Contents

Pandas Notebook 2, ATM350 Spring 2024

Contents

Pandas Notebook 2, ATM350 Spring 2024

Motivating Science Questions:

  1. What was the daily temperature and precipitation at Albany last year?

  2. What were the the days with the most precipitation?

Motivating Technical Question:

  1. How can we use Pandas to do some basic statistical analyses of our data?

We’ll start by repeating some of the same steps we did in the first Pandas notebook.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
file = '/spare11/atm350/common/data/climo_alb_2023.csv'

Display the first five lines of this file using Python’s built-in readline function

fileObj = open(file)
nLines = 5
for n in range(nLines):
    line = fileObj.readline()
    print(line)
DATE,MAX,MIN,AVG,DEP,HDD,CDD,PCP,SNW,DPT

2023-01-01,51,34,42.5,16.2,22,0,0.00,0.0,0

2023-01-02,51,29,40.0,13.9,25,0,0.00,0.0,0

2023-01-03,37,27,32.0,6.1,33,0,0.30,0.0,0

2023-01-04,43,37,40.0,14.3,25,0,0.08,0.0,0
df = pd.read_csv(file, dtype='string')

nRows = df.shape[0]
print ("Number of rows = %d" % nRows )
nCols = df.shape[1]
print ("Number of columns = %d" % nCols)

date = df['DATE']
date = pd.to_datetime(date,format="%Y-%m-%d")

maxT = df['MAX'].astype("float32")
minT = df['MIN'].astype("float32")
Number of rows = 365
Number of columns = 10

Let’s generate the final timeseries we made in our first Pandas notebook, with all the “bells and whistles” included.

from matplotlib.dates import DateFormatter, AutoDateLocator,HourLocator,DayLocator,MonthLocator

Set the year so we don’t have to edit the string labels every year!

year = 2023
fig, ax = plt.subplots(figsize=(15,10))
ax.plot (date, maxT, color='red',label = "Max T")
ax.plot (date, minT, color='blue', label = "Min T")
ax.set_title ("ALB Year %d" % year)
ax.set_xlabel('Date')
ax.set_ylabel('Temperature (°F)' )
ax.xaxis.set_major_locator(MonthLocator(interval=1))
dateFmt = DateFormatter('%b %d')
ax.xaxis.set_major_formatter(dateFmt)
ax.legend (loc="best")
<matplotlib.legend.Legend at 0x145a2203ffd0>
../../_images/bd7d2cc96c1a7c0d609c86dd1ecf7d18da42774d74527c813cc462b05bd3c174.png

Read in precip data. This will be more challenging due to the presence of T(races).

Let’s remind ourselves what the Dataframe looks like, paying particular attention to the daily precip column (PCP).

df
DATE MAX MIN AVG DEP HDD CDD PCP SNW DPT
0 2023-01-01 51 34 42.5 16.2 22 0 0.00 0.0 0
1 2023-01-02 51 29 40.0 13.9 25 0 0.00 0.0 0
2 2023-01-03 37 27 32.0 6.1 33 0 0.30 0.0 0
3 2023-01-04 43 37 40.0 14.3 25 0 0.08 0.0 0
4 2023-01-05 49 38 43.5 18.0 21 0 0.03 0.0 0
... ... ... ... ... ... ... ... ... ... ...
360 2023-12-27 51 44 47.5 20.1 17 0 0.30 0.0 0
361 2023-12-28 49 44 46.5 19.3 18 0 0.17 0.0 0
362 2023-12-29 48 42 45.0 18.1 20 0 0.15 0.0 0
363 2023-12-30 45 35 40.0 13.3 25 0 0.05 0.0 0
364 2023-12-31 37 33 35.0 8.5 30 0 T T 0

365 rows × 10 columns

Exercise: define a Pandas DataSeries called precip and populate it with the requisite column from our Dataframe. Then print out its values.
TIP: After you have tried on your own, you can uncomment the first line of the cell below and re-run to load the solution.
# %load /spare11/atm350/common/feb22/02a.py
precip = df['PCP']
precip
0      0.00
1      0.00
2      0.30
3      0.08
4      0.03
       ... 
360    0.30
361    0.17
362    0.15
363    0.05
364       T
Name: PCP, Length: 365, dtype: string

The task now is to convert these values from strings to floating point values. Our task is more complicated due to the presence of strings that are clearly not numerical … such as “T” for trace.

