Sci., 74, 2269-2278.
- Alland, J., B. Tang, and K. Corbosiero, 2017: Effects of mid-level dry air on development of the axisymmetric tropical cyclone secondary circulation. J. Atmos. Sci., 74, 1455-1470.
- Fischer, M., B. Tang, and K. Corbosiero, 2017: Assessing the influence of upper-tropospheric troughs on tropical cyclone intensification rates after genesis. Mon. Wea. Rev., 145, 1295-1313.
- Tang, B., R. Rios-Berrios, J. Alland, J. Berman, and K. Corbosiero, 2016: Sensitivity of axisymmetric tropical cyclone spin-up time to dry air aloft. J. Atmos. Sci., 73, 4269-4287.
- Peirano. C., K. Corbosiero, and B. Tang, 2016: Revisiting trough interactions and tropical cyclone intensity change. Geophys. Res. Lett., 43, doi:10.1002/2016GL069040.
- Tang, B., M. Vaughan, R. Lazear, K. Corbosiero, L. Bosart, T. Wasula, I. Lee, and K. Lipton, 2016: Topographic and boundary influences on the 22 May 2014 Duanesburg, New York, tornadic supercell. Wea. Forecasting, 31, 107-127.
- Tang, B., and S. Camargo, 2014: Environmental control of tropical cyclones in CMIP5: A ventilation perspective. J. Adv. Model. Earth Syst., doi: 10.1002/2013MS000294.
- Rios-Berrios, R., T. Vukicevic, and B. Tang, 2014: Adopting model uncertainties for tropical cyclone intensity prediction. Mon. Wea. Rev., 142 , 72-78.
- Tang, B., and K. Emanuel, 2012: A ventilation index for tropical cyclones. Bull. Amer. Meteor. Soc., 93, 1901-1912. (Supplement)
- Tang, B., and K. Emanuel, 2012: Sensitivity of tropical cyclone intensity to ventilation in an axisymmetric model. J. Atmos. Sci., 69, 2394-2413.
- Evans, C, H. Archambault, J. Cordeira, C. Fritz, T. Galarneau Jr., S. Gjorgjievska, K. Griffin, A. Johnson, W. Komaromi, S. Monette, P. Muradyan, B. Murphy, M. Riemer, J. Sears, D. Stern, B. Tang, and S. Thompson, 2012: The PRE-Depression Investigation of Cloud-systems in the Tropics (PREDICT) field campaign: Perspectives of early career scientists. Bull. Amer. Meteor. Soc., 93, 173-187.
- Tang, B., and K. Emanuel, 2010: Midlevel ventilation's constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 1817-1830.
- Tang, B., and J. D. Neelin, 2004: ENSO influence on Atlantic hurricanes via tropospheric warming. Geophys. Res. Lett., 31, L24204, doi:10.1029/2004GL021072.