As we did in the first Pandas notebook with max temperatures greater than or equal to 90, create a subset of our Dataframe that consists only of those days where precip was a trace.

traceDays = df[precip=='T']
traceDays
DATE MAX MIN AVG DEP HDD CDD PCP SNW DPT
8 2023-01-09 36 18 27.0 2.2 38 0 T T 0
9 2023-01-10 38 22 30.0 5.4 35 0 T T 0
13 2023-01-14 30 26 28.0 3.9 37 0 T T T
20 2023-01-21 33 30 31.5 7.9 33 0 T T T
23 2023-01-24 36 31 33.5 9.9 31 0 T T 7
26 2023-01-27 36 27 31.5 7.8 33 0 T T 5
27 2023-01-28 45 25 35.0 11.3 30 0 T T 4
30 2023-01-31 30 18 24.0 0.0 41 0 T 0.1 2
33 2023-02-03 33 -10 11.5 -12.8 53 0 T T 2
40 2023-02-10 51 34 42.5 17.0 22 0 T 0.0 0
41 2023-02-11 38 23 30.5 4.8 34 0 T T 0
43 2023-02-13 52 24 38.0 11.8 27 0 T 0.0 0
45 2023-02-15 64 31 47.5 20.8 17 0 T 0.0 0
46 2023-02-16 57 40 48.5 21.6 16 0 T 0.0 0
48 2023-02-18 40 19 29.5 2.0 35 0 T T 0
54 2023-02-24 38 19 28.5 -0.7 36 0 T T 2
56 2023-02-26 39 16 27.5 -2.3 37 0 T T 4
63 2023-03-05 42 33 37.5 5.6 27 0 T 0.0 6
65 2023-03-07 36 27 31.5 -1.1 33 0 T T 2
67 2023-03-09 43 28 35.5 2.3 29 0 T T 1
76 2023-03-18 44 28 36.0 -0.3 29 0 T 0.3 2
77 2023-03-19 33 22 27.5 -9.1 37 0 T T T
91 2023-04-02 46 30 38.0 -4.1 27 0 T 0.0 0
105 2023-04-16 78 57 67.5 19.2 0 3 T 0.0 0
107 2023-04-18 51 38 44.5 -4.7 20 0 T 0.0 0
108 2023-04-19 47 35 41.0 -8.7 24 0 T 0.0 0
114 2023-04-25 54 33 43.5 -8.8 21 0 T 0.0 0
123 2023-05-04 60 45 52.5 -3.4 12 0 T 0.0 0
124 2023-05-05 64 40 52.0 -4.2 13 0 T 0.0 0
126 2023-05-07 76 41 58.5 1.6 6 0 T 0.0 0
153 2023-06-03 70 51 60.5 -4.4 4 0 T 0.0 0
160 2023-06-10 75 46 60.5 -6.5 4 0 T 0.0 0
162 2023-06-12 85 64 74.5 7.0 0 10 T 0.0 0
173 2023-06-23 87 63 75.0 4.5 0 10 T 0.0 0
175 2023-06-25 89 65 77.0 6.1 0 12 T 0.0 0
220 2023-08-09 83 63 73.0 0.7 0 8 T 0.0 0
227 2023-08-16 82 68 75.0 3.4 0 10 T 0.0 0
230 2023-08-19 76 57 66.5 -4.7 0 2 T 0.0 0
232 2023-08-21 84 63 73.5 2.6 0 9 T 0.0 0
256 2023-09-14 73 53 63.0 -1.3 2 0 T 0.0 0
261 2023-09-19 71 52 61.5 -0.8 3 0 T 0.0 0
282 2023-10-10 63 46 54.5 1.0 10 0 T 0.0 0
288 2023-10-16 63 48 55.5 4.3 9 0 T 0.0 0
290 2023-10-18 62 45 53.5 3.0 11 0 T 0.0 0
298 2023-10-26 78 58 68.0 20.3 0 3 T 0.0 0
307 2023-11-04 55 46 50.5 6.0 14 0 T 0.0 0
322 2023-11-19 50 28 39.0 -0.2 26 0 T 0.0 0
327 2023-11-24 46 22 34.0 -3.4 31 0 T T 0
331 2023-11-28 36 27 31.5 -4.5 33 0 T T T
332 2023-11-29 37 20 28.5 -7.2 36 0 T T 0
346 2023-12-13 41 28 34.5 3.3 30 0 T 0.1 0
358 2023-12-25 51 34 42.5 14.6 22 0 T 0.0 0
364 2023-12-31 37 33 35.0 8.5 30 0 T T 0
traceDays.shape
(53, 10)
traceDays.shape[0]
53
Exercise: print out the total # of days where a trace of precip was measured. Hint: look back at how we calculated the total # of 90 degree days in our first Pandas notebook ... we used the shape attribute.
# %load /spare11/atm350/common/feb22/02b.py
print (df[precip=='T'].shape)
numTraceDays = df[precip == 'T'].shape[0]
print (f"The total # of days in Albany in {year} that had a trace of precipitation was {numTraceDays}")
(53, 10)
The total # of days in Albany in 2023 that had a trace of precipitation was 53

Getting back to our task of converting precip amounts from strings to floating point numbers, one thing we could do is to create a new array and populate it via a loop, where we’d use an if-else logical test to check for Trace values and set the precip value to 0.00 for each day accordingly.

We use the loc method of Pandas to find all elements of a DataSeries with a certain value, and then change that value to something else, all in the same line of code!

In this case, let’s set all values of ‘T’ to ‘0.00’

The line below is what we want! Before we execute it, let’s break it up into pieces.

df.loc[df['PCP'] =='T', ['PCP']] = '0.00'

First, create a Series of booleans corresponding to the specified condition.

df['PCP'] == 'T'
0      False
1      False
2      False
3      False
4      False
       ...  
360    False
361    False
362    False
363    False
364     True
Name: PCP, Length: 365, dtype: boolean

Next, build on that cell by using loc to display all rows that correspond to the condition being True.

df.loc[df['PCP'] == 'T']
DATE MAX MIN AVG DEP HDD CDD PCP SNW DPT
8 2023-01-09 36 18 27.0 2.2 38 0 T T 0
9 2023-01-10 38 22 30.0 5.4 35 0 T T 0
13 2023-01-14 30 26 28.0 3.9 37 0 T T T
20 2023-01-21 33 30 31.5 7.9 33 0 T T T
23 2023-01-24 36 31 33.5 9.9 31 0 T T 7
26 2023-01-27 36 27 31.5 7.8 33 0 T T 5
27 2023-01-28 45 25 35.0 11.3 30 0 T T 4
30 2023-01-31 30 18 24.0 0.0 41 0 T 0.1 2
33 2023-02-03 33 -10 11.5 -12.8 53 0 T T 2
40 2023-02-10 51 34 42.5 17.0 22 0 T 0.0 0
41 2023-02-11 38 23 30.5 4.8 34 0 T T 0
43 2023-02-13 52 24 38.0 11.8 27 0 T 0.0 0
45 2023-02-15 64 31 47.5 20.8 17 0 T 0.0 0
46 2023-02-16 57 40 48.5 21.6 16 0 T 0.0 0
48 2023-02-18 40 19 29.5 2.0 35 0 T T 0
54 2023-02-24 38 19 28.5 -0.7 36 0 T T 2
56 2023-02-26 39 16 27.5 -2.3 37 0 T T 4
63 2023-03-05 42 33 37.5 5.6 27 0 T 0.0 6
65 2023-03-07 36 27 31.5 -1.1 33 0 T T 2
67 2023-03-09 43 28 35.5 2.3 29 0 T T 1
76 2023-03-18 44 28 36.0 -0.3 29 0 T 0.3 2
77 2023-03-19 33 22 27.5 -9.1 37 0 T T T
91 2023-04-02 46 30 38.0 -4.1 27 0 T 0.0 0
105 2023-04-16 78 57 67.5 19.2 0 3 T 0.0 0
107 2023-04-18 51 38 44.5 -4.7 20 0 T 0.0 0
108 2023-04-19 47 35 41.0 -8.7 24 0 T 0.0 0
114 2023-04-25 54 33 43.5 -8.8 21 0 T 0.0 0
123 2023-05-04 60 45 52.5 -3.4 12 0 T 0.0 0
124 2023-05-05 64 40 52.0 -4.2 13 0 T 0.0 0
126 2023-05-07 76 41 58.5 1.6 6 0 T 0.0 0
153 2023-06-03 70 51 60.5 -4.4 4 0 T 0.0 0
160 2023-06-10 75 46 60.5 -6.5 4 0 T 0.0 0
162 2023-06-12 85 64 74.5 7.0 0 10 T 0.0 0
173 2023-06-23 87 63 75.0 4.5 0 10 T 0.0 0
175 2023-06-25 89 65 77.0 6.1 0 12 T 0.0 0
220 2023-08-09 83 63 73.0 0.7 0 8 T 0.0 0
227 2023-08-16 82 68 75.0 3.4 0 10 T 0.0 0
230 2023-08-19 76 57 66.5 -4.7 0 2 T 0.0 0
232 2023-08-21 84 63 73.5 2.6 0 9 T 0.0 0
256 2023-09-14 73 53 63.0 -1.3 2 0 T 0.0 0
261 2023-09-19 71 52 61.5 -0.8 3 0 T 0.0 0
282 2023-10-10 63 46 54.5 1.0 10 0 T 0.0 0
288 2023-10-16 63 48 55.5 4.3 9 0 T 0.0 0
290 2023-10-18 62 45 53.5 3.0 11 0 T 0.0 0
298 2023-10-26 78 58 68.0 20.3 0 3 T 0.0 0
307 2023-11-04 55 46 50.5 6.0 14 0 T 0.0 0
322 2023-11-19 50 28 39.0 -0.2 26 0 T 0.0 0
327 2023-11-24 46 22 34.0 -3.4 31 0 T T 0
331 2023-11-28 36 27 31.5 -4.5 33 0 T T T
332 2023-11-29 37 20 28.5 -7.2 36 0 T T 0
346 2023-12-13 41 28 34.5 3.3 30 0 T 0.1 0
358 2023-12-25 51 34 42.5 14.6 22 0 T 0.0 0
364 2023-12-31 37 33 35.0 8.5 30 0 T T 0

Further build this line of code by only returning the column of interest.

df.loc[df['PCP'] =='T', ['PCP']]
PCP
8 T
9 T
13 T
20 T
23 T
26 T
27 T
30 T
33 T
40 T
41 T
43 T
45 T
46 T
48 T
54 T
56 T
63 T
65 T
67 T
76 T
77 T
91 T
105 T
107 T
108 T
114 T
123 T
124 T
126 T
153 T
160 T
162 T
173 T
175 T
220 T
227 T
230 T
232 T
256 T
261 T
282 T
288 T
290 T
298 T
307 T
322 T
327 T
331 T
332 T
346 T
358 T
364 T

Finally, we have arrived at the full line of code! Take the column of interest, in this case precip only on those days where a trace was measured, and set its value to 0.00.

df.loc[df['PCP'] =='T', ['PCP']] = '0.00'
df['PCP']
0      0.00
1      0.00
2      0.30
3      0.08
4      0.03
       ... 
360    0.30
361    0.17
362    0.15
363    0.05
364    0.00
Name: PCP, Length: 365, dtype: string

This operation actually modifies the Dataframe in place . We can prove this by printing out a row from a date that we know had a trace amount.

But first how do we simply print a specific row from a dataframe? Since we know that Jan. 9 had a trace of precip, try this:

jan09 = df['DATE'] == '2023-01-09'
jan09
0      False
1      False
2      False
3      False
4      False
       ...  
360    False
361    False
362    False
363    False
364    False
Name: DATE, Length: 365, dtype: boolean

That produces a series of booleans; the one matching our condition is True. Now we can retrieve all the values for this date.

df[jan09]
DATE MAX MIN AVG DEP HDD CDD PCP SNW DPT
8 2023-01-09 36 18 27.0 2.2 38 0 0.00 T 0

We see that the precip has now been set to 0.00.

Having done this check, and thus re-set the values, let’s now convert this series into floating point values.

precip = df['PCP'].astype("float32")
precip
0      0.00
1      0.00
2      0.30
3      0.08
4      0.03
       ... 
360    0.30
361    0.17
362    0.15
363    0.05
364    0.00
Name: PCP, Length: 365, dtype: float32

Plot each day’s precip total.

fig, ax = plt.subplots(figsize=(15,10))
ax.plot (date, precip, color='blue', marker='+',label = "Precip")
ax.set_title (f"ALB Year {year}")
ax.set_xlabel('Date')
ax.set_ylabel('Precip (in.)' )
ax.xaxis.set_major_locator(MonthLocator(interval=1))
dateFmt = DateFormatter('%b %d')
ax.xaxis.set_major_formatter(dateFmt)
ax.legend (loc="best")
<matplotlib.legend.Legend at 0x145a21ecccd0>
../../_images/a9b938bf4a2fa4590b94cc1890b313bc1bdf13ed3bb2a1f75a8986238778af93.png
# %load /spare11/atm350/common/feb22/02a.py
precipT = df['PCP']

What if we just want to pick a certain time range? One simple way is to just pass in a subset of our x and y to the plot method.

# Plot out just the trace for October. Corresponds to Julian days 214-245 ... thus, indices 213-244 (why?).
fig, ax = plt.subplots(figsize=(15,10))
ax.plot (date[213:244], precip[213:244], color='blue', marker='+',label = "Precip")
ax.set_title (f"ALB Year {year}")
ax.set_xlabel('Date')
ax.set_ylabel('Precip (in.)' )
ax.xaxis.set_major_locator(MonthLocator(interval=1))
dateFmt = DateFormatter('%b %d')
ax.xaxis.set_major_formatter(dateFmt)
ax.legend (loc="best")
<matplotlib.legend.Legend at 0x145a21f5ccd0>
../../_images/e42e906e44deea44739f75223dea22d5f19560d895d57143ae6785e136c7e76b.png
Exercise: print out a table of days with precip amounts of at least 1.00 inches. In a separate cell, print out the total # of such days.
# %load '/spare11/atm350/common/feb22/02c.py'
wetDays = df[precip>=1.00]
wetDays
DATE MAX MIN AVG DEP HDD CDD PCP SNW DPT
72 2023-03-14 35 32 33.5 -1.4 31 0 1.61 9.9 6
112 2023-04-23 54 43 48.5 -2.9 16 0 1.18 0.0 0
176 2023-06-26 84 67 75.5 4.3 0 11 1.14 0.0 0
182 2023-07-02 77 65 71.0 -1.3 0 6 1.17 0.0 0
190 2023-07-10 74 65 69.5 -3.7 0 5 1.65 0.0 0
196 2023-07-16 85 70 77.5 4.0 0 13 1.43 0.0 0
198 2023-07-18 87 68 77.5 4.0 0 13 2.31 0.0 0
218 2023-08-07 76 65 70.5 -2.0 0 6 1.06 0.0 0
252 2023-09-10 78 66 72.0 6.2 0 7 1.35 0.0 0
279 2023-10-07 69 51 60.0 5.3 5 0 1.07 0.0 0
293 2023-10-21 59 52 55.5 6.1 9 0 1.13 0.0 0
351 2023-12-18 56 39 47.5 17.8 17 0 2.13 0.0 0
# Split the cell here so the table above will be displayed!
numWetDays = wetDays.shape[0]
print (f"The total # of days in Albany in {year} that had at least 1.00 in. of precip was {numWetDays}" )
The total # of days in Albany in 2023 that had at least 1.00 in. of precip was 12

Pandas has a function to compute the cumulative sum of a series. We’ll use it to compute and graph Albany’s total precip over the year.

precipTotal = precip.cumsum()
precipTotal
0       0.000000
1       0.000000
2       0.300000
3       0.380000
4       0.410000
         ...    
360    48.249989
361    48.419987
362    48.569988
363    48.619987
364    48.619987
Name: PCP, Length: 365, dtype: float32

We can see that the final total is in the last element of the precipTotal array. How can we explicitly print out just this value?

One of the methods available to us in a Pandas DataSeries is values. Let’s display it:

precipTotal.values
array([ 0.       ,  0.       ,  0.3      ,  0.38     ,  0.41     ,
        0.74     ,  0.74     ,  0.74     ,  0.74     ,  0.74     ,
        0.74     ,  1.07     ,  1.35     ,  1.35     ,  1.35     ,
        1.35     ,  1.4      ,  1.42     ,  1.96     ,  2.19     ,
        2.19     ,  2.43     ,  2.99     ,  2.99     ,  3.23     ,
        3.28     ,  3.28     ,  3.28     ,  3.28     ,  3.31     ,
        3.31     ,  3.31     ,  3.31     ,  3.31     ,  3.31     ,
        3.31     ,  3.31     ,  3.36     ,  3.36     ,  3.51     ,
        3.51     ,  3.51     ,  3.51     ,  3.51     ,  3.51     ,
        3.51     ,  3.51     ,  3.59     ,  3.59     ,  3.59     ,
        3.59     ,  3.77     ,  4.08     ,  4.7799997,  4.7799997,
        4.8599997,  4.8599997,  5.0399995,  5.1999993,  5.2099996,
        5.3899994,  5.6499996,  6.3799996,  6.3799996,  6.3799996,
        6.3799996,  6.3799996,  6.3799996,  6.4799995,  6.6299996,
        6.6299996,  6.9999995,  8.61     ,  8.61     ,  8.61     ,
        8.679999 ,  8.679999 ,  8.679999 ,  8.679999 ,  8.679999 ,
        8.679999 ,  8.789999 ,  8.789999 ,  8.979999 ,  8.989999 ,
        9.219998 ,  9.239999 ,  9.269999 ,  9.269999 ,  9.419998 ,
        9.869998 ,  9.869998 ,  9.869998 ,  9.879998 , 10.029998 ,
       10.189998 , 10.189998 , 10.189998 , 10.189998 , 10.189998 ,
       10.189998 , 10.189998 , 10.189998 , 10.189998 , 10.189998 ,
       10.189998 , 10.669997 , 10.669997 , 10.669997 , 10.669997 ,
       10.669997 , 11.439997 , 12.619997 , 12.669997 , 12.669997 ,
       12.759997 , 12.759997 , 12.759997 , 12.909997 , 13.6799965,
       14.1799965, 14.229997 , 14.499997 , 14.499997 , 14.499997 ,
       14.499997 , 14.499997 , 14.499997 , 14.499997 , 14.499997 ,
       14.499997 , 14.509997 , 14.509997 , 14.509997 , 14.509997 ,
       14.509997 , 14.509997 , 14.509997 , 14.509997 , 14.819998 ,
       14.819998 , 14.819998 , 14.819998 , 14.839998 , 14.839998 ,
       14.839998 , 14.839998 , 14.839998 , 14.839998 , 14.839998 ,
       14.839998 , 14.839998 , 14.839998 , 14.839998 , 14.839998 ,
       14.839998 , 14.949998 , 14.959998 , 14.989998 , 15.0999975,
       15.0999975, 15.0999975, 15.0999975, 15.439998 , 15.609998 ,
       15.619998 , 15.699998 , 15.749998 , 15.749998 , 15.749998 ,
       15.749998 , 15.749998 , 15.749998 , 15.749998 , 16.289999 ,
       16.289999 , 17.429998 , 17.809998 , 17.899998 , 17.899998 ,
       17.899998 , 17.899998 , 19.069998 , 19.459997 , 19.529997 ,
       19.529997 , 19.529997 , 19.559998 , 19.559998 , 20.159998 ,
       21.809998 , 22.169998 , 22.189999 , 23.109999 , 23.539999 ,
       23.57     , 25.       , 25.       , 27.31     , 27.31     ,
       27.31     , 27.49     , 27.49     , 27.49     , 27.96     ,
       27.96     , 27.96     , 28.3      , 28.3      , 28.55     ,
       28.59     , 28.6      , 28.6      , 28.6      , 28.640001 ,
       29.090002 , 29.090002 , 29.090002 , 30.150002 , 30.220001 ,
       30.220001 , 30.570002 , 30.570002 , 30.570002 , 31.000002 ,
       31.020002 , 31.550003 , 31.550003 , 31.560003 , 32.280003 ,
       32.280003 , 32.280003 , 32.280003 , 32.280003 , 32.280003 ,
       32.63     , 32.760002 , 32.760002 , 32.760002 , 33.22     ,
       33.22     , 33.73     , 33.73     , 33.73     , 33.75     ,
       33.75     , 33.75     , 33.75     , 33.75     , 34.26     ,
       35.05     , 35.059998 , 36.409996 , 36.419994 , 36.419994 ,
       36.609993 , 36.609993 , 36.609993 , 36.609993 , 36.809994 ,
       37.309994 , 37.309994 , 37.309994 , 37.309994 , 37.309994 ,
       37.319992 , 37.429993 , 37.509995 , 37.509995 , 37.509995 ,
       37.509995 , 37.659996 , 37.699997 , 37.699997 , 37.699997 ,
       37.699997 , 37.699997 , 37.699997 , 37.699997 , 38.769997 ,
       38.779995 , 38.779995 , 38.779995 , 38.789993 , 38.789993 ,
       38.789993 , 38.789993 , 38.79999  , 38.79999  , 38.79999  ,
       38.79999  , 38.79999  , 38.89999  , 40.02999  , 40.04999  ,
       40.04999  , 40.04999  , 40.04999  , 40.04999  , 40.04999  ,
       40.05999  , 40.64999  , 41.08999  , 41.08999  , 41.099987 ,
       41.099987 , 41.099987 , 41.099987 , 41.099987 , 41.22999  ,
       41.239986 , 41.259987 , 41.369987 , 41.369987 , 41.369987 ,
       41.369987 , 41.369987 , 41.389988 , 41.389988 , 41.389988 ,
       41.399986 , 41.559986 , 41.559986 , 41.559986 , 42.039986 ,
       42.269985 , 42.269985 , 42.269985 , 42.269985 , 42.509987 ,
       42.939987 , 42.939987 , 42.939987 , 42.939987 , 42.99999  ,
       43.009987 , 43.829987 , 43.859985 , 43.869984 , 43.909985 ,
       43.929985 , 43.929985 , 43.929985 , 44.809986 , 45.409985 ,
       45.409985 , 45.409985 , 45.409985 , 45.409985 , 45.409985 ,
       45.739986 , 47.869987 , 47.869987 , 47.869987 , 47.869987 ,
       47.869987 , 47.869987 , 47.90999  , 47.90999  , 47.94999  ,
       48.24999  , 48.419987 , 48.56999  , 48.619987 , 48.619987 ],
      dtype=float32)
Exercise: It's an array! So, let's print out the last element of the array. What index # can we use?
# %load '/spare11/atm350/common/feb22/02d.py'
# Print out the value of the last element in the array
precipTotal.values[-1]
48.619987

Plot the timeseries of the cumulative precip for Albany over the year.

fig, ax = plt.subplots(figsize=(15,10))
ax.plot (date, precipTotal, color='blue', marker='.',label = "Precip")
ax.set_title (f"ALB Year {year}")
ax.set_xlabel('Date')
ax.set_ylabel('Precip (in.)' )
ax.xaxis.set_major_locator(MonthLocator(interval=1))
dateFmt = DateFormatter('%b %d')
ax.xaxis.set_major_formatter(dateFmt)
ax.legend (loc="best")
<matplotlib.legend.Legend at 0x145a21eae690>
../../_images/2463b985d37cc2733177491a637ec0bc94ec1490feaeb22682d26622a477024a.png

Pandas has a plethora of statistical analysis methods to apply on tabular data. An excellent summary method is describe.

maxT.describe()
count    365.000000
mean      61.879452
std       18.183035
min       18.000000
25%       46.000000
50%       63.000000
75%       79.000000
max       93.000000
Name: MAX, dtype: float64
minT.describe()
count    365.000000
mean      42.816437
std       16.101021
min      -13.000000
25%       30.000000
50%       44.000000
75%       57.000000
max       74.000000
Name: MIN, dtype: float64
precip.describe()
count    365.000000
mean       0.133205
std        0.306733
min        0.000000
25%        0.000000
50%        0.000000
75%        0.110000
max        2.310000
Name: PCP, dtype: float64
Exercise: Why is the mean 0.13, but the median 0.00? Can you write a code cell that answers this question? Hint: determine how many days had a trace or less of precip.
  1. First, express the condition where precip is equal to 0.00.
  2. Then, determine the # of rows of that resulting series.
# %load /spare11/atm350/common/feb22/02e.py
subset = precip[precip == 0.00]
nRows = subset.shape[0]

print (f"The number of days where precip was a trace or less was {nRows}")
print ("Since this is represents more than half the days of the years, the median must = 0")
The number of days where precip was a trace or less was 209
Since this is represents more than half the days of the years, the median must = 0

We’ll wrap up by calculating and then plotting rolling means over a period of days in the year, in order to smooth out the day-to-day variations.

First, let’s replot the max and min temperature trace for the entire year, day-by-day.

fig, ax = plt.subplots(figsize=(15,10))
ax.plot (date, maxT, color='red',label = "Max T")
ax.plot (date, minT, color='blue', label = "Min T")
ax.set_title (f"ALB Year {year}")
ax.set_xlabel('Date')
ax.set_ylabel('Temperature (°F)' )
ax.xaxis.set_major_locator(MonthLocator(interval=1))
dateFmt = DateFormatter('%b %d')
ax.xaxis.set_major_formatter(dateFmt)
ax.legend (loc="best")
<matplotlib.legend.Legend at 0x145a21a5ccd0>
../../_images/bd7d2cc96c1a7c0d609c86dd1ecf7d18da42774d74527c813cc462b05bd3c174.png

Now, let’s calculate and plot the daily mean temperature.

meanT = (maxT + minT) / 2.
meanT
0      42.5
1      40.0
2      32.0
3      40.0
4      43.5
       ... 
360    47.5
361    46.5
362    45.0
363    40.0
364    35.0
Length: 365, dtype: float32
fig, ax = plt.subplots(figsize=(15,10))
ax.plot (date, meanT, color='green',label = "Mean T")
ax.set_title (f"ALB Year {year}")
ax.set_xlabel('Date')
ax.set_ylabel('Temperature (°F)' )
ax.xaxis.set_major_locator(MonthLocator(interval=1))
dateFmt = DateFormatter('%b %d')
ax.xaxis.set_major_formatter(dateFmt)
ax.legend (loc="best")
<matplotlib.legend.Legend at 0x145a19219f50>
../../_images/0b7143eb48ca602d665f93f89aed8624a3da35df80132a8e03cc8a24ea4ac2cd.png

Next, let’s use Pandas’ rolling method to calculate the mean over a specified number of days. We’ll center the window at the midpoint of each period (thus, for a 30-day window, the first plotted point will be on Jan. 16 … covering the Jan. 1 –> Jan. 30 timeframe.

meanTr5 = meanT.rolling(window=5, center=True)
meanTr10 = meanT.rolling(window=10, center=True)
meanTr15 = meanT.rolling(window=15, center=True)
meanTr30 = meanT.rolling(window=30, center=True)
meanTr30.mean()
0     NaN
1     NaN
2     NaN
3     NaN
4     NaN
       ..
360   NaN
361   NaN
362   NaN
363   NaN
364   NaN
Length: 365, dtype: float64
meanTr5.mean()
0       NaN
1       NaN
2      39.6
3      38.5
4      37.4
       ... 
360    44.0
361    43.5
362    42.8
363     NaN
364     NaN
Length: 365, dtype: float64
fig, ax = plt.subplots(figsize=(15,10))
ax.plot (date, meanT, color='green',label = "Mean T",alpha=0.2)
ax.plot (date, meanTr5.mean(), color='blue',label = "5 Day", alpha=0.3)
ax.plot (date, meanTr10.mean(), color='purple',label = "10 Day", alpha=0.3)
ax.plot (date, meanTr15.mean(), color='brown',label = "15 Day", alpha=0.3)
ax.plot (date, meanTr30.mean(), color='orange',label = "30 Day", alpha=1.0, linewidth=2)
ax.set_title (f"ALB Year {year}")
ax.set_xlabel('Date')
ax.set_ylabel('Temperature (°F)' )
ax.xaxis.set_major_locator(MonthLocator(interval=1))
dateFmt = DateFormatter('%b %d')
ax.xaxis.set_major_formatter(dateFmt)
ax.legend (loc="best")
<matplotlib.legend.Legend at 0x145a190d3050>
../../_images/5e0603202ef8f6266b9eb1f8bf08738682f8dd998c05d998f87cbe00db26e08d.png

Display just the daily and 30-day running mean.

fig, ax = plt.subplots(figsize=(15,10))
ax.plot (date, meanT, color='green',label = "Mean T",alpha=0.2)
ax.plot (date, meanTr30.mean(), color='orange',label = "30 Day", alpha=1.0, linewidth=2)
ax.set_title (f"ALB Year {year}")
ax.set_xlabel('Date')
ax.set_ylabel('Temperature (°F)' )
ax.xaxis.set_major_locator(MonthLocator(interval=1))
dateFmt = DateFormatter('%b %d')
ax.xaxis.set_major_formatter(dateFmt)
ax.legend (loc="best")
<matplotlib.legend.Legend at 0x145a19121310>
../../_images/eb169311dfd79852f9910fb411a8f33c2473846d4604555b69dcf873fbccd17a.